Research on the Impact of Digital Agriculture Development on Agricultural Green Total Factor Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Review
2.2. Theoretical Analysis and Hypothesis
2.2.1. Enabling Logic of Digital Agricultural Development for Green Total Factor Productivity in Agriculture
- (1)
- Concept Empowerment Logic
- (2)
- Technology Empowerment Logic
- (3)
- Value Empowerment Logic
2.2.2. Mechanism of the Role of Digital Agriculture Development in Improving AGTFP
- (1)
- Promoting the Technology of Agricultural Industry
- (2)
- Encourage the agricultural industry’s intelligence
- (3)
- Promote multi-functionalization of agricultural industry
- (4)
- Promote the AGTFP and realize the conversion of old and new dynamics of agricultural development
2.2.3. Theoretical Hypothesis
- (1)
- Measurement of digital agriculture development level
- (2)
- Green total factor productivity measurement in agriculture
- (3)
- Analysis of the effect of digital agriculture development on AGTFP
2.3. Model Setting
2.3.1. Benchmark Regression Model
2.3.2. Moderating Effect Model
2.3.3. Variable Description
2.4. Data Collection
3. Results
3.1. Analysis of the State of Growth of Digital Agriculture
3.2. Green Total Factor Productivity Index Analysis for Agriculture
3.3. Analysis of the Effect of Digital Agriculture Development on AGTFP
3.3.1. Benchmark Regression test
3.3.2. Moderating Effect Test
3.3.3. Robustness Tests
3.3.4. Heterogeneity Analysis
4. Conclusions and Policy Implications
4.1. Conclusions
4.2. Policy Implications
4.2.1. Strengthen the Construction of an Organizational Mechanism
4.2.2. Construction of Digital Agricultural Production Standardization Base
4.2.3. Strengthen the Certification and Traceability of Digital Agricultural Products
4.2.4. Improve the Social Services of the Agricultural Industry
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leng, X.C.; Tong, G.J. The Digital Economy Empowers the Sustainable Development of China’s Agriculture-Related Industries. Sustainability 2022, 14, 10967. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS-Wagening. J. Life Sci. 2019, 90–91. [Google Scholar] [CrossRef]
- Runck, B.C.; Joglekar, A.; Silverstein, K.A.T.; Chan-Kang, C.; Pardey, P.G.; Wilgenbusch, J.C. Digital agriculture platforms: Driving data-enabled agricultural innovation in a world fraught with privacy and security concerns. Agron. J. 2022, 114, 2635–2643. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Zhang, Y.; Piao, H.L. Does Agricultural Mechanization Improve the Green Total Factor Productivity of China’s Planting Industry? Energies 2022, 15, 940. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.R.; Li, Z. Measurement of high-quality development level of China’s digital agriculture in the context of rural revitalization—Based on the analysis of data of 31 provinces and cities nationwide from 2015 to 2019. J. Shaanxi Norm. Univ. Philos. Soc. Sci. Ed. 2021, 50, 141–154. [Google Scholar] [CrossRef]
- Li, Y.; Han, Y.J.; Liu, N.X.; Zheng, T.Y. Accelerate the exploration of agricultural digitalization to promote rural revitalization in an all-round way—Interpretation of the contents of “digitalization” in the No. 1 central document from 2004 to 2022. Globalization 2022, 6, 102–112, 135. [Google Scholar] [CrossRef]
- Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2020, 278, 123692. [Google Scholar] [CrossRef]
- Liu, W. The next five years will be a critical period for building a socialist modern country in an all-round way—Learning from the report of the 20th National Congress of the Communist Party of China. China Bus. Mark. 2022, 36, 3–8. [Google Scholar]
- Gao, Q.; Cheng, C.M.; Sun, G.L.; Li, J.F. The Impact of Digital Inclusive Finance on Agricultural Green Total Factor Productivity: Evidence from China. Front. Ecol. Evol. 2022, 10, 905644. [Google Scholar] [CrossRef]
- Guo, X.P.; Mei, S.; Zhang, W.C. The development path of digital agriculture in less developed regions: An example of developing digital agriculture in Huanggang City. Decis. Inf. 2021, 2, 80–88. [Google Scholar]
- Subaeva, A.K.; Nizamutdinov, M.M.; Mavlieva, L.M. Changes of the agricultural staff potential in the transition to digital agriculture. BIO Web Conf. 2020, 17, 00178. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N.Q.; Wang, M.H.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Birner, R.; Daum, T.; Pray, C. Who drives the digital revolution in agriculture? A review of supply-side trends, players and challenges. Appl. Econ. Perspect. Policy 2021, 43, 1260–1285. [Google Scholar] [CrossRef]
- Ruan, J.H.; Liu, T.J.; Feng, X.C.; Qiao, Z.; Huo, X.; Zhu, Y.; Hu, X. Digital agriculture operation management: Key issues, theoretical approaches and demonstration projects. Manag. World 2020, 36, 222–233. [Google Scholar] [CrossRef]
- Zeng, Y.W.; Song, Y.X.; Lin, X.Z.; Fu, C. Some problems of digital village construction in China. China Rural Econ. 2021, 21–35. [Google Scholar]
- Yan, D.W. Development of digital agriculture at home and abroad and experiences. Yunnan Agric. 2019, 48–50. [Google Scholar]
- Walter, A. How will digitalization change agriculture? Int. Trade Forum 2016, 2016, 28–29. [Google Scholar] [CrossRef]
- Hackfort, S. Patterns of Inequalities in Digital Agriculture: A Systematic Literature Review. Sustainability 2021, 13, 12345. [Google Scholar] [CrossRef]
- Liang, Y.; Lu, X.S.; Zhang, D.G.; Liang, F.; Ren, Z.B. Study on the framework system of digital agriculture. Chin. Geogr. Sci. 2003, 13, 15–19. [Google Scholar] [CrossRef]
- Wolf, S.A.; Buttel, F.H. The Political Economy of Precision Farming. Am. J. Agric. Econ. 1996, 78, 1269–1274. [Google Scholar] [CrossRef]
- Donaldson, A. Digital from farm to fork: Infrastructures of quality and control in food supply chains. J. Rural Stud. 2022, 91, 228–235. [Google Scholar] [CrossRef]
- MacPherson, J.; Voglhuber-Slavinsky, A.; Olbrisch, M.; Schobel, P.; Donitz, E.; Mouratiadou, I.; Helming, K. Future agricultural systems and the role of digitalization for achieving sustainability goals. A review. Agron. Sustain. Dev. 2022, 42, 70. [Google Scholar] [CrossRef] [PubMed]
- Garske, B.; Bau, A.; Ekardt, F. Digitalization and AI in European Agriculture: A Strategy for Achieving Climate and Biodiversity Targets? Sustainability 2021, 13, 4652. [Google Scholar] [CrossRef]
- Zhang, J.C. Digital Development Strategy of Agricultural Planting and Breeding Enterprises Based on Intelligent Sensors. Wirel. Commun. Mob. Comput. 2022, 2022, 6495191. [Google Scholar] [CrossRef]
- Ma, C.; Li, J.; Wang, D.Y. Optimal evaluation index system and benefit evaluation model for agricultural informatization in Beijing. Int. J. Robot. Autom. 2018, 33, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Qin, S.; Han, Z.Y.; Chen, H.; Wang, H.K.; Guo, C. High-Quality Development of Chinese Agriculture under Factor Misallocation. Int. J. Environ. Res. Public Health 2022, 19, 9804. [Google Scholar] [CrossRef]
- Fang, F.; Zhao, J.; Di, J.; Zhang, L.J. Spatial correlations and driving mechanisms of low-carbon agricultural development in China. Front. Environ. Sci. 2022, 10, 1866. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]
- Chen, Y.L.; Fu, W.W.; Wang, J.Y. Evaluation and Influencing Factors of China’s Agricultural Productivity from the Perspective of Environmental Constraints. Sustainability 2022, 14, 2807. [Google Scholar] [CrossRef]
- Akroush, S.N.; Dhehibi, B.; Aw-Hassan, A. Agricultural Growth Accounting and Total Factor Productivity in Jordan Trends determinants and future challenges. Int. J. Product. Manag. Assess. Technol. 2016, 4, 1–14. [Google Scholar]
- Perrin, R.K.; Rezek, J.P. Environmentally Adjusted Agricultural Productivity in the Great Plains. West. J. Agric. Econ. 2004, 29, 346–369. [Google Scholar]
- Baráth, L.; Fert, I. Accounting for TFP Growth in Global Agriculture—A Common-Factor-Approach-Based TFP Estimation. AGRIS on-line Pap. Econ. Inform. 2020, 12, 3–13. [Google Scholar] [CrossRef]
- He, W.C.; Li, E.L.; Cui, Z.Z. Evaluation and Influence Factor of Green Efficiency of China’s Agricultural Innovation from the Perspective of Technical Transformation. Chin. Geogr. Sci. 2021, 31, 313–328. [Google Scholar] [CrossRef]
- Rusiawan, W.; Tjiptoherijanto, P.; Suganda, E.; Darmajanti, L. Assessment of Green Total Factor Productivity Impact on Sustainable Indonesia Productivity Growth. Procedia Environ. Sci. 2015, 28, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Barro, R.J.; Lee, J.W. A new data set of educational attainment in the world, 1950–2010. J. Dev. Econ. 2013, 104, 184–198. [Google Scholar] [CrossRef]
- Li, T.C.; Han, D.R.; Ding, Y.Y.; Shi, Z.Y. How Does the Development of the Internet Affect Green Total Factor Productivity? Evidence From China. IEEE Access 2020, 8, 216477–216490. [Google Scholar] [CrossRef]
- Ang, F.; Kerstens, P.J. Decomposing the Luenberger-Hicks-Moorsteen Total Factor Productivity indicator: An application to US agriculture. Eur. J. Oper. Res. 2017, 260, 359–375. [Google Scholar] [CrossRef]
- Syverson, C. What Determines Productivity? J. Econ. Lit. 2011, 49, 326–365. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.F.; Wang, Z.; Huang, Q.H. Factor allocation structure and green-biased technological progress in Chinese agriculture. Econ. Res. Ekon. Istraživanja 2021, 34, 2034–2058. [Google Scholar] [CrossRef]
- Hong, M.Y.; Tian, M.J.; Wang, J. Digital Inclusive Finance, Agricultural Industrial Structure Optimization and Agricultural Green Total Factor Productivity. Sustainability 2022, 14, 11450. [Google Scholar] [CrossRef]
- Ahmed, N.; Hamid, Z.; Mahboob, F.; Rehman, K.U.; Ali, M.S.E.; Senkus, P.; Wysokinska-Senkus, A.; Sieminski, P.; Skrzypek, A. Causal Linkage among Agricultural Insurance, Air Pollution, and Agricultural Green Total Factor Productivity in United States: Pairwise Granger Causality Approach. Agriculture 2022, 12, 1320. [Google Scholar] [CrossRef]
- Wang, L.; Tang, J.Y.; Tang, M.Q.; Su, M.Y.; Guo, L.L. Scale of Operation, Financial Support, and Agricultural Green Total Factor Productivity: Evidence from China. Int. J. Environ. Res. Public Heath 2022, 19, 9043. [Google Scholar] [CrossRef]
- Xu, Q.H.; Zhu, P.X.; Tang, L. Agricultural Services: Another Way of Farmland Utilization and Its Effect on Agricultural Green Total Factor Productivity in China. Land 2022, 11, 1170. [Google Scholar] [CrossRef]
- Zhu, L.P.; Shi, R.; Mi, L.C.; Liu, P.; Wang, G.F. Spatial Distribution and Convergence of Agricultural Green Total Factor Productivity in China. Int. J. Environ. Res. Public Heath 2022, 19, 8786. [Google Scholar] [CrossRef] [PubMed]
- Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942. [Google Scholar] [CrossRef]
- Namani, S.; Gonen, B. Smart Agriculture Based on IoT and Cloud Computing. In Proceedings of the 3rd International Conference on Information and Computer Technologies (ICICT), San Jose, CA, USA, 9–12 March 2020; pp. 553–556. [Google Scholar] [CrossRef]
- Han, H.B.; Zhong, Z.Q.; Wen, C.C.; Sun, H.G. Agricultural environmental total factor productivity in China under technological heterogeneity: Characteristics and determinants. Environ. Sci. Pollut. Res. 2018, 25, 32096–32111. [Google Scholar] [CrossRef]
- Deng, H.Y.; Jing, X.N.; Shen, Z.Y. Internet technology and green productivity in agriculture. Environ. Sci. Pollut. Res. 2022, 29, 81441–81451. [Google Scholar] [CrossRef]
- Gangwar, D.S.; Tyagi, S.; Soni, S.K. A techno-economic analysis of digital agriculture services: An ecological approach toward green growth. Int. J. Environ. Sci. Technol. 2022, 19, 3859–3870. [Google Scholar] [CrossRef]
- Walter, A.; Robert, F.; Huber, R.; Buchmann, N. Smart farming is key to developing sustainable agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Lu, X.S.; Zhang, D.G.; Liang, F. The main content, technical support and enforcement strategy of digital agriculture. Geo-Spat. Inf. Sci. 2012, 5, 68–73. [Google Scholar] [CrossRef]
- Shepherd, M.; Turner, J.A.; Small, B.; Wheeler, D. Priorities for science to overcome hurdles thwarting the full promise of the ‘digital agriculture’ revolution. J. Sci. Food Agric. 2020, 100, 5083–5092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sott, M.K.; Nascimento, L.S.; Foguesatto, C.R.; Furstenau, L.B.; Faccin, K.; Zawislak, P.A.; Mellado, B.; Kong, J.D.; Bragazzi, N.L. Agriculture 4.0 and Smart Sensors. The Scientific Evolution of Digital Agriculture: Challenges and Opportunities. Sensors 2021. preprints. [Google Scholar] [CrossRef]
- Kumar, S.A.; Ilango, P. The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wirel. Pers. Commun. 2018, 98, 685–698. [Google Scholar] [CrossRef]
- Bouma, J. Precision agriculture: Introduction to the spatial and temporal variability of environmental quality. In Ciba Foundation Symposium 210-Precision Agriculture: Spatial and Temporal Variability of Environmental Quality: Precision Agriculture: Spatial and Temporal Variability of Environmental Quality: Ciba Foundation Symposium 210; John Wiley & Sons, Ltd.: Chichester, UK, 1997; pp. 5–13. [Google Scholar] [CrossRef]
- Anshari, M.; Almunawar, M.N.; Masri, M.; Hamdan, M. Digital Marketplace and FinTech to Support Agriculture Sustainability. In Proceedings of the 5th International Conference on Power and Energy Systems Engineering (CPESE), Nagoya, Japan, 19–21 September 2018; pp. 234–238. [Google Scholar] [CrossRef]
- Juan, W.; Tao, Y.D. Reverse integration and optimisation of agricultural products E-commerce omnichannel supply chain under Internet technology. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 604–612. [Google Scholar] [CrossRef]
- Guo, H.P.; Su, Z.X.; Yang, X.; Xu, S.; Pan, H. Greenhouse Gas Emissions from Beef Cattle Breeding Based on the Ecological Cycle Model. Int. J. Environ. Res. Public Heath 2022, 19, 9481. [Google Scholar] [CrossRef]
- Xie, D.; Chen, L.; Liu, L.; Chen, L.; Wang, H. Actuators and Sensors for Application in Agricultural Robots: A Review. Machines 2022, 10, 913. [Google Scholar] [CrossRef]
- Fu, W.Q.; Zhang, R.W. Can Digitalization Levels Affect Agricultural Total Factor Productivity? Evidence From China. Front. Sustain. Food Syst. 2022, 6, 860780. [Google Scholar] [CrossRef]
- Zhou, J.H.; Jin, Y.; Wang, Y.; Liang, Q. Quality information disclosure, signaling and certification of agricultural products: A comparative analysis based on meat and vegetable industries. Agric. Econ. Issues 2020, 76–87. [Google Scholar] [CrossRef]
- Zhu, T.; Yan, Z.; Seah, H.S.; Feng, T.; Yan, X. Plant Modeling and Its Application in Digital Agriculture Museum; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Bergvinson, D. Unlocking the power of digital agriculture. In Proceedings of the 2017: Transforming Lives and Livelihoods: The Digital Revolution in Agriculture, Canberra, Australia, 7–8 August 2017. [Google Scholar] [CrossRef]
- Jiang, S.; Zhou, J.; Qiu, S. Digital Agriculture and Urbanization: Mechanism and Empirical Research. Technol. Forecast. Soc. Chang. 2022, 180, 121724. [Google Scholar] [CrossRef]
- Cui, K.; Feng, X. Research on the indicator system design for rural digital economy from the perspective of digital village construction. Res. Agric. Mod. 2020, 41, 899–909. [Google Scholar] [CrossRef]
- Li, D.K. Application of artificial intelligence and machine learning based on big data analysis in sustainable agriculture. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2021, 71, 956–969. [Google Scholar] [CrossRef]
- Solodovnik, A.I.; Gulyaeva, T.I. Evaluation methodology of the potential of agricultural universities in the “experimental digital pilot farm” project. IOP Conf. Ser. Earth Environ. Sci. 2020, 422, 012096. [Google Scholar] [CrossRef]
- Wang, W.S. Comprehensive evaluation of the development level of digital agriculture in China’s provincial areas and analysis of influencing factors. Master’s Thesis, Inner Mongolia University of Finance and Economics, Hohhot, China, 2022. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, D.D. Evaluation of the high-quality development of digital agriculture in Hebei Province. Agric. Technol. 2022, 42, 146–151. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.B. Research on the equity of agricultural carbon emissions in China’s provincial regions. China Popul. Resour. Environ. 2013, 23, 36–44. [Google Scholar]
- Min, J.S.; Hu, H. Measurement of greenhouse gas emissions from agricultural production in China. China Popul. Resour. Environ. 2012, 22, 21–27. [Google Scholar]
- IPCC. Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Kozina, A.M.; Semkiv, L.P. Sustainable development of dairy farming through the use of digital technologies. IOP Conf. Ser. Earth Environ. Sci. 2020, 613, 012061. [Google Scholar] [CrossRef]
- Oyinbo, O.; Chamberlin, J.; Maertens, M. Design of Digital Agricultural Extension Tools: Perspectives from Extension Agents in Nigeria. J. Agric. Econ. 2020, 71, 798–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, S.; Jackson, E.L.; Fisher, M.J.; Baker, D.; Diepeveen, D. Embedding digital agriculture into sustainable Australian food systems: Pathways and pitfalls to value creation. Int. J. Agric. Sustain. 2022, 20, 346–367. [Google Scholar] [CrossRef]
- Fountas, S.; Espejo-Garcia, B.; Kasimati, A.; Mylonas, N.; Darra, N. The Future of Digital Agriculture: Technologies and Opportunities. IT Prof. 2020, 22, 24–28. [Google Scholar] [CrossRef]
- Rotz, S.; Duncan, E.; Small, M.; Botschner, J.; Dara, R.; Mosby, I.; Reed, M.; Fraser, E.D.G. The Politics of Digital Agricultural Technologies: A Preliminary Review. Sociol. Rural. 2019, 59, 203–229. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.Y.; Liu, J.Y.; Zhu, R.B. Digital agriculture development: International experience, emission reduction effect and financial support—A case study based on Chengdu. Southwest Financ. 2022, 1, 28–39. [Google Scholar]
- Tan, Q.C.; Zhang, H. Feasibility, problems and suggestions of digital agriculture development in China. Econ. Res. Ref. 2022, 2, 23–29. [Google Scholar] [CrossRef]
- Ding, X.; Huang, Y.; Gao, W.; Min, W. A Comparative Study of the Impacts of Human Capital and Physical Capital on Building Sustainable Economies at Different Stages of Economic Development. Energies 2021, 14, 6259. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.; Zheng, R.; Wang, J.; Cheng, Y. Impact of human capital on the green economy: Empirical evidence from 30 Chinese provinces. Environ. Sci. Pollut. Res. 2022, 1–13. [Google Scholar] [CrossRef]
- Liu, F.; Lv, N. The threshold effect test of human capital on the growth of agricultural green total factor productivity: Evidence from China. Int. J. Electr. Eng. Educ. 2021, 002072092110032. [Google Scholar] [CrossRef]
Variables | Measurements | Weight | Positive and Negative Direction |
---|---|---|---|
Digital Agriculture Development level | Fiber optic cable length (km) | 0.0555 | + |
Cell phone penetration rate (per 100 people) | 0.0180 | + | |
Internet penetration rate | 0.0191 | + | |
Number of Internet-related employees | 0.0183 | + | |
Breadth of digital financial coverage | 0.3713 | + | |
Depth of digital financial usage | 0.1525 | + | |
Degree of digitalization of digital finance | 0.0578 | + | |
Converted full-time equivalent of R&D personnel in industrial enterprises above scale (person-years) | 0.0047 | + | |
R&D expenditure of industrial enterprises above scale (10,000 CNY) | 0.0170 | + | |
The number of R&D projects (topics) of industrial enterprises above the scale (items) | 0.0200 | + | |
Total turnover of technology contracts (10,000 CNY) | 0.0584 | + | |
Number of patent applications authorized (pieces) | 0.0271 | + | |
Telecommunications business volume (100 million CNY) | 0.1802 | + |
Province | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | Average Value |
---|---|---|---|---|---|---|---|---|---|---|
Beijing | 0.0714 | 0.0874 | 0.1033 | 0.1113 | 0.1237 | 0.1237 | 0.1369 | 0.1626 | 0.1876 | 0.1231 |
Tianjin | 0.0267 | 0.0344 | 0.0400 | 0.0435 | 0.0504 | 0.0511 | 0.0549 | 0.0677 | 0.0802 | 0.0499 |
Hebei | 0.0263 | 0.0351 | 0.0475 | 0.0509 | 0.0600 | 0.0610 | 0.0804 | 0.1189 | 0.1545 | 0.0705 |
Liaoning | 0.0329 | 0.0407 | 0.0504 | 0.0554 | 0.0639 | 0.0642 | 0.0758 | 0.0967 | 0.1161 | 0.0662 |
Shanghai | 0.0462 | 0.0549 | 0.1227 | 0.0717 | 0.0805 | 0.0785 | 0.0875 | 0.1118 | 0.1312 | 0.0872 |
Jiangsu | 0.0715 | 0.0933 | 0.1117 | 0.1174 | 0.1392 | 0.4330 | 0.1630 | 0.2221 | 0.2792 | 0.1811 |
Zhejiang | 0.0606 | 0.0763 | 0.0945 | 0.1030 | 0.1257 | 0.1227 | 0.1466 | 0.1986 | 0.2521 | 0.1311 |
Fujian | 0.0366 | 0.0465 | 0.0583 | 0.0607 | 0.0709 | 0.0690 | 0.0812 | 0.1093 | 0.1306 | 0.0737 |
Shandong | 0.0425 | 0.0532 | 0.0690 | 0.0762 | 0.0919 | 0.0958 | 0.1167 | 0.1613 | 0.1985 | 0.1006 |
Guangdong | 0.0837 | 0.0996 | 0.1290 | 0.1297 | 0.1536 | 0.1482 | 0.1912 | 0.2794 | 0.3685 | 0.1759 |
Hainan | 0.0124 | 0.0188 | 0.0254 | 0.0280 | 0.0349 | 0.0333 | 0.0382 | 0.0476 | 0.0542 | 0.0325 |
Shanxi | 0.0233 | 0.0308 | 0.0383 | 0.0418 | 0.0484 | 0.0487 | 0.0576 | 0.0755 | 0.0930 | 0.0508 |
Jilin | 0.0163 | 0.0224 | 0.0302 | 0.0337 | 0.0405 | 0.2828 | 0.0485 | 0.0691 | 0.0810 | 0.0694 |
Heilongjiang | 0.0178 | 0.0244 | 0.0330 | 0.0378 | 0.0442 | 0.0438 | 0.0582 | 0.0693 | 0.0859 | 0.0460 |
Anhui | 0.0198 | 0.0294 | 0.0411 | 0.0465 | 0.0562 | 0.0614 | 0.0785 | 0.1123 | 0.1468 | 0.0658 |
Jiangxi | 0.0120 | 0.0195 | 0.0278 | 0.0327 | 0.0406 | 0.0422 | 0.0641 | 0.0905 | 0.1159 | 0.0495 |
Henan | 0.0226 | 0.0313 | 0.0464 | 0.0535 | 0.0654 | 0.0694 | 0.0853 | 0.1299 | 0.1674 | 0.0746 |
Hubei | 0.0252 | 0.0345 | 0.0474 | 0.0539 | 0.0663 | 0.0693 | 0.0840 | 0.1141 | 0.1456 | 0.0712 |
Hunan | 0.0203 | 0.0304 | 0.0413 | 0.0470 | 0.0555 | 0.0567 | 0.0773 | 0.1092 | 0.1439 | 0.0646 |
Inner Mongolia | 0.0193 | 0.0277 | 0.0353 | 0.0377 | 0.0437 | 0.2988 | 0.0561 | 0.0690 | 0.4570 | 0.1161 |
Guangxi | 0.0151 | 0.0224 | 0.0296 | 0.0339 | 0.0428 | 0.1953 | 0.0553 | 0.0848 | 0.1164 | 0.0662 |
Chongqing | 0.0178 | 0.0249 | 0.0350 | 0.0405 | 0.0488 | 0.0515 | 0.0601 | 0.0830 | 0.1019 | 0.0515 |
Sichuan | 0.0264 | 0.0372 | 0.0525 | 0.0606 | 0.0757 | 0.0749 | 0.0975 | 0.1453 | 0.1879 | 0.0842 |
Guizhou | 0.0095 | 0.0166 | 0.0264 | 0.0301 | 0.0401 | 0.0414 | 0.0543 | 0.0841 | 0.1150 | 0.0464 |
Yunnan | 0.0138 | 0.0226 | 0.0321 | 0.0366 | 0.0492 | 0.0478 | 0.0629 | 0.0939 | 0.1317 | 0.0545 |
Shanxi | 0.0255 | 0.0335 | 0.0454 | 0.0513 | 0.0610 | 0.0632 | 0.0754 | 0.1055 | 0.1338 | 0.0661 |
Gansu | 0.0106 | 0.0172 | 0.0259 | 0.0299 | 0.0365 | 0.0359 | 0.0454 | 0.0626 | 0.0780 | 0.0380 |
Qinghai | 0.0124 | 0.0179 | 0.0239 | 0.0258 | 0.0321 | 0.0306 | 0.0353 | 0.0440 | 0.0477 | 0.0299 |
Ningxia | 0.0091 | 0.0161 | 0.0220 | 0.0256 | 0.0316 | 0.0307 | 0.0363 | 0.0445 | 0.0487 | 0.0294 |
Xinjiang | 0.0169 | 0.0253 | 0.0338 | 0.0356 | 0.0435 | 0.0416 | 0.0470 | 0.0675 | 0.0836 | 0.0439 |
Average value | 0.0281 | 0.0375 | 0.0506 | 0.0534 | 0.0639 | 0.0955 | 0.0784 | 0.1077 | 0.1478 | 0.0737 |
Eastern | 0.0464 | 0.0582 | 0.0774 | 0.0771 | 0.0904 | 0.1164 | 0.1066 | 0.1433 | 0.1775 | 0.0993 |
Central | 0.0197 | 0.0279 | 0.0382 | 0.0434 | 0.0521 | 0.0843 | 0.0692 | 0.0962 | 0.1224 | 0.0615 |
Western | 0.0199 | 0.0282 | 0.0389 | 0.0427 | 0.0524 | 0.0602 | 0.0644 | 0.0904 | 0.1158 | 0.0570 |
Province | AGTFP Index | EC | TC |
---|---|---|---|
Beijing | 1.08 | 1.01 | 1.07 |
Tianjin | 1.17 | 1.11 | 1.09 |
Hebei | 1.17 | 1.02 | 1.14 |
Shanxi | 1.04 | 0.98 | 1.07 |
Inner Mongolia | 1.00 | 0.95 | 1.06 |
Liaoning | 1.06 | 0.96 | 1.12 |
Jilin | 1.08 | 0.98 | 1.11 |
Heilongjiang | 1.25 | 1.13 | 1.11 |
Shanghai | 0.94 | 0.89 | 1.07 |
Jiangsu | 1.08 | 1.00 | 1.08 |
Zhejiang | 1.19 | 1.02 | 1.20 |
Anhui | 1.05 | 0.98 | 1.07 |
Fujian | 1.06 | 1.00 | 1.06 |
Jiangxi | 1.07 | 1.01 | 1.06 |
Shandong | 1.08 | 0.99 | 1.09 |
Henan | 1.08 | 0.99 | 1.09 |
Hubei | 1.14 | 1.00 | 1.14 |
Hunan | 1.05 | 0.98 | 1.07 |
Guangdong | 1.06 | 1.00 | 1.06 |
Guangxi | 1.09 | 0.95 | 1.15 |
Hainan | 1.03 | 1.00 | 1.03 |
Chongqing | 1.08 | 1.00 | 1.09 |
Sichuan | 1.19 | 1.02 | 1.20 |
Guizhou | 1.24 | 1.15 | 1.08 |
Yunnan | 1.06 | 1.00 | 1.06 |
Shanxi | 1.05 | 0.99 | 1.06 |
Gansu | 1.07 | 1.01 | 1.07 |
Qinghai | 1.11 | 1.01 | 1.10 |
Ningxia | 1.18 | 1.01 | 1.16 |
Xinjiang | 1.05 | 0.97 | 1.08 |
Variables | (1) | (2) | (3) |
---|---|---|---|
DIG | 0.5070 ** | 2.3266 *** | 2.1021 *** |
(2.4832) | (4.5420) | (2.7901) | |
FDI | 1.1195 | 1.5678 ** | 0.4965 |
(1.6354) | (2.2910) | (0.4456) | |
FINA | 0.0102 * | 0.0125 ** | 0.0189 |
(1.9275) | (2.3403) | (1.4700) | |
HC | −0.0066 | −0.0144 | −0.0319 |
(−0.4640) | (−1.0536) | (−0.6072) | |
GOV | 0.0944 | 0.2064 ** | 1.1470 |
(1.1115) | (2.4026) | (1.0990) | |
DIG2 | −5.0679 *** | −4.3064 *** | |
(−4.3028) | (−2.9575) | ||
_cons | 0.9500 *** | 0.8673 *** | 0.7501 * |
(5.6223) | (5.1561) | (1.7426) | |
N | 240 | 240 | 240 |
adj. R2 | 0.060 | 0.146 | 0.202 |
Variables | AGTFP |
---|---|
DIG | 1.386 ** |
(0.525) | |
HC | −0.0273 |
(0.0509) | |
C_interact | −0.435 *** |
(0.150) | |
FINA | 0.0190 |
(0.0128) | |
GOV | 1.156 |
(1.045) | |
FDI | 0.499 |
(1.111) | |
Constant | 0.733 * |
(0.420) | |
Observations | 240 |
R-squared | 0.221 |
Number of id | 30 |
Variables | Panel Quantile Regression (1) | IV(2sls) (2) | |||
---|---|---|---|---|---|
q25 | Q50 | Q75 | Q90 | ||
DIG | 0.2240 ** | 0.2881 *** | 0.8905 ** | 1.4926 *** | 1.1241 *** |
(2.5352) | (2.7693) | (2.4977) | (3.3083) | (3.0171) | |
FDI | −0.1281 | 0.2620 | 1.5931 | 2.1374 | 2.0909 *** |
(−0.3081) | (0.7869) | (1.6308) | (1.5408) | (2.6998) | |
FINA | 0.0043 * | 0.0035** | 0.0073 ** | 0.0077 * | 0.0108 ** |
(1.7410) | (2.0748) | (1.9888) | (1.7218) | (2.4212) | |
HC | −0.0156 ** | −0.0030 | −0.0063 | −0.0063 | −0.0199 |
(−2.4356) | (−0.3290) | (−0.5056) | (−0.3181) | (−1.3201) | |
GOV | −0.1101 ** | 0.0307 | 0.2461 ** | 0.5708 ** | 0.2528 |
(−2.0677) | (0.9062) | (2.4541) | (2.3509) | (1.6220) | |
_cons | 1.1396 *** | 1.0173 *** | 0.9356 *** | 0.8518 *** | 0.9602 *** |
(15.2156) | (11.1162) | (8.5725) | (5.3075) | (6.1392) |
Variables | East Part | West Part | Central Part |
---|---|---|---|
(1) | (2) | (3) | |
DIG | 1.1655 * | −0.2623 | 11.4744 * |
(1.7006) | (−0.2536) | (1.7565) | |
DIG2 | −2.2953 * | −0.0819 | −36.3157 * |
(−1.6697) | (−0.0384) | (−1.7743) | |
FDI | 2.7251 *** | −2.0244 | −9.7345 |
(3.4360) | (−1.1796) | (−1.6195) | |
FINA | 0.0139 ** | 0.0059 | 0.0442 ** |
(2.3011) | (0.8032) | (2.3016) | |
HC | −0.0064 | −0.1087 ** | −0.1899 |
(−0.4330) | (−2.4156) | (−1.4252) | |
GOV | −0.4113 ** | −0.3896 * | 1.5338 |
(−2.0256) | (−1.7817) | (1.1812) | |
(0.2625) | (1.8506) | (−1.3143) | |
Year | YES | YES | YES |
_cons | 0.8877 *** | 2.0342 *** | 1.8254 ** |
(5.4539) | (5.3993) | (2.2624) | |
N | 88 | 88 | 64 |
adj. R2 | 0.279 | 0.274 | 0.396 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Chen, T.; Zhang, B. Research on the Impact of Digital Agriculture Development on Agricultural Green Total Factor Productivity. Land 2023, 12, 195. https://doi.org/10.3390/land12010195
Zhou X, Chen T, Zhang B. Research on the Impact of Digital Agriculture Development on Agricultural Green Total Factor Productivity. Land. 2023; 12(1):195. https://doi.org/10.3390/land12010195
Chicago/Turabian StyleZhou, Xinxin, Tong Chen, and Bangbang Zhang. 2023. "Research on the Impact of Digital Agriculture Development on Agricultural Green Total Factor Productivity" Land 12, no. 1: 195. https://doi.org/10.3390/land12010195