Challenges Entailed in Applying Ecosystem Services Supply and Demand Mapping Approaches: A Practice Report
Abstract
:1. Introduction
- How useful are commonly used ES mapping approaches in regional urban contexts, and what major obstacles to their application did we encounter?
- How can our experiences help inform future research and comparable application perspectives in ES mapping?
2. Materials and Methods
2.1. Study Areas
2.2. Selected Indicators
2.3. Definitions of ES Supply and Demand
2.4. Methods
2.4.1. Method 1: Expert-Based ES Matrix Approach
2.4.2. Method 2: Simple GIS Mapping
2.4.3. Method 3: InVEST Models
2.4.4. Map Comparisons
3. Results
3.1. Method 1: Expert-Based ES Matrix Approach
3.1.1. ES Supply
3.1.2. ES Demand
- For non-ES experts, the definition of ES demand was hard to understand.
- The ES demand can be expressed by society, stakeholder groups, or individuals through wishes, values and norms, use or consumption patterns, or the need for risk reduction/prevention and increased security against natural hazards [15,56]. The stakeholders were divided on which perspective and types of demand should be considered.
- Stakeholders found it challenging to estimate ES demand within the selected LULC, as they felt that demand originated from people and markets and not from the specific LULC types.
- It was unclear how to estimate ES demand for provisioning ES, such as food, whose goods and products are transported and used worldwide. In this case, the stakeholders questioned whether a regional assessment of ES supply and demand would be helpful.
- Stakeholders found it challenging to estimate the demand for regulating ES at a regional scale due to the more local scope of many ecosystem processes and functions that are underlying regulating ES.
- The study regions were considered too large and too heterogeneous. The participants from the urban region of Munich especially emphasised this point.
3.2. Method 2: Simple GIS Mapping
3.3. Method 3: InVEST
3.4. Map Comparison (Example: Local Climate Regulation)
4. Discussion
4.1. How Useful Are Commonly Used ES Mapping Approaches in Regional Urban Contexts and What Major Obstacles to Their Application Did We Encounter?
4.1.1. Method 1: Expert-Based ES Matrix Approach
4.1.2. Method 2: Simple GIS Mapping
4.1.3. Method 3: InVEST Models
4.1.4. Map Comparisons
4.2. How Can Our Experiences Help Inform Future Research and Related Application Perspectives in ES Mapping?
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Potschin-Young, M.; Burkhard, B.; Czúcz, B.; Santos-Martín, F. Glossary of ecosystem services mapping and assessment terminology. One Ecosyst. 2018, 3, e27110. [Google Scholar] [CrossRef]
- The Economics of Ecosystems and Biodiversity. In The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusions and Recommendations of TEEB; UNEP: Geneva, Switzerland, 2010; ISBN 9783981341034.
- Millennium Ecosystem Assessment. In Ecosystems and Human Well-Being: Synthesis; Island Press: Washington DC, USA, 2005; ISBN 1597260398.
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Díaz, S., Settele, J., Brondízio, E.S., Ngo, H.T., Guèze, M., Agard, J., Arneth, A., Balvanera, P., Brauman, K.A., Butchart, S.H.M., et al., Eds.; IPBES secretariat: Bonn, Germany, 2019; ISBN 978-3-947851-13-3. [Google Scholar]
- European Commission. An Advocacy Toolkit for Nature. Biodiversity Loss, Nature Protection, and the EU Strategy for Nature; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Bolound, P.; Hunhammar, S. Ecosystem services in urban areas. Ecol. Econ. 1999, 29, 293–301. [Google Scholar] [CrossRef]
- Sylla, M.; Hagemann, N.; Szewrański, S. Mapping trade-offs and synergies among peri-urban ecosystem services to address spatial policy. Environ. Sci. Policy 2020, 112, 79–90. [Google Scholar] [CrossRef]
- Sloggy, M.R.; Escobedo, F.J.; Sánchez, J.J. The Role of Spatial Information in Peri-Urban Ecosystem Service Valuation and Policy Investment Preferences. Land 2022, 11, 1267. [Google Scholar] [CrossRef]
- Grunewald, K.; Bastian, O.; Louda, J.; Arcidiacono, A.; Brzoska, P.; Bue, M.; Cetin, N.I.; Dworczyk, C.; Dubova, L.; Fitch, A.; et al. Lessons learned from implementing the ecosystem services concept in urban planning. Ecosyst. Serv. 2021, 49, 101273. [Google Scholar] [CrossRef]
- Olander, L.; Polasky, S.; Kagan, J.S.; Johnston, R.J.; Wainger, L.; Saah, D.; Maguire, L.; Boyd, J.; Yoskowitz, D. So you want your research to be relevant? Building the bridge between ecosystem services research and practice. Ecosyst. Serv. 2017, 26, 170–182. [Google Scholar] [CrossRef]
- Tezer, A.; Turkay, Z.; Uzun, O.; Terzi, F.; Koylu, P.; Karacor, E.; Okay, N.; Kaya, M. Ecosystem services-based multi-criteria assessment for ecologically sensitive watershed management. Environ. Dev. Sustain. 2020, 22, 2431–2450. [Google Scholar] [CrossRef]
- Ronchi, S.; Salata, S.; Arcidiacono, A. Which urban design parameters provide climate-proof cities? An application of the Urban Cooling InVEST Model in the city of Milan comparing historical planning morphologies. Sustain. Cities Soc. 2020, 63, 102459. [Google Scholar] [CrossRef]
- The Economics of Ecosystems and Biodiversity. In Guidance Manual for TEEB Country Studies. Version 1.0.; United Nations Environment Programme: Geneva, Switzerland, 2013.
- European Union. Natural Capital Accounting: Overview and Progress in the European Union; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-79-89744-3. [Google Scholar]
- European Commission. The EU Biodiversity Strategy to 2020; Publications Office of the European Union: Luxembourg, 2011; ISBN 9789279207624. [Google Scholar]
- European Commission. EU Biodiversity Strategy for 2030. Bringing Nature Back into Our Lives: COM/2020/380 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- United Nations. System of Environmental Economic Accounting—Ecosystem Accounting: Final Draft; United Nations: Geneva, Switzerland, 2021. [Google Scholar]
- Deppisch, S.; Heitmann, A.; Savaşçı, G.; Lezuo, D. Ökosystemleistungen in Instrumenten der Stadt- und Regionalplanung. RuR 2021, 80, 58–79. [Google Scholar] [CrossRef]
- Geneletti, D.; Adem Esmail, B.; Cortinovis, C.; Arany, I.; Balzan, M.; van Beukering, P.; Bicking, S.; Borges, P.; Borisova, B.; Broekx, S.; et al. Ecosystem services mapping and assessment for policy- and decision-making: Lessons learned from a comparative analysis of European case studies. One Ecosyst. 2020, 5. [Google Scholar] [CrossRef]
- Maes, J.; Teller, A.; Erhard, M.; Condé, S.; Vallecillo, S.; Barredo, J.I.; Paracchini, M.L.; Abdul Malak, D.; Trombetti, M.; Vigiak, O.; et al. Mapping and Assessment of Ecosystems and Their Services: An EU Ecosystem Assessment; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- OESKKIP. Integration of Ecosystem Services in Urban and Regional Planning. Available online: https://www.öskkip.de/?lang=en (accessed on 2 April 2022).
- Barkmann, T.; Heitmann, A.; Wessels, A.; Dworczyk, C.; Matschiner, J.; Neumann, C.; Savaşçı, G.; Burkhard, B.; Deppisch, S. Ökosystemleistungen in den Stadtregionen: Angebot, Nachfrage und Planungsrelevanz—Bericht Über die Durchführung und Ergebnisse der zweiten Workshopreihe in den Pilot-Stadtregionen Rostock und München; landmetamorphosis: Hamburg, Germany, 2020; ISBN 978-3-947972-02-9. [Google Scholar]
- Barkmann, T.; Wessels, A.; Dworczyk, C.; Burkhard, B.; Deppisch, S.; Matschiner, J. Angebot und Bedeutung von Ökosystemleistungen in Stadtregionen; landmetamorphosis: Hamburg, Germany, 2019; ISBN 978-3-941722-96-5. [Google Scholar]
- Grêt-Regamey, A.; Weibel, B.; Kienast, F.; Rabe, S.-E.; Zulian, G. A tiered approach for mapping ecosystem services. Ecosyst. Serv. 2015, 13, 16–27. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Weibel, B.; Rabe, S.E.; Burkhard, B. A tiered approach for ecosystem services mapping. In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2017; pp. 211–215. ISBN 9789546428295. [Google Scholar]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landscape Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Burkhard, B. Ecosystem services matrix. In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2017; pp. 225–230. ISBN 9789546428295. [Google Scholar]
- Campagne, C.S.; Roche, P.; Müller, F.; Burkhard, B. Ten years of ecosystem services matrix: Review of a (r)evolution. One Ecosyst. 2020, 5, e51103. [Google Scholar] [CrossRef]
- Czúcz, B.; Arany, I.; Potschin-Young, M.; Bereczki, K.; Kertész, M.; Kiss, M.; Aszalós, R.; Haines-Young, R. Where concepts meet the real world: A systematic review of ecosystem service indicators and their classification using CICES. Ecosyst. Serv. 2018, 29, 145–157. [Google Scholar] [CrossRef]
- Schumacher, J.; Lange, S.; Müller, F.; Schernewski, G. Assessment of Ecosystem Services across the Land–Sea Interface in Baltic Case Studies. Appl. Sci. 2021, 11, 11799. [Google Scholar] [CrossRef]
- Burkhard, B.; Kandziora, M.; Hou, Y.; Müller, F. Ecosystem service potentials, flows and demands-concepts for spatial localisation, indication and quantification. Landscape Online 2014, 34, 1–32. [Google Scholar] [CrossRef]
- Goldenberg, R.; Kalantari, Z.; Cvetkovic, V.; Mörtberg, U.; Deal, B.; Destouni, G. Distinction, quantification and mapping of potential and realized supply-demand of flow-dependent ecosystem services. Sci. Total Environ. 2017, 593–594, 599–609. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Jacobs, S.; Burkhard, B.; van Daele, T.; Staes, J.; Schneiders, A. ‘The Matrix Reloaded’: A review of expert knowledge use for mapping ecosystem services. Ecol. Model. 2015, 295, 21–30. [Google Scholar] [CrossRef]
- Harrison, P.A.; Dunford, R.; Barton, D.N.; Kelemen, E.; Martín-López, B.; Norton, L.; Termansen, M.; Saarikoski, H.; Hendriks, K.; Gómez-Baggethun, E.; et al. Selecting methods for ecosystem service assessment: A decision tree approach. Ecosyst. Serv. 2017, 29, 481–498. [Google Scholar] [CrossRef]
- Burkhard, B.; Maes, J. (Eds.) Mapping Ecosystem Services; Pensoft Publishers: Sofia, Bulgaria, 2017; ISBN 9789546428295. [Google Scholar]
- Jacobs, S.; Verheyden, W.; Dendoncker, N. Why to map? In Mapping Ecosystem Services; Burkhard, B., Maes, J., Eds.; Pensoft Publishers: Sofia, Bulgaria, 2017; pp. 171–175. ISBN 9789546428295. [Google Scholar]
- Roche, P.K.; Campagne, C.S. Are expert-based ecosystem services scores related to biophysical quantitative estimates? Ecol. Indic. 2019, 106, 105421. [Google Scholar] [CrossRef]
- Maes, J.; Fabrega, N.; Zulian, G.; Barbosa, A.; Vizcaino, P.; Ivits, E.; Polce, C.; Vandecasteele, I.; Rivero, I.M.; Guerra, C.; et al. Mapping and Assessment of Ecosystems and Their Services: Trends in Ecosystems and Ecosystem Services in the European Union between 2000 and 2010; Publications Office: Luxembourg, 2015; ISBN 9279462067. [Google Scholar]
- The Natural Capital Project. InVEST. Available online: https://naturalcapitalproject.stanford.edu/software/invest (accessed on 24 February 2021).
- Van Oudenhoven, A.P.; Schröter, M.; Drakou, E.G.; Geijzendorffer, I.R.; Jacobs, S.; van Bodegom, P.M.; Chazee, L.; Czúcz, B.; Grunewald, K.; Lillebø, A.I.; et al. Key criteria for developing ecosystem service indicators to inform decision making. Ecol. Indic. 2018, 95, 417–426. [Google Scholar] [CrossRef]
- Ma, L.; Bicking, S.; Müller, F. Mapping and comparing ecosystem service indicators of global climate regulation in Schleswig-Holstein, Northern Germany. Sci. Total Environ. 2019, 648, 1582–1597. [Google Scholar] [CrossRef] [PubMed]
- Decsi, B.; Ács, T.; Jolánkai, Z.; Kardos, M.K.; Koncsos, L.; Vári, Á.; Kozma, Z. From simple to complex—Comparing four modelling tools for quantifying hydrologic ecosystem services. Ecol. Indic. 2022, 141, 109143. [Google Scholar] [CrossRef]
- European Environment Agency. Urban Atlas 2012. Available online: https://land.copernicus.eu/local/urban-atlas/urban-atlas-2012?tab=metadata (accessed on 22 March 2022).
- Maes, J.; Zulian, G.; Thijssen, M.; Castell, C.; Baró, F.; Ferreira, A.M.; Melo, J.; Garrett, C.P.; David, N.; Alzetta, C.; et al. Mapping and Assessment of Ecosystems and Their Services: Urban Ecosystems; 4th Report; Office for Official Publications of the European Communities: Luxembourg, 2016. [Google Scholar]
- Statistisches Bundesamt. Daten aus dem Gemeindeverzeichnis. Gemeinden mit 5000 und mehr Einwohnern nach Fläche, Bevölkerung und Bevölkerungsdichte. Available online: https://www.destatis.de (accessed on 15 February 2022).
- Bundesinstitut für Bau-, Stadt-, und Raumforschung. Wachsen und Schrumpfen von Städten und Gemeinden im Zeitintervall 2013–2018 im Bundesweiten Vergleich. Available online: https://www.bbsr.bund.de/BBSR/DE/startseite/topmeldungen/2020-wachsend-schrumpfend.html (accessed on 15 February 2022).
- Statista. Städte-Ranking Nach den Meisten Gästeübernachtungen je Einwohner in Deutschland im Jahr 2015. Available online: https://de.statista.com/statistik/daten/studie/538604/umfrage/meiste-gaesteuebernachtungen-je-einwohner-in-deutschland/ (accessed on 9 June 2022).
- Bayerisches Landesamt für Umwelt. Naturräumliche Gliederung Bayerns. Available online: https://www.lfu.bayern.de/natur/naturraeume/index.htm (accessed on 15 April 2021).
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. metz 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. Available online: www.cices.eu (accessed on 15 October 2022).
- Martínez-Harms, M.J.; Balvanera, P. Methods for mapping ecosystem service supply: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 17–25. [Google Scholar] [CrossRef]
- ESMERALDA. Welcome to the MAES Methods Explorer. Available online: http://database.esmeralda-project.eu/home (accessed on 17 April 2022).
- Campagne, C.S.; Roche, P. May the matrix be with you!: Guidelines for the application of expert-based matrix approach for ecosystem services assessment and mapping. One Ecosyst. 2018, 3, e24134. [Google Scholar] [CrossRef]
- Campagne, C.S.; Roche, P.; Gosselin, F.; Tschanz, L.; Tatoni, T. Expert-based ecosystem services capacity matrices: Dealing with scoring variability. Ecol. Indic. 2017, 79, 63–72. [Google Scholar] [CrossRef] [Green Version]
- INTEK. Integriertes Entwässerungskonzept (INTEK). Fachkonzept zur Anpassung der Entwässerungssysteme an die Urbanisierung und den Klimawandel. Phase 3: Einzugsgebietsbezogene Analysen der Hochwasserrisiken. Biota: Bützow, Germany. 2014. Available online: https://rathaus.rostock.de/media/rostock_01.a.4984.de/datei/Endbericht_INTEK_Phase3%20Risiko.pdf (accessed on 15 October 2022).
- NatCap. Crop Production. Available online: https://invest-userguide.readthedocs.io/en/latest/crop_production.html (accessed on 15 July 2022).
- The Natural Capital Project. Urban Cooling Model. Available online: http://releases.naturalcapitalproject.org/invest-userguide/latest/urban_cooling_model.html (accessed on 2 July 2020).
- The Natural Capital Project. Coastal Vulnerability Model. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/coastal_vulnerability.html (accessed on 4 May 2021).
- Hagen-Zanker, A.; Engelen, G.; Hurkens, J.; Vanhout, R.; Uljee, I. Map Comparison Kit 3: User Manual. Environ. Model. Softw. 2006, 21, 346–358. [Google Scholar]
- Palomo, I.; Willemen, L.; Drakou, E.; Burkhard, B.; Crossman, N.; Bellamy, C.; Burkhard, K.; Campagne, C.S.; Dangol, A.; Franke, J.; et al. Practical solutions for bottlenecks in ecosystem services mapping. One Ecosyst. 2018, 3, e20713. [Google Scholar] [CrossRef] [Green Version]
- Wolff, S.; Schulp, C.; Verburg, P.H. Mapping ecosystem services demand: A review of current research and future perspectives. Ecol. Indic. 2015, 55, 159–171. [Google Scholar] [CrossRef]
- Wolff, S.; Schulp, C.; Kastner, T.; Verburg, P.H. Quantifying Spatial Variation in Ecosystem Services Demand: A Global Mapping Approach. Ecol. Econ. 2017, 136, 14–29. [Google Scholar] [CrossRef]
- Dworczyk, C.; Burkhard, B. Conceptualising the demand for ecosystem services—An adapted spatial-structural approach. One Ecosyst. 2021, 6, e65966. [Google Scholar] [CrossRef]
- Sieber, I.M.; Hinsch, M.; Vergílio, M.; Gil, A.; Burkhard, B. Assessing the effects of different land-use/land-cover input datasets on modelling and mapping terrestrial ecosystem services—Case study Terceira Island (Azores, Portugal). One Ecosyst. 2021, 6, 1955. [Google Scholar] [CrossRef]
- Schröter, M.; Crouzat, E.; Hölting, L.; Massenberg, J.; Rode, J.; Hanisch, M.; Kabisch, N.; Palliwoda, J.; Priess, J.A.; Seppelt, R.; et al. Assumptions in ecosystem service assessments: Increasing transparency for conservation. Ambio 2020, 50, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Czúcz, B.; Kalóczkai, Á.; Arany, I.; Kelemen, K.; Papp, J.; Havadtői, K.; Campbell, K.; Kelemen, M.; Vári, Á. How to design a transdisciplinary regional ecosystem service assessment: A case study from Romania, Eastern Europe. One Ecosyst. 2018, 3. [Google Scholar] [CrossRef]
- Grunewald, K.; Herold, H.; Marzelli, S.; Meinel, G.; Richter, B.; Syrbe, R.-U.; Walz, U. Konzept nationale Ökosystemleistungs- Indikatoren Deutschland. Weiterentwicklung, Klassentypen und Indikatorenkennblatt. Nat. Und Landsch. 2016, 48, 141–152. [Google Scholar]
- Bundesministerium für Ernährung und Landwirtschaft. Dritte Bundeswaldinventur 2012. Available online: https://www.bundeswaldinventur.de (accessed on 1 February 2021).
- Bay.StMELF. Zentrale InVeKoS Datenbank (ZID). Available online: https://www.zi-daten.de/ (accessed on 21 April 2021).
- Perennes, M.; Diekötter, T.; Groß, J.; Burkhard, B. A hierarchical framework for mapping pollination ecosystem service potential at the local scale. Ecol. Model. 2021, 444, 109484. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; ISBN 92-5-104219-5. [Google Scholar]
- Szumacher, I.; Pabjanek, P. Temporal Changes in Ecosystem Services in European Cities in the Continental Biogeographical Region in the Period from 1990–2012. Sustainability 2017, 9, 665. [Google Scholar] [CrossRef] [Green Version]
- Zulian, G.; Paracchini, M.L.; Maes, J.; Liquete, C. ESTIMAP: Ecosystem Services Mapping at European Scale; Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-79-35274-4. [Google Scholar]
- Schwarz, N.; Bauer, A.; Haase, D. Assessing climate impacts of planning policies—An estimation for the urban region of Leipzig (Germany). Environ. Impact Assess. Rev. 2011, 31, 97–111. [Google Scholar] [CrossRef]
- Larondelle, N.; Haase, D.; Kabisch, N. Mapping the diversity of regulating ecosystem services in European cities. Glob. Environ. Chang. 2014, 26, 119–129. [Google Scholar] [CrossRef]
- Geijzendorffer, I.R.; Martín-López, B.; Roche, P.K. Improving the identification of mismatches in ecosystem services assessments. Ecol. Indic. 2015, 52, 320–331. [Google Scholar] [CrossRef]
- Wübbelmann, T.; Bouwer, L.; Förster, K.; Bender, S.; Burkhard, B. Urban ecosystems and heavy rainfall—A Flood Regulating Ecosystem Service modelling approach for extreme events on the local scale. One Ecosyst. 2022, 7, e87458. [Google Scholar] [CrossRef]
- The Natural Capital Project. Pollinator Abundance: Crop Pollination. Available online: https://invest-userguide.readthedocs.io/en/latest/croppollination.html (accessed on 20 August 2021).
- Lavorel, S.; Bayer, A.; Bondeau, A.; Lautenbach, S.; Ruiz-Frau, A.; Schulp, N.; Seppelt, R.; Verburg, P.; van Teeffelen, A.; Vannier, C.; et al. Pathways to bridge the biophysical realism gap in ecosystem services mapping approaches. Ecol. Indic. 2017, 74, 241–260. [Google Scholar] [CrossRef] [Green Version]
- Cash, D.W.; Clark, W.C.; Alcock, F.; Dickson, N.M.; Eckley, N.; Guston, D.H.; Jäger, J.; Mitchell, R.B. Knowledge systems for sustainable development. Proc. Natl. Acad. Sci. USA 2003, 100, 8086–8091. [Google Scholar] [CrossRef] [Green Version]
- Schulp, C.; Lautenbach, S.; Verburg, P.H. Quantifying and mapping ecosystem services: Demand and supply of pollination in the European Union. Ecol. Indic. 2014, 36, 131–141. [Google Scholar] [CrossRef]
- Guinée, J.B.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life cycle assessment: Past, present, and future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef]
- Othoniel, B.; Rugani, B.; Heijungs, R.; Benetto, E.; Withagen, C. Assessment of Life Cycle Impacts on Ecosystem Services: Promise, Problems, and Prospects. Environ. Sci. Technol. 2016, 50, 1077–1092. [Google Scholar] [CrossRef]
- De Luca Peña, L.V.; Taelman, S.E.; Préat, N.; Boone, L.; van der Biest, K.; Custódio, M.; Hernandez Lucas, S.; Everaert, G.; Dewulf, J. Towards a comprehensive sustainability methodology to assess anthropogenic impacts on ecosystems: Review of the integration of Life Cycle Assessment, Environmental Risk Assessment and Ecosystem Services Assessment. Sci. Total Environ. 2022, 808, 152125. [Google Scholar] [CrossRef]
- Mancini, M.S.; Galli, A.; Coscieme, L.; Niccolucci, V.; Lin, D.; Pulselli, F.M.; Bastianoni, S.; Marchettini, N. Exploring ecosystem services assessment through Ecological Footprint accounting. Ecosyst. Serv. 2018, 30, 228–235. [Google Scholar] [CrossRef]
- Global Footprint Network. Measure What You Treasure. Available online: https://www.footprintnetwork.org/ (accessed on 15 October 2022).
- Odum, H.T.; Odum, E.P. The Energetic Basis for Valuation of Ecosystem Services. Ecosystems 2000, 3, 21–23. [Google Scholar] [CrossRef]
- Nadalini, A.C.V.; Kalid, R.d.A.; Torres, E.A. Emergy as a Tool to Evaluate Ecosystem Services: A Systematic Review of the Literature. Sustainability 2021, 13, 7102. [Google Scholar] [CrossRef]
- Seto, K.C.; Reenberg, A.; Boone, C.G.; Fragkias, M.; Haase, D.; Langanke, T.; Marcotullio, P.; Munroe, D.K.; Olah, B.; Simon, D. Urban land teleconnections and sustainability. Proc. Natl. Acad. Sci. USA 2012, 109, 7687–7692. [Google Scholar] [CrossRef] [Green Version]
- Kleemann, J.; Schröter, M.; Bagstad, K.J.; Kuhlicke, C.; Kastner, T.; Fridman, D.; Schulp, C.J.; Wolff, S.; Martínez-López, J.; Koellner, T.; et al. Quantifying interregional flows of multiple ecosystem services—A case study for Germany. Glob. Environ. Chang. 2020, 61, 102051. [Google Scholar] [CrossRef]
- Schröter, M.; Koellner, T.; Alkemade, R.; Arnhold, S.; Bagstad, K.J.; Erb, K.-H.; Frank, K.; Kastner, T.; Kissinger, M.; Liu, J.; et al. Interregional flows of ecosystem services: Concepts, typology and four cases. Ecosyst. Serv. 2018, 31, 231–241. [Google Scholar] [CrossRef]
- Rugani, B.; Maia de Souza, D.; Weidema, B.P.; Bare, J.; Bakshi, B.; Grann, B.; Johnston, J.M.; Pavan, A.L.R.; Liu, X.; Laurent, A.; et al. Towards integrating the ecosystem services cascade framework within the Life Cycle Assessment (LCA) cause-effect methodology. Sci. Total Environ. 2019, 690, 1284–1298. [Google Scholar] [CrossRef] [PubMed]
- Eurostat. Countries. Available online: https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/countries#countries20 (accessed on 22 March 2022).
- European Environment Agency. Corine Land Cover (CLC). 2012. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012?tab=metadata (accessed on 21 April 2021).
- Statistisches Bundesamt. Ergebnisse des Zensus 2011 zum Download—Erweitert. Available online: https://www.zensus2011.de/DE/Home/Aktuelles/DemografischeGrunddaten.html;jsessionid=6E45AA84910CD1717DDD8A2D100A5DE1.1_cid380?nn=3065474 (accessed on 21 April 2021).
- Bundesamt für Kartographie und Geodäsie. Geographische Gitter für Deutschland in Lambert-Projektion (GeoGitter Inspire). Available online: https://gdz.bkg.bund.de/index.php/default/digitale-geodaten.html (accessed on 21 April 2021).
- European Environment Agency. Tree Cover Density. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/forests/tree-cover-density (accessed on 21 April 2021).
- Climate Data Center. Datensatzbeschreibung. Monatliche Raster der Potenziellen Evapotranspiration Über Gras, Version 0.x. Available online: https://opendata.dwd.de/climate_environment/CDC/grids_germany/monthly/evapo_p/BESCHREIBUNG_gridsgermany_monthly_evapo_p_de.pdf (accessed on 21 April 2021).
- Climate Data Center. Berechnete Monatliche Werte von Charakteristischen Elementen aus dem Boden und dem Pflanzenbestand, Version v19.3. Available online: https://opendata.dwd.de/climate_environment/CDC/derived_germany/soil/monthly/historical/BESCHREIBUNG_derivgermany_soil_monthly_historical_de.pdf (accessed on 21 April 2021).
- Climate Data Center. Historische Tägliche Stationsbeobachtungen (Temperatur, Druck, Niederschlag Sonnenscheindauer, etc.) für Deutschland. Available online: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/ (accessed on 21 April 2021).
- Yale University. Global Surface UHI Explorer. Available online: https://yceo.yale.edu/research/global-surface-uhi-explorer (accessed on 21 April 2021).
- Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern. Kartenportal Umwelt Mecklenburg-Vorpommern. Available online: https://www.umweltkarten.mv-regierung.de/atlas/script/index.php (accessed on 22 March 2022).
- Landesamt für innere Verwaltung Mecklenburg-Vorpommern. Digitale Landschaftsmodelle. Available online: https://www.laiv-mv.de/Geoinformation/Geobasisdaten/Landschaftsmodelle/ (accessed on 22 March 2022).
- Nistor, M.M. Mapping evapotranspiration coefficients in the Paris metropolitan area. Georeview 2016, 26, 138–153. [Google Scholar]
- Nistor, M.-M. Projection of Annual Crop Coefficients in Italy Based on Climate Models and Land Cover Data. Geogr. Tech. 2018, 13, 97–113. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Klein, A.-M.; Vaissière, B.E.; Cane, J.H.; Steffan-Dewenter, I.; Cunningham, S.A.; Kremen, C.; Tscharntke, T. Importance of pollinators in changing landscapes for world crops. Proc. Biol. Sci. 2007, 274, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Zardo, L.; Geneletti, D.; Pérez-Soba, M.; van Eupen, M. Estimating the cooling capacity of green infrastructures to support urban planning. Ecosyst. Serv. 2017, 26, 225–235. [Google Scholar] [CrossRef]
- Lorilla, R.; Poirazidis, K.; Kalogirou, S.; Detsis, V.; Martinis, A. Assessment of the Spatial Dynamics and Interactions among Multiple Ecosystem Services to Promote Effective Policy Making across Mediterranean Island Landscapes. Sustainability 2018, 10, 3285. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Cui, P.; He, X. Study of the Cooling Effects of Urban Green Space in Harbin in Terms of Reducing the Heat Island Effect. Sustainability 2018, 10, 1101. [Google Scholar] [CrossRef]
Code | CICES V5.1, Class Name | Ecosystem Services |
---|---|---|
1.1.1.1 | Cultivated terrestrial plants (including fungi, algae) grown for nutritional purposes | Food (from cultivated terrestrial plants) |
1.1.1.2 | Fibres and other materials from cultivated plants, fungi, algae and bacteria for direct use or processing (excluding genetic materials) | Raw materials (from cultivated terrestrial plants) |
2.2.2.1 | Pollination (or ”gamete” dispersal in a marine context) | Pollination |
2.2.6.2 | Regulation of temperature and humidity, including ventilation and transpiration | Local climate regulation |
2.2.1.3 | Hydrological cycle and water flow regulation (Including flood control, and coastal protection) | Coastal protection 1 |
Expert-Based ES Matrix Approach | Simple GIS Mapping | InVEST Models | ||||
---|---|---|---|---|---|---|
Ecosystem Services | Supply | Demand | Supply | Demand | Supply | Demand |
Food (from cultivated terrestrial plants) | Expert estimates | Expert estimates | Agricultural area (%) | Population density (Inhabitants ha−1) | - | - |
Raw materials (from cultivated terrestrial plants) | Expert estimates | Expert estimates | Forest area (%) | Population density (Inhabitants ha−1) | - | - |
Pollination | Expert estimates | Expert estimates | - | Dependence of crops on pollination by insects (%) | Pollinator abundance (Index 0 to 1, dimensionless) | - |
Local climate regulation | Expert estimates | Expert estimates | Green and blue areas (%); f-evapotranspiration (f-ETP) (Index 0 to 1, dimensionless) | Surface emissivity (Index 0 to 1, dimensionless) | Heat mitigation (Index 0 to 1, dimensionless) | Air temperature (Index 0 to 1, dimensionless) |
Coastal protection 1 | Expert estimates | Expert estimates | - | Coastal flood risk for the asset: human health, the environment, infrastructure and human economic activities (Index 0 to 5, dimensionless) | - | - |
Expert-Based ES Matrix Approach | Simple GIS Mapping | InVEST Models | ||||
---|---|---|---|---|---|---|
Ecosystem Services | Supply | Demand | Supply | Demand | Supply | Demand |
Food (from cultivated terrestrial plants) | yes | no | yes | yes | no | no |
Raw materials (from cultivated terrestrial plants) | yes | no | yes | yes | no | no |
Pollination | yes | no | no | yes * | yes | no |
Local climate regulation | yes | no | yes | yes | yes | yes * |
Coastal protection 1 | yes | no | no | yes * | no | no |
A | B | C | ||
---|---|---|---|---|
Local Climate Regulation Indicator | Green and Blue Area (%) | f-ETP-Index | Heat Mitigation Index | |
Similarity index | Mean | 0.63 | 0.91 | 0.69 |
Std. Dev. | 0.22 | 0.12 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dworczyk, C.; Burkhard, B. Challenges Entailed in Applying Ecosystem Services Supply and Demand Mapping Approaches: A Practice Report. Land 2023, 12, 52. https://doi.org/10.3390/land12010052
Dworczyk C, Burkhard B. Challenges Entailed in Applying Ecosystem Services Supply and Demand Mapping Approaches: A Practice Report. Land. 2023; 12(1):52. https://doi.org/10.3390/land12010052
Chicago/Turabian StyleDworczyk, Claudia, and Benjamin Burkhard. 2023. "Challenges Entailed in Applying Ecosystem Services Supply and Demand Mapping Approaches: A Practice Report" Land 12, no. 1: 52. https://doi.org/10.3390/land12010052