Global Maps of Agricultural Expansion Potential at a 300 m Resolution
Abstract
:1. Introduction
2. Methods
2.1. General Approach
2.2. Identifying Locations of Agricultural Conversion
2.3. Predictor Variables
2.4. Training the ANNs
2.5. Model Evaluation
2.6. Conversion Potential Maps
3. Results
3.1. Model Performance
3.2. Conversion Potential Maps
3.3. Relationships between Conversion Potential and Predictor Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ellis, E.C.; Goldewijk, K.K.; Siebert, S.; Lightman, D.; Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 2010, 19, 589–606. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, B.L.; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [Green Version]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Kuipers, K.J.J.; Hilbers, J.P.; Garcia-Ulloa, J.; Graae, B.J.; May, R.; Verones, F.; Huijbregts, M.A.J.; Schipper, A.M. Habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world’s terrestrial ecoregions. One Earth 2021, 4, 1505–1513. [Google Scholar] [CrossRef]
- Houghton, R.A.; House, J.I.; Pongratz, J.; van der Werf, G.R.; DeFries, R.S.; Hansen, M.C.; Le Quere, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef] [Green Version]
- Suh, S.; Johnson, J.A.; Tambjerg, L.; Sim, S.; Broeckx-Smith, S.; Reyes, W.; Chaplin-Kramer, R. Closing yield gap is crucial to avoid potential surge in global carbon emissions. Glob. Environ. Change-Hum. Policy Dimens. 2020, 63, 102100. [Google Scholar] [CrossRef]
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, R.A.; Peng, S.S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Doelman, J.C.; Stehfest, E.; Tabeau, A.; van Meijl, H.; Lassaletta, L.; Gernaat, D.; Hermans, K.; Harmsen, M.; Daioglou, V.; Biemans, H.; et al. Exploring SSP land-use dynamics using the IMAGE model: Regional and gridded scenarios of land-use change and land-based climate change mitigation. Glob. Environ. Change-Hum. Policy Dimens. 2018, 48, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Alexander, P.; Prestele, R.; Verburg, P.H.; Arneth, A.; Baranzelli, C.; Silva, F.B.E.; Brown, C.; Butler, A.; Calvin, K.; Dendoncker, N.; et al. Assessing uncertainties in land cover projections. Glob. Change Biol. 2017, 23, 767–781. [Google Scholar] [CrossRef] [Green Version]
- Meiyappan, P.; Dalton, M.; O’Neill, B.C.; Jain, A.K. Spatial modeling of agricultural land use change at global scale. Ecol. Model. 2014, 291, 152–174. [Google Scholar] [CrossRef] [Green Version]
- Seto, K.C.; Guneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Change Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef] [PubMed]
- Eitelberg, D.A.; van Vliet, J.; Verburg, P.H. A review of global potentially available cropland estimates and their consequences for model-based assessments. Glob. Change Biol. 2015, 21, 1236–1248. [Google Scholar] [CrossRef]
- van Asselen, S.; Verburg, P.H. A Land System representation for global assessments and land-use modeling. Glob. Change Biol. 2012, 18, 3125–3148. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, T.; Fujimori, S.; Ito, A.; Takahashi, K.; Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 2017, 580, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, A.J.; Bush, A.; Gilmore, J.; Harwood, T.; Hudson, L.N.; Ware, C.; Williams, K.J.; Ferrier, S. Downscaling land-use data to provide global 30 ‘‘estimates of five land-use classes. Ecol. Evol. 2016, 6, 3040–3055. [Google Scholar] [CrossRef] [Green Version]
- Schipper, A.M.; Hilbers, J.P.; Meijer, J.R.; Antao, L.H.; Benitez-Lopez, A.; de Jonge, M.M.J.; Leemans, L.H.; Scheper, E.; Alkemade, R.; Doelman, J.C.; et al. Projecting terrestrial biodiversity intactness with GLOBIO 4. Glob. Change Biol. 2020, 26, 760–771. [Google Scholar] [CrossRef] [Green Version]
- Eigenbrod, F.; Beckmann, M.; Dunnett, S.; Graham, L.; Holland, R.A.; Meyfroidt, P.; Seppelt, R.; Song, X.P.; Spake, R.; Vaclavik, T.; et al. Identifying agricultural frontiers for modeling global cropland expansion. One Earth 2020, 3, 504–514. [Google Scholar] [CrossRef]
- Defourny, P.; Kirches, G.; Brockmann, C.; Boettcher, M.; Peters, M.; Bontemps, S.; Lamarche, C.; Schlerf, M.; Santoro, M. Land Cover CCI Product User Guide Version 2.0; UCL Geomatics: Leuven, Belgium, 2017. [Google Scholar]
- Defourny, P.; Lamarche, C.; Marissiaux, Q.; Brockmann, C.; Boettcher, M.; Kirches, G. Product User Guide and Specification. ICDR Land Cover 2016-2020; European Centre for Medium-Range Weather Forecasts (ECMWF): Reading, UK, 2021. [Google Scholar]
- Amatulli, G.; Domisch, S.; Tuanmu, M.N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef] [Green Version]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Wheeler, T.R.; Craufurd, P.Q.; Ellis, R.H.; Porter, J.R.; Prasad, P.V.V. Temperature variability and the yield of annual crops. Agric. Ecosyst. Environ. 2000, 82, 159–167. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- GDAL/OGR Contributors. GDAL/OGR Geospatial Data Abstraction Software Library; Version 2.2.2; Open Source Geospatial Foundation: Chicago, IL, USA, 2020. [Google Scholar]
- Karger, D.N.; Conrad, O.; Bohner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hengl, T.; de Jesus, J.M.; Heuvelink, G.B.M.; Gonzalez, M.R.; Kilibarda, M.; Blagotic, A.; Shangguan, W.; Wright, M.N.; Geng, X.Y.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meijer, J.R.; Huijbregts, M.A.J.; Schotten, K.; Schipper, A.M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 2018, 13, 064006. [Google Scholar] [CrossRef] [Green Version]
- UNEP-WCMC and IUCN. Protected Planet: The World Database on Protected Areas (WDPA). 2017. Available online: http://www.protectedplanet.net/ (accessed on 24 February 2023).
- Center for International Earth Science Information Network (CIESIN). Gridded Population of the World, Version 4 (GPWv4). 2016. Available online: https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed on 24 February 2023).
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Basse, R.M.; Omrani, H.; Charif, O.; Gerber, P.; Bodis, K. Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl. Geogr. 2014, 53, 160–171. [Google Scholar] [CrossRef]
- Barbarossa, V.; Huijbregts, M.A.J.; Beusen, A.H.W.; Beck, H.E.; King, H.; Schipper, A.M. FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015. Sci. Data 2018, 5, 180052. [Google Scholar] [CrossRef] [Green Version]
- Haykins, S.S. Neural Networks and Learning Machines; Pearson Education: Upper Saddle River, NJ, USA, 2009. [Google Scholar]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwell, B.M. pdp: An R Package for Constructing Partial Dependence Plots. R J. 2017, 9, 421–436. [Google Scholar] [CrossRef] [Green Version]
- Garrett, R.D.; Lambin, E.F.; Naylor, R.L. The new economic geography of land use change: Supply chain configurations and land use in the Brazilian Amazon. Land Use Policy 2013, 34, 265–275. [Google Scholar] [CrossRef]
- Graesser, J.; Ramankutty, N.; Coomes, O.T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 2018, 13, 084021. [Google Scholar] [CrossRef] [Green Version]
- Ordway, E.M.; Asner, G.P.; Lambin, E.F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 2017, 12, 044015. [Google Scholar] [CrossRef]
- Carlson, K.M.; Curran, L.M.; Ratnasari, D.; Pittman, A.M.; Soares, B.S.; Asner, G.P.; Trigg, S.N.; Gaveau, D.A.; Lawrence, D.; Rodrigues, H.O. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proc. Natl. Acad. Sci. USA 2012, 109, 7559–7564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyfroidt, P.; Schierhorn, F.; Prishchepov, A.V.; Muller, D.; Kuemmerle, T. Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Glob. Environ. Change-Hum. Policy Dimens. 2016, 37, 1–15. [Google Scholar] [CrossRef]
- Hatna, E.; Bakker, M.M. Abandonment and expansion of arable land in Europe. Ecosystems 2011, 14, 720–731. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.K.W.; Schwoerer, T.; Gannon, G.M.; Jones, B.M.; Kanevskiy, M.Z.; Sutton, I.; St Pierre, B.; St Pierre, C.; Russell, J.; Russell, D. Climate-driven expansion of northern agriculture must consider permafrost. Nat. Clim. Change 2022, 12, 699–703. [Google Scholar] [CrossRef]
Variable | Unit | Spatial Resolution | Source | |
---|---|---|---|---|
Climate | Annual mean temperature | °C | 1 km | CHELSA Climate [27] |
Temperature seasonality | °C | 1 km | CHELSA Climate [27] | |
Annual precipitation | mm/year | 1 km | CHELSA Climate [27] | |
Precipitation seasonality | dimensionless | 1 km | CHELSA Climate [27] | |
Soil | Available water capacity | % | 250 m | SoilGrids [28] |
Cation exchange capacity | cmol/kg | 250 m | SoilGrids [28] | |
Clay content | % | 250 m | SoilGrids [28] | |
Organic carbon content | g/kg | 250 m | SoilGrids [28] | |
pH | dimensionless | 250 m | SoilGrids [28] | |
Silt content | % | 250 m | SoilGrids [28] | |
Sand content | % | 250 m | SoilGrids [28] | |
Topography | Elevation | m | 90 m | MERIT DEM [25] |
Slope | degrees | 90 m | this study | |
Northness index | dimensionless | 90 m | this study | |
Topographic Wetness Index (TWI) | dimensionless | 250 m | ISRIC worldgrids | |
Accessibility | Distance to roads | m | 300 m | GRIP [29] |
Distance to agriculture | m | 300 m | this study | |
Protected areas | 0 or 1 | 300 m | WDPA [30] | |
Distance to urban areas | m | 300 m | this study | |
Other | Population density | persons/km2 | 1 km | GPW [31] |
Previous land cover * (agriculture, forests, grasslands, wetlands, urban/barren) | 0 or 1 | 300 m | this study |
Agricultural Category | AUC | |
---|---|---|
Cross-validation | Hindcasting | |
Cropland only | 0.88 | 0.84 |
Mosaics with >50% crops | 0.93 | 0.91 |
Mosaics with <50% crops | 0.93 | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čengić, M.; Steinmann, Z.J.N.; Defourny, P.; Doelman, J.C.; Lamarche, C.; Stehfest, E.; Schipper, A.M.; Huijbregts, M.A.J. Global Maps of Agricultural Expansion Potential at a 300 m Resolution. Land 2023, 12, 579. https://doi.org/10.3390/land12030579
Čengić M, Steinmann ZJN, Defourny P, Doelman JC, Lamarche C, Stehfest E, Schipper AM, Huijbregts MAJ. Global Maps of Agricultural Expansion Potential at a 300 m Resolution. Land. 2023; 12(3):579. https://doi.org/10.3390/land12030579
Chicago/Turabian StyleČengić, Mirza, Zoran J. N. Steinmann, Pierre Defourny, Jonathan C. Doelman, Céline Lamarche, Elke Stehfest, Aafke M. Schipper, and Mark A. J. Huijbregts. 2023. "Global Maps of Agricultural Expansion Potential at a 300 m Resolution" Land 12, no. 3: 579. https://doi.org/10.3390/land12030579