Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Impact of Climate Change on Agroecosystem Production
ID | Impacts | Explanation | References |
---|---|---|---|
1 | Decrease in crop production | Extreme temperatures change the rate of plant growth, decrease the photosynthetic process, and greatly affect plants’ reproductive ability. | [21,22,23,53,54,55,56,57,58,59,60,61,62] |
2 | Increased weed prosperity that can reduce the growth of agricultural plants | Weeds compete with agricultural crops for water and nutrients. Climate change modifies the dynamics of competition between agricultural crops and weeds. High temperatures and water scarcity influence the effectiveness of herbicides because they modify their mode of action, favoring the growth of weeds. Wheat weeds, which are vital to global food security, could benefit from climate change. | [21,35,63] |
3 | Increased pest propagation | Climate change will increase pest infestations in many crops because warmer, wetter conditions favor pest reproduction. A one-degree increase in temperature could increase losses from insect infestations by 10 to 25%. Furthermore, high temperatures can influence their behavior beyond the proliferation of parasites. | [21,58,59,60,64,65,66,67,68,69,70,71] |
4 | Water availability | It reduces the amount of water available for plant growth. The combined effect of water stress caused by heat waves and a drastic reduction in rainfall can accentuate the lack of water in plants, resulting in a reduction in productivity. | [21,72,73] |
5 | Soil alteration | Loss of soil fertility is connected to a greater erosion process created by a greater frequency and intensity of floods and a lower capacity of the soil to fix nitrogen and decompose organic matter. Mainly, the erosion of runoff waters determines the removal of the surface part of the soil, which is the richest in organic matter. Climate change will negatively affect the content of organic carbon in soils. | [21,35,74] |
6 | Increase in soil salinity | This effect can be facilitated by poor groundwater recharge. Indeed, the combined effect of overexploitation of groundwater and reduction in rainfall can produce a mixing between freshwater and saline intrusion water. Therefore, this phenomenon can lead to an enrichment of the salinity of the soils connected to the use of well water with a high saline concentration. | [21,35,74] |
7 | Negative impact on production costs | Farmers, to reduce the effects of climate change on agricultural productivity, use greater inputs of natural resources (for example, irrigation, fertilization, and weeding). | [21,35,52,74] |
8 | Change in crop types | Farmers are pushing for a change in the use of agricultural crops and types of livestock that are more profitable and adapted to grow in difficult climatic conditions. | [21,35,74] |
9 | Reduction in the pollination process | Negative impact on agricultural productivity linked to the pollination process, which could reduce its effectiveness as a result of high temperatures. The population of pollinators could be reduced by an increase in pesticides to fight pests. | [71,75] |
10 | Intense fires | Fires in agricultural areas subject to intensive cultivation can reach such intensities as to completely damage the surface organic layer, with consequent impoverishment of the soils and intensification of erosion processes. | [76,77,78] |
11 | Product quality alteration | High temperatures or drought events can alter the production of secondary metabolites in plants, which are essential to defining the quality of the product. CO2 concentrations can influence the quantity of nutrients in food products (vitamin B, protein, and micronutrients). | [49,79,80,81] |
12 | Increase crop productions | An increase in CO2 concentrations is a factor favorable for crop production because it is the precursor of the photosynthetic activity of plants and primary production. | [35,44,46,82,83] |
13 | Increase in the cost of food | The reduction in crop yield can increase food costs in the global market, which has a negative effect on food accessibility for the global population. | [22,37,52,84,85] |
3.2. The Impact of Climate Change on Provisioning Ecosystem Services and Food Security
3.2.1. Water Stress on Food Productions
3.2.2. Global Change Impact on Food Quality
3.3. Adaptation Strategies to Integrate Resilience Food Security into Climate Change
ID Impacts from Table 1 | Adaptation Strategies | Explanation | References |
---|---|---|---|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | Crop diversification | Crop diversification can maintain soil fertility, reduce pests and insects, and minimize the negative consequences of extreme weather conditions on the yield of a whole farm operation. Crop diversification can improve the stability of agricultural production and reduce the risk of farm profitability loss caused by product loss in monoculture. Crop diversification has been adopted as an important strategy in many developing countries to meet the challenge of climate change. | [21,22,170,171,172,173,174,175,176,177,178] |
1, 4, 5, 7, 11 | Investment in suitable business equipment | Equipment is important to improve work efficiency, develop new cultivation methods, and promote the diversification of crops. | [22,35,62,177] |
1, 2, 3, 4, 5, 6, 7, 9, 10, 11 | Change in management practices and cropping practices | Changes in farm management techniques, including changing fertilizer, pesticide, irrigation, and seed quality. Some examples are changing crop types and varieties, changing sowing and harvesting dates, crop rotation, and intercropping. | [21,22,35,178,179,180,181] |
2, 3, 4, 6, 11 | Water-saving irrigation techniques and water reuse | The use of drip irrigation is recommended for both groundwater depletion and global warming. Sprinklers and drip irrigation can help minimize climate change and improve the economy in the long run. | [21,22,35,168,180,182] |
1, 2, 3, 4, 6, 7, 11 | Use of crops adapted to grow in the reference agricultural context | Reproductive plants are used in the reference agricultural context because they allow the development of new plant species in response to the present environmental conditions. | [35,68,178,183,184] |
1, 2, 3, 4, 5, 7, 10, 11 | Application of Climate-Smart Agriculture | Smart agriculture for climate change includes the application of technologies to support agricultural practices that use less water, pesticides, and fertilizers in relation to the physiological conditions of the plant. The soil structure is preserved, and water and nutrients are managed sustainably. These strategies are simple to implement and have great potential to assist farmers in increasing production and reducing costs. | [35,42,180,181,185] |
1, 2, 3, 4, 5, 6, 7, 10, 11 | Agrivoltaic application | The microclimate generated by the photovoltaic panels can reduce plants’ water stress. Agrivoltaic systems seem effective in improving the productivity of some cereal crops and horticultural productions. | [24,166,167,186,187,188,189,190,191,192,193,194] |
1, 2, 3, 7, 8, 9, 10, 11 | Biodiversity development | Increasing both agricultural and natural biodiversity is important to support ecological processes that sustain local well-being. In particular, agricultural biodiversity is important to increase the specific resilience of agricultural activities in order to compensate for any losses in particular years of drought and heat waves. Biodiversity linked to natural vegetation is essential to increasing ecological processes supporting agriculture, such as anemophilous pollination. | [62,185,195] |
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 | Promotion of field research and dissemination of results | The effect of climate change on agricultural productivity in different cultures is a phenomenon to be explored, as currently there are mainly long-term projections. It is currently difficult to have a complete picture of the consequences of climate change on food production and, consequently, of the effectiveness of the different adaptation strategies to reduce negative impacts. Therefore, experimentation both in the laboratory and in the field becomes fundamental in order to test different solutions on different cultures and produce knowledge on the subject. In this regard, scientific dissemination is an important point for sharing results and identifying best practices. | [21,34,35] |
1, 4, 7, 12 | Use of adequate seed | The use of seed varieties more resistant to drought and high temperatures is recommended. | [22,178] |
7, 11, 13 | New emerging breeding technologies | Biofortification strategies and new breeding technologies (NBTs) can be alternative ways to conventional breeding to improve genetic traits, make them more tolerant to climate change, and guarantee the nutritional quality of foods. | [52,169] |
1,2,3,4,5,6,7,8,9,10,11 | Agroforestry | Agroforestry is a good strategy to reduce the impact of greenhouse gas emissions on climate change and their effects on the agroecosystem. Agroforestry systems are also good strategies to improve agricultural production by maintaining soil, air, and water quality and providing different sources of income. | [29,196,197,198,199] |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; Oneill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- MSCI ESG Research; World Economic Forum; PwC. Nature Risk Rising: Why the Crisis Engulfing Nature Matters for Business and the Economy; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES); The Global Assessment Report on Biodiversity and Ecosystem Services; World Economic Forum: Cologny, Switzerland, 2020. [Google Scholar]
- Robinson, D.A.; Lebron, I.; Vereeckem, H. On the Definition of the Natural Capital of Soils: A Framework for Description, Evaluation, and Monitoring. Soil Sci. Soc. Am. J. 2009, 73, 1904–1911. [Google Scholar] [CrossRef]
- Mace, G.M.; Hails, R.S.; Cryle, P.; Harlow, J.; Clarke, S.J. Towards a risk register for natural capital. J. Appl. Ecol. 2015, 52, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R. Valuing natural capital and ecosystem services toward the goals of efficiency, fairness, and sustainability. Ecosyst. Serv. 2020, 43, 101096. [Google Scholar] [CrossRef]
- Semeraro, T.; Luvisi, A.; De Bellis, L.; Aretano, R.; Sacchelli, S.; Chirici, G.; Marchetti, M.; Cocozza, C. Dendrochemistry: Ecosystem services perspectives for urban biomonitoring. Front. Environ. Sci. 2020, 8, 558893. [Google Scholar] [CrossRef]
- Moonen, A.C.; Bàrberi, P. Functional biodiversity: An agroecosystem approach. Agric. Ecosyst. Environ. 2008, 127, 7–21. [Google Scholar] [CrossRef]
- MEA (Millennium Ecosystem Assessment). Ecosystems and Human Well Being: Current State and Trends; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Tan, P.Y.; Zhang, J.; Masoudi, M.; Alemu, J.B.; Edwards, P.J.; Grêt-Regamey, A.; Richards, D.R.; Saunders, J.; Song, X.P.; Wong, L.W. A conceptual framework to untangle the concept of urban ecosystem services. Landsc. Urban Plan. 2020, 200, 103837. [Google Scholar] [CrossRef]
- Semeraro, T.; Turco, A.; Arzeni, S.; La Gioia, G.; D’Armento, R.; Taurino, R.; Medagli, P. Habitat Restoration: An Applicative Approach to “Biodiversity Heritage Relicts” in Social-Ecological Systems. Land 2021, 10, 898. [Google Scholar] [CrossRef]
- Stian, B.H.; Erling, M. Natural capital in integrated assessment models of climate change. Ecol. Econ. 2015, 116, 354–361. [Google Scholar] [CrossRef]
- Willis, K.J.; Bhagwat, S.A. Biodiversity and climate change. Science 2009, 326, 806–807. [Google Scholar] [CrossRef] [PubMed]
- Filho, W.L.; Nagy, G.J.; Setti, A.F.F.; Sharifi, A.; Donkor, F.K.; Batista, K.; Djekic, I. Handling the impacts of climate change on soil biodiversity. Sci. Total Environ. 2023, 869, 161671. [Google Scholar] [CrossRef] [PubMed]
- Kamboj, R.; Kamboj, S.; Kamboj, S.; Kriplani, P.; Dutt, R.; Guarve, K.; Grewal, A.S.; Srivastav, A.L.; Gautam, S.P. Chapter 1—Climate uncertainties and biodiversity: An overview. In Visualization Techniques for Climate Change with Machine Learning and Artificial Intelligence; Srivastav, A., Dubey, A., Kumar, A., Narang, S.K., Ali Khan, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–14. ISBN 9780323997140. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Huner, N.P.A. Introduction to Plant Physiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004; ISBN 978-0-470-24766-2. [Google Scholar]
- Costanza, R.; Fisher, B.; Mulder, K.; Liu, S.; Christopher, T. Biodiversity and ecosystem services: A multi-scale empirical study of the relationship between species richness and net primary production. Ecol. Econ. 2007, 61, 478–491. [Google Scholar] [CrossRef]
- Semeraro, T.; Mastroleo, G.; Pomes, P.; Luvisi, A.; Gissi, E.; Aretano, R. Modelling Fuzzy combination of remote sensing vegetation index for durum wheat crop analysis. Comput. Electron. Agric. 2019, 156, 684–692. [Google Scholar] [CrossRef]
- Semeraro, T.; Luvisi, A.; Lillo, A.; Aretano, R.; Buccolieri, R.; Marwan, N. Recurrence Analysis of Vegetation Indices for Highlighting the Ecosystem Response to Drought Events: An Application to the Amazon Forest. Remote Sens. 2020, 12, 907. [Google Scholar] [CrossRef]
- FAO. Climate Change Impacts and Adaptation Options in the Agrifood System. 2022. Available online: https://www.fao.org/3/cc0425en/cc0425en.pdf (accessed on 26 January 2023).
- Mirón, I.J.; Linares, C.; Díaz, J. The influence of climate change on food production and food safety. Environ. Res. 2023, 216, 114674. [Google Scholar] [CrossRef]
- Ahmed, N.; Areche, F.O.; Cotrina Cabello, G.G.; Córdova Trujillo, P.D.; Sheikh, A.A.; Abiad, M.G. Intensifying Effects of Climate Change in Food Loss: A Threat to Food Security in Turkey. Sustainability 2023, 15, 350. [Google Scholar] [CrossRef]
- Barati, A.A.; Azadi, H.; Movahhed Moghaddam, S.; Scheffran, J.; Dehghani Pour, M. Agricultural expansion and its impacts on climate change: Evidence from Iran. In Environment, Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–27. [Google Scholar] [CrossRef]
- World Food Summit, Rome Declaration on World Food Security. Report of the World Food Summit, 13–17 November 1996, Organized by Food and Agriculture Organization of the United Nations. 1996. Available online: https://www.fao.org/3/w3548e/w3548e00.htm (accessed on 2 May 2023).
- Agarwala, M.; Atkinson, G.; Baldock, C.; Gardiner, B. Natural capital accounting and climate change. Nat. Clim. Change 2014, 4, 520–522. [Google Scholar] [CrossRef]
- Barbier, E.B.; Burgess, J.C. Natural Capital, Institutional Quality and SDG Progress in Emerging Market and Developing Economies. Sustainability 2023, 15, 3055. [Google Scholar] [CrossRef]
- Duan, H.; Yuan, D.; Cai, Z.; Wang, S. Valuing the impact of climate change on China’s economic growth. Econ. Anal. Policy 2022, 74, 155–174. [Google Scholar] [CrossRef]
- Bezner, K.R.; Hasegawa, T.; Lasco, R.; Bhatt, I.; Deryng, D.; Farrell, A.; Gurney-Smith, H.; Ju, H.; Lluch-Cota, S.; Meza, F.; et al. Food, fiber, and other ecosystem products. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK, 2022; pp. 713–906. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2014 Revision: Highlights. 2014. Available online: https://population.un.org/wup/publications/files/wup2014-report.pdf (accessed on 5 February 2023).
- Ajide, K.B.; Mohammed, A.; Al-Faryan, M.A.S. The Implications of Food Security on Sustainability: Do Trade Facilitation, Population Growth, and Institutional Quality Make or Mar the Target for SSA? Sustainability 2023, 15, 2089. [Google Scholar] [CrossRef]
- FAO; IFAD; WFP; UNICEF; WHO. The State of Food Security and Nutrition in the World: Safeguarding against Economic Slowdown and Downturns; FAO: Rome, Italy, 2020; pp. 2–25. [Google Scholar]
- USDA. U.S. Department of Agriculture. 2023. Available online: https://www.usda.gov (accessed on 2 March 2023).
- Feliciano, D.; Recha, J.; Ambaw, G.; MacSween, K.; Solomon, D.; Wollenberg, E. Assessment of agricultural emissions, climate change mitigation and adaptation practices in Ethiopia. Clim. Policy 2022, 22, 427–444. [Google Scholar] [CrossRef]
- Naz, N.; Hameed, W.; Tabbassum, R.; Farzand, A.; Asif, A.; Mushtaq, N.; Tahir, N. Impact of Global Climate Change on Agricultural Productivity. Int. J. Glob. Sci. 2022, 4, 1–11. [Google Scholar]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 339, b2535. [Google Scholar] [CrossRef]
- Abeysekara, W.C.S.M.; Siriwardana, M.; Meng, S. Economic consequences of climate change impacts on the agricultural sector of South Asia: A case study of Sri Lanka. Econ. Anal. Policy 2023, 77, 435–450. [Google Scholar] [CrossRef]
- Huang, S. Global Trade Patterns in Fruits and Vegetables. USDA-ERS Agriculture and Trade Report No. WRS-04–06; USDA-ERS (Economic Research Service): Washington, DC, USA, 2004. [Google Scholar] [CrossRef]
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2012; p. 582. [Google Scholar]
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. (Eds.) Summary for Policymakers. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Loboguerrero, A.M.; Campbell, B.M.; Cooper, P.J.M.; Hansen, J.W.; Rosenstock, T.; Wollenberg, E. Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 2019, 11, 1372. [Google Scholar] [CrossRef]
- Birhanu, L.; Hailu, B.T.; Bekele, T.; Demissew, S. Land use/land cover change along elevation and slope gradient in highlands of Ethiopia. Remote Sens. Appl. Soc. Environ. 2019, 16, 100260. [Google Scholar] [CrossRef]
- UNESCO. UNWater 2020: United Nations World Water Development Report 2020: Water and Climate Change, Paris, UNESCO. Available online: https://www.unesco.org/en/wwap/wwdr/2020 (accessed on 10 January 2023).
- Ozdemir, D. The impact of climate: Change on agricultural productivity in Asian countries: A heterogeneous panel data approach. Environ. Sci. Pollut. Res. 2022, 29, 8205–8217. [Google Scholar] [CrossRef]
- Cramer, W.; Egea, E.; Fischer, J.; Lux, A.; Salles, J.-M.; Settele, J.; Tichit, M. Biodiversity and Food Security: From Trade-Offs to Synergies. Reg. Environ. Change 2017, 17, 1257–1259. [Google Scholar] [CrossRef]
- Hasegawa, T.; Sakai, H.; Tokida, T.; Nakamura, H.; Zhu, C.; Usui, Y.; Yoshimoto, M.; Fukuoka, M.; Wakatsuki, H.; Katayanagi, N.; et al. Rice cultivar responses to elevated CO2 at two free-air CO2 enrichment (FACE) sites in Japan. Funct. Plant Biol. 2013, 40, 148–159. [Google Scholar] [CrossRef] [PubMed]
- Reich, P.B.; Hobbie, H.E.; Lee, T.D.; Pastore, M.A. Unexpected reversal of C3 versus C4 grass response to elevated CO2 during a 20-year field experiment. Science 2018, 6386, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Rakhmankulova, Z.; Shuyskaya, E.; Toderich, K.; Voronin, P. Elevated atmospheric CO2 concentration improved C4 xero-halophyte kochia prostrata physiological performance under saline conditions. Plants 2021, 10, 491. [Google Scholar] [CrossRef] [PubMed]
- Fernando, N.; Panozzo, J.; Tausz, M.; Norton, R.; Fitzgerald, G.; Seneweera, S. Rising atmospheric CO2 concentration affects mineral content and protein concentration of wheat grain. Food Chem. 2012, 133, 1307–1311. [Google Scholar] [CrossRef]
- Mills, G.; Sharps, K.; Simpson, D.; Pleijel, H.; Broberg, M.; Uddling, J.; Jaramillo, F.; Davies, W.J.; Dentener, F.; Van den Berg, M.; et al. Ozone pollution will compromise efforts to increase global wheat production. Glob. Change Biol. 2018, 8, 3560–3574. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wild, O.; Ashworth, K.; Chen, X.; Wu, Q.; Qi, Y.; Wang, Z. Reductions in crop yields across China from elevated ozone. Environ. Pollut. 2022, 292, 118218. [Google Scholar] [CrossRef] [PubMed]
- Fanzo, J.; Down, S.M. Climate change and nutrition-associated diseases. Nat. Rev. 2021, 7, 90. [Google Scholar] [CrossRef]
- Stone, P.; Nicolas, M. Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Funct. Plant Biol. 1994, 21, 887–900. [Google Scholar] [CrossRef]
- Blum, A.; Klueva, N.; Nguyen, H. Wheat cellular thermotolerance is related to yield under heat stress. Euphytica 2001, 117, 117–123. [Google Scholar] [CrossRef]
- Semenov, M.A. Impacts of climate change on wheat in England and Wales. J. R. Soc. Interface 2009, 6, 343–350. [Google Scholar] [CrossRef]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Hasan, M.N. Trends in the Availability of Agricultural Land in Bangladesh; Soil Resource Development Institute (SERDI), Ministry of Agriculture: Dhaka, Bangladesh, 2013. Available online: http://fpmu.gov.bd/agridrupal/sites/default/files/Trends-in-theavailability-of-agricultural-land-in-Bangladesh-SRDI-Supported-by-NFPCSP-FAO.pdf (accessed on 17 January 2023).
- Rippey, B.R. The U.S. drought of 2012. Weather Clim. Extrem. 2015, 10, 57–64. [Google Scholar] [CrossRef]
- D’Amour, C.B.; Wenz, L.; Kalkuhl, M.; Steckel, J.C.; Creutzig, F. Teleconnected food supply shocks. Environ. Res. Lett. 2016, 11, 35007. [Google Scholar] [CrossRef]
- Huai, J. Dynamics of resilience of wheat to drought in Australia from 1991 to 2010. Sci. Rep. 2017, 7, 9532. [Google Scholar] [CrossRef] [PubMed]
- Dellal, I.; Unuvar, F. Effect of Climate Change on Food Supply of Turkey. J. Environ. Prot. Ecol. 2019, 20, 692–700. [Google Scholar]
- Abbass, K.; Qasim, M.Z.; Song, H.; Murshed, M.; Mahmood, H.; Younis, J. A review of the global climate change impacts, adaptation, and sustainable mitigation measures. Environ. Sci. Pollut. Res. 2022, 29, 42539–42559. [Google Scholar] [CrossRef]
- Krankina, O.N.; Dixon, R.K.; Kirilenko, A.P.; Kobak, K.I. Global climate change adaptation: Examples from Russian boreal forests. Clim. Change 1997, 36, 197–215. [Google Scholar] [CrossRef]
- Zilberman, D.; Liu, X.; Roland-Holst, D.; Sunding, D. The Economics of Climate Change in Agriculture. In Innovative Approaches for Sustainable Development; Mahdi, S.S., Singh, R., Eds.; Springer: Cham, Switzerland, 2004. [Google Scholar] [CrossRef]
- Compant, S.; Van Der Heijden, M.G.A.; Sessitsch, A. Climate change effects on beneficial plant–microorganism interactions. FEMS Microbiol. Ecol. 2010, 73, 197–214. [Google Scholar] [CrossRef]
- Ziska, L.H.; McConnell, L.L. Climate change, carbon dioxide, and pest biology: Monitor, mitigate, manage. J. Agric. Food Chem. 2016, 64, 6–12. [Google Scholar] [CrossRef]
- Bajwa, A.A.; Farooq, M.; Al-Sadi, A.M.; Nawaz, A.; Jabran, K.; Siddique, K.H.M. Impact of climate change on biology and management of wheat pests. Crop. Protect. 2020, 137, 105304. [Google Scholar] [CrossRef]
- Zafar, M.M.; Manan, A.; Razzaq, A.; Zulfqar, M.; Saeed, A.; Kashif, M.; Khan, A.I.; Sarfraz, Z.; Mo, H.; Iqbal, M.S.; et al. Exploiting Agronomic and Biochemical Traits to Develop Heat Resilient Cotton Cultivars under Climate Change Scenarios. Agronomy 2021, 11, 1885. [Google Scholar] [CrossRef]
- Razzaq, A.; Zafar, M.M.; Li, P.; Qun, G.; Deng, X.; Ali, A.; Hafeez, A.; Irfan, M.; Liu, A.; Ren, M.; et al. Transformation and Overexpression of Primary Cell Wall SynthesisRelated Zinc Finger Gene Gh_A07G1537 to Improve Fiber Length in Cotton. Front. Plant Sci. 2021, 12, 777794. [Google Scholar] [CrossRef]
- Razzaq, A.; Zafar, M.M.; Ali, A.; Hafeez, A.; Batool, W.; Shi, Y.; Gong, W.; Youlu, Y. Cotton germplasm improvement and progress in Pakistan. J. Cotton Res. 2021, 4, 1. [Google Scholar] [CrossRef]
- Razzaq, A.; Zafar, M.M.; Ali, A.; Hafeez, A.; Sharif, F.; Guan, X.; Deng, X.; Pengtao, L.; Shi, Y.; Haroon, M.; et al. The Pivotal Role of Major Chromosomes of Sub-Genomes A and D in Fiber Quality Traits of Cotton. Front. Genet. 2022, 12, 642595. [Google Scholar] [CrossRef] [PubMed]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; FAO: Rome, Italy, 2012. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P.; Alyemeni, M.N.; Alsahli, A.A.; Ahmad, P. Arbuscular mycorrhiza in combating abiotic stresses in vegetables: An eco-friendly approach. Saudi J. Biol. Sci. 2021, 28, 1465–1476. [Google Scholar] [CrossRef] [PubMed]
- Nastis, S.A.; Michailidis, A.; Chatzitheodoridis, F. Climate change and agricultural productivity. Afr. J. Agric. Res. 2012, 7, 4885–4893. [Google Scholar] [CrossRef]
- Rodger, J.G.; Bennett, J.M.; Razanajatovo, M.; Knight, T.M.; van Kleunen, M.; Ashman, T.L.; Steets, J.A.; Hui, C.; Arceo-Gómez, G.; Burd, M.; et al. Widespread vulnerability of flowering plant seed production to pollinator declines. Sci. Adv. 2021, 7, eabd3524. [Google Scholar] [CrossRef]
- An, H.; Gan, J.; Cho, J.S. Assessing Climate Change Impacts on Wildfire Risk in the United States. Forests 2015, 6, 3197–3211. [Google Scholar] [CrossRef]
- Lozano, O.M.; Salis, M.; Ager, A.A.; Arca, B.; Alcasena, F.J.; Monteiro, A.T.; Finney, M.A.; Del Giudice, L.; Scoccimarro, E.; Spano, D. Assessing Climate Change Impacts on Wildfire Exposurein Mediterranean Areas. Risk Anal. 2016, 37, 1898–1916. [Google Scholar] [CrossRef]
- Dupuy, J.-l.; Fargeon, H.; Martin, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Scarano, A.; Olivieri, F.; Gerardi, C.; Liso, M.; Chiesa, M.; Chieppa, M.; Frusciante, L.; Barone, A.; Santino, A.; Rigano, M.M. Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. J. Sci. Food Agric. 2020, 100, 2791–2799. [Google Scholar] [CrossRef] [PubMed]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 7503, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Ebi, K.L.; Ziska, L.H. Increases in atmospheric carbon dioxide: Anticipated negative effects on food quality. PLoS Med. 2018, 15, e1002600. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A. Rice production in a changing climate: A meta-analysis of responses to elevated carbon dioxide and elevated ozone concentration. Glob. Change Biol. 2008, 14, 1642–1650. [Google Scholar] [CrossRef]
- Cao, L.; Bala, G.; Caldeira, K.; Nemani, R.; Ban-Weiss, G. Importance of carbon dioxide physiological forcing to future climate change. Proc. Natl. Acad. Sci. USA 2010, 107, 9513–9518. [Google Scholar] [CrossRef]
- Bandara, J.S.; Cai, Y. The impact of climate change on food crop productivity, food prices and food security in South Asia. Econ. Anal. Policy 2014, 44, 451–465. [Google Scholar] [CrossRef]
- Chalise, S.; Naranpanawa, A. Climate change adaptation in agriculture: A computable general equilibrium analysis of land-use change in Nepal. Land Use Policy 2016, 59, 241–250. [Google Scholar] [CrossRef]
- Leisner, C.P. Review: Climate change impacts on food security—Focus on perennial cropping systems and nutritional value. Plant Sci. 2020, 293, 110412. [Google Scholar] [CrossRef]
- Owino, V.; Kumwenda, C.; Ekesa, B.; Parker, M.E.; Ewoldt, L.; Roos, N.; Lee, W.T.; Tome, D. The impact of climate change on food systems, diet quality, nutrition, and health outcomes: A narrative review. Front. Clim. 2022, 4, 941842. [Google Scholar] [CrossRef]
- Munné-Bosch, S.; Villadangos, S. 2023. Cheap, cost-effective, and quick stress biomarkers for drought stress detection and monitoring in plants. Trends Plant Sci. 2023, 28, 527–536. [Google Scholar] [CrossRef]
- Waśkiewicz, A.; Gładysz, O.; Beszterda, M.; Goliński, P. Water stress and vegetable crops. In Water Stress and Crop Plants; Ahmad, P., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Cano-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Du, W.; FitzGerald, G.J.; Clark, M.; Hou, X.Y. Health impacts of floods. Prehosp. Disaster Med. 2010, 25, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Wang, M.; Liu, Y. Crop yield and production responses to climate disasters in China. Sci. Total Environ. 2021, 750, 141147. [Google Scholar] [CrossRef]
- Wu, J.; Wang, J.; Hui, W.; Zhao, F.; Wang, P.; Su, C.; Gong, W. Physiology of Plant Responses to Water Stress and Related Genes: A Review. Forests 2022, 13, 324. [Google Scholar] [CrossRef]
- Khaleghi, A.; Naderi, R.; Brunetti, C.; Maserti, B.E.; Salami, S.A.; Babalar, M. Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Sci. Rep. 2019, 9, 19250. [Google Scholar] [CrossRef]
- Ren, B.; Zhang, J.; Dong, S.; Liu, P.; Zhao, B. Responses of carbon metabolism and antioxidant system of summer maize to waterlogging at different stages. J. Agron. Crop. Sci. 2018, 204, 505–514. [Google Scholar] [CrossRef]
- Lawson, J.R.; Fryirs, K.A.; Leishman, M.R. Interactive effects of waterlogging and atmospheric CO2 concentration on gas exchange, growth and functional traits of Australian riparian tree seedlings. Ecohydrology 2017, 10, e1803. [Google Scholar] [CrossRef]
- Mommer, L.; Visser, E.J. Underwater photosynthesis in flooded terrestrial plants: A matter of leaf plasticity. Ann. Bot. 2005, 96, 581–589. [Google Scholar] [CrossRef]
- Colmer, T.D.; Pedersen, O. Underwater photosynthesis and respiration in leaves of submerged wetland plants: Gas films improve CO2 and O2 exchange. New Phytol. 2008, 177, 918–926. [Google Scholar] [CrossRef]
- Brodersen, K.E.; Hammer, K.J.; Schrameyer, V.; Floytrup, A.; Rasheed, M.A.; Ralph, P.J.; Kuhl, M.; Pedersen, O. Sediment resuspension and deposition on seagrass leaves impedes internal plant aeration and promotes phytotoxic H2S intrusion. Front. Plant Sci. 2017, 8, 657. [Google Scholar] [CrossRef] [PubMed]
- De Bauw, P.; Vandamme, E.; Lupembe, A.; Mwakasege, L.; Senthilkumar, K.; Drame, K.N.; Merckx, R. Anatomical root responses of rice to combined phosphorus and water stress-relations to tolerance and breeding opportunities. Funct. Plant Biol. 2019, 46, 1009–1022. [Google Scholar] [CrossRef] [PubMed]
- Thangthong, N.; Jogloy, S.; Punjansing, T.; Kvien, C.K.; Kesmala, T.; Vorasoot, N. Changes in root anatomy of peanut (Arachis hypogaea L.) under different durations of early season drought. Agronomy 2019, 9, 215. [Google Scholar] [CrossRef]
- Hazman, M.; Brown, K.M. Progressive drought alters architectural and anatomical traits of rice roots. Rice 2018, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.K.; Jung, H.; Jang, G.; Jeong, J.S.; Kim, Y.S.; Ha, S.H.; Do Choi, Y.; Kim, J.K. Overexpression of the OsERF71 transcription factor alters rice root structure and drought resistance. Plant Physiol. 2016, 172, 575–588. [Google Scholar] [CrossRef] [PubMed]
- Pierret, A.; Maeght, J.L.; Clement, C.; Montoroi, J.P.; Hartmann, C.; Gonkhamdee, S. Understanding deep roots and their functions in ecosystems: An advocacy for more unconventional research. Ann. Bot. 2016, 118, 621–635. [Google Scholar] [CrossRef]
- Yamauchi, T.; Abe, F.; Tsutsumi, N.; Nakazono, M. Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Front. Plant Sci. 2019, 10, 259. [Google Scholar] [CrossRef]
- Abiko, T.; Kotula, L.; Shiono, K.; Malik, A.I.; Colmer, T.D.; Nakazono, M. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Plant Cell Environ. 2012, 35, 1618–1630. [Google Scholar] [CrossRef]
- Ranathunge, K.; Lin, J.; Steudle, E.; Schreiber, L. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ. 2011, 34, 1223–1240. [Google Scholar] [CrossRef]
- Djanaguiraman, M.; Prasad, P.V.V.; Kumari, J.; Rengel, Z. Root length and root lipid composition contribute to drought tolerance of winter and spring wheat. Plant Soil 2019, 439, 57–73. [Google Scholar] [CrossRef]
- Jackson, M.B.; Ram, P.C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann. Bot. 2003, 91, 227–241. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.T.; Yang, L.; Zhou, Z.Q.; Mei, F.Z.; Qu, L.H.; Zhou, G.S. Process of aerenchyma formation and reactive oxygen species induced by waterlogging in wheat seminal roots. Planta 2013, 238, 969–982. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.C.; Shabala, S.; Koutoulis, A.; Shabala, L.; Johnson, P.; Hayes, D.; Nichols, D.S.; Zhou, M.X. Waterlogging tolerance in barley is associated with faster aerenchyma formation in adventitious roots. Plant Soil 2015, 394, 355–372. [Google Scholar] [CrossRef]
- Laan, P.; Berrevoets, M.J.; Lythe, S.; Armstrong, W.; Blom, C.W.P.M. Root morphology and aerenchyma formation as indicators of the flood-tolerance of Rumex species. J. Ecol. 1989, 77, 693–703. [Google Scholar] [CrossRef]
- Olgun, M.; Metin Kumlay, A.; Cemal Adiguzel, M.; Caglar, A. The effect of waterlogging in wheat (T. aestivum L.). Acta Agric. Scand. Sect. B Soil Plant Sci. 2008, 58, 193–198. [Google Scholar] [CrossRef]
- Haque, M.E.; Kawaguchi, K.; Komatsu, S. Analysis of proteins in aerenchymatous seminal roots of wheat grown in hypoxic soils under waterlogged conditions. Protein Pept. Lett. 2011, 18, 912–924. [Google Scholar] [CrossRef]
- Malik, A.I.; Islam, A.K.M.R.; Colmer, T.D. Transfer of the barrier to radial oxygen loss in roots of Hordeum marinum to wheat (Triticum aestivum): Evaluation of four H. marinum-wheat amphiploids. New Phytol. 2011, 190, 499–508. [Google Scholar] [CrossRef]
- Tack, J.; Barkley, A.; Nalley, L.L. Heterogeneous effects of warming and drought on selected wheat variety yields. Clim. Change 2014, 125, 489–500. [Google Scholar] [CrossRef]
- Panozzo, A.; Dal Cortivo, C.; Ferrari, M.; Vicelli, B.; Varotto, S.; Vamerali, T. Morphological changes and expressions of AOX1A, CYP81D8, and putative PFP genes in a large set of commercial maize hybrids under extreme waterlogging. Front. Plant Sci. 2019, 10, 62. [Google Scholar] [CrossRef]
- Yu, F.; Liang, K.; Fang, T.; Zhao, H.L.; Han, X.S.; Cai, M.J.; Qiu, F.Z. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol. J. 2019, 17, 2286–2298. [Google Scholar] [CrossRef]
- De Caroli, M.; Rampino, P.; Curci, L.M.; Pecatelli, G.; Carrozzo, S.; Piro, G. CiXTH29 and CiLEA4 Role in Water Stress Tolerance in Cichorium intybus Varieties. Biology 2023, 12, 444. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Zhang, D.; Liu, H.; Guan, K. Effects of drought stress on the seed germination and early seedling growth of the endemic desert plant Eremosparton songoricum (Fabaceae). EXCLI J. 2013, 12, 89–101. [Google Scholar] [PubMed]
- Onyemaobi, I.; Liu, H.; Siddique, K.H.; Yan, G. Both male and female malfunction contributes to yield reduction under water stress during meiosis in bread wheat. Front. Plant Sci. 2017, 7, 2071. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.Z.; Zhang, J.W.; Li, X.; Fan, X.; Dong, S.T.; Liu, P.; Zhao, B. Effects of waterlogging on the yield and growth of summer maize under field conditions. Can. J. Plant Sci. 2014, 94, 23–31. [Google Scholar] [CrossRef]
- Kamara, A.; Menkir, A.; Badu-Apraku, B.; Ibikunle, O. The influence of drought stress on growth, yield and yield components of maize genotypes. J. Agric. Sci. 2003, 141, 43–50. [Google Scholar] [CrossRef]
- Samarah, N.H.; Mullen, R.E.; Cianzio, S.R.; Scott, P. Dehydrin-Like Proteins in Soybean Seeds in Response to Drought Stress during Seed Filling. Crop. Sci. 2006, 46, 2141–2150. [Google Scholar] [CrossRef]
- Specht, J.E.; Chase, K.; Macrander, M.; Graef, G.L.; Chung, J.; Markwell, J.P.; Germann, M.; Orf, J.H.; Lark, K.G. Soybean Response to Water: A QTL Analysis of Drought Tolerance. Crop. Sci. 2001, 41, 493–509. [Google Scholar] [CrossRef]
- Yang, X.; Wang, B.; Chen Li, P.; Cao, C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci. Rep. 2019, 9, 3742. [Google Scholar] [CrossRef]
- Lafitte, H.R.; Yongsheng, G.; Yan, S.; Li, Z.-K. Whole plant responses, key processes, and adaptation to drought stress: The case of rice. J. Exp. Bot. 2007, 58, 169–175. [Google Scholar] [CrossRef]
- Bijalwan, P.; Sharma, M.; Kaushik, P. Review of the Effects of Drought Stress on Plants: A Systematic Approach. Preprints 2022, 2022020014. [Google Scholar] [CrossRef]
- Kamoshita, A.; Babu, R.C.; Bhupathi, N.M.; Fukai, S. Phenotypic and genotypic analysis of drought-resistance traits for development of rice cultivars adapted to rainfed environments. Field Crops Res. 2008, 109, 1–23. [Google Scholar] [CrossRef]
- Palanog, A.D.; Swamy, B.P.M.; Shamsudin, N.A.A.; Dixit, S.; Hernandez, J.E.; Boromeo, T.H.; Cruz, P.C.S.; Kumar, A. Grain yield QTLs with consistent-effect under reproductive-stage drought stress in rice. Field Crops Res. 2014, 161, 46–54. [Google Scholar] [CrossRef]
- Gana, A.S. Screening and resistance of tradition and improved cultivars of rice to drought stress at Badeggi, Niger state, Nigeria. Agric. Biol. North Am. 2011, 2, 1027–1031. [Google Scholar] [CrossRef]
- Kumar, A.; Dixit, S.; Ram, T.; Yadaw, R.B.; Mishra, K.K.; Mandal, N.P. Breeding high-yielding drought-tolerant rice: Genetic variations and conventional and molecular approaches. J. Exp. Bot. 2014, 65, 6265–6278. [Google Scholar] [CrossRef] [PubMed]
- Babu, R.C.; Nguyen, B.D.; Chamarerk, V.; Shanmugasundaram, P.; Chezhian, P.; Jeyaprakash, P.; Ganesh, S.K.; Palchamy, A.; Sadasivam, S.; Sarkarung, S.; et al. Genetic Analysis of Drought Resistance in Rice by Molecular Markers. Crop Sci. 2003, 43, 1457–1469. [Google Scholar] [CrossRef]
- Dong, J.; Gruda, N.; Lam, S.K.; Li, X.; Duan, Z. Effect of elevated CO2 on nutritional quality of vegetables: A review. Front. Plant Sci. 2018, 9, 324. [Google Scholar] [CrossRef]
- Giri, A.; Armstrong, B.; Rajashekar, C.B. Elevated carbon dioxide level suppresses nutritional quality of lettuce and spinach. Am. J. Plant Sci. 2016, 7, 246–258. [Google Scholar] [CrossRef]
- Ahmed, S.; Stepp, J.R. Beyond yields: Climate change effects on specialty crop quality and agroecological management. Elem. Sci. Anthr. 2016, 4, 000092. [Google Scholar] [CrossRef]
- Martínez, S.; Fuentes, C.; Carballo, J. Antioxidant activity, total phenolic content and total flavonoid content in sweet chestnuts (Castanea sativa Mill.) cultivars grown in Northwest Spain under different environmental conditions. Foods 2022, 11, 3519. [Google Scholar] [CrossRef]
- Navrátilová, M.; Beranová, M.; Severová, L.; Šrédl, K.; Svoboda, R.; Abrhám, J. The impact of climate change on the sugar content of grapes and the sustainability of their production in the Czech Republic. Sustainability 2021, 13, 222. [Google Scholar] [CrossRef]
- Mignard, P.; Beguería, S.; Giménez, R.; Fon i Forcada, C.; Reig, G.; Moreno, M.Á. Effect of genetics and climate on apple sugars and organic acids profiles. Agronomy 2022, 12, 827. [Google Scholar] [CrossRef]
- Sweetman, C.; Sadras, V.O.; Hancock, R.D.; Soole, K.L.; Ford, C.M. Metabolic effects of elevated temperature on organic acid degradation in ripening Vitis vinifera fruit. J. Exp. Bot. 2014, 65, 5975–5988. [Google Scholar] [CrossRef] [PubMed]
- Arrizabalaga-Arriazu, M.; Gomès, E.; Morales, F.; Irigoyen, J.J.; Pascual, I.; Hilbert, G. High temperature and elevated carbon dioxide modify berry composition of different clones of grapevine (Vitis vinifera L.) cv. Tempranillo. Front. Plant Sci. 2020, 11, 603687. [Google Scholar] [CrossRef] [PubMed]
- Arpaia, M.L.; Collin, S.; Sievert, J.; Obenland, D. ‘Hass’ avocado quality as influenced by temperature and ethylene prior to and during final ripening. Postharvest Biol. Technol. 2018, 140, 76–84. [Google Scholar] [CrossRef]
- Balasooriya, H.N.; Dassanayake, K.B.; Seneweera, S.; Ajlouni, S. Impact of elevated carbon dioxide and temperature on strawberry polyphenols. J. Sci. Food Agric. 2019, 99, 4659–4669. [Google Scholar] [CrossRef]
- Richardson, A.C.; Marsh, K.B.; Boldingh, H.L.; Pickering, A.H.; Bulley, S.M.; Frearson, N.J.; Ferguson, A.R.; Thornber, S.E.; Bolitho, K.M.; Macrae, E.A. High growing temperatures reduce fruit carbohydrate and vitamin C in kiwifruit. Plant Cell Environ. 2004, 27, 423–435. [Google Scholar] [CrossRef]
- Bisbis, M.B.; Gruda, N.; Blanke, M. Potential impacts of climate change on vegetable production and product quality—A review. J. Clean Prod. 2018, 170, 1602–1620. [Google Scholar] [CrossRef]
- Dietterich, L.H.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.; Bloom, A.J.; Carlisle, E.; Fernando, N.; Fitzgerald, G.; Hasegawa, T.; et al. Impacts of elevated atmospheric CO2 on nutrient content of important food crops. Sci. Data 2015, 2, 150036. [Google Scholar] [CrossRef]
- Cooper, P.J.M.; Dimes, J.; Rao, K.P.C.; Shapiro, B.; Shiferaw, B.; Twomlow, S. Coping better with current climatic variability in the rain-fed farming systems of sub-Saharan Africa: An essential first step in adapting to future climate change? Agric. Ecosyst. Environ. 2008, 126, 24–35. [Google Scholar] [CrossRef]
- Thomas, D.S.G.; Twyman, C.; Osbahr, H.; Hewitson, B. Adaptation to climate change and variability: Farmer responses to intra-seasonal precipitation trends in South Africa. Clim. Change 2007, 83, 301–322. [Google Scholar] [CrossRef]
- Baethgen, W.E. Climate risk management for adaptation to climate variability and change. Crop. Sci. 2010, 50, S-70–S-76. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting Agriculture to Climate Change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, J.; Pilling, D. The State of the World’s Biodiversity for Food and Agriculture; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2019. [Google Scholar]
- Scarano, A.; Semeraro, T.; Chieppa, M.; Santino, A. Neglected and underutilized plant species (NUS) from the Apulia Region worthy of being rescued and re-included in daily diet. Horticulturae 2021, 7, 177. [Google Scholar] [CrossRef]
- Rosendal, G.K. The Convention on Biological Diversity and Developing Countries; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Zhu, M.K.; Chen, G.P.; Zhang, J.L.; Zhang, Y.J.; Xie, Q.L.; Zhao, Z.P.; Pan, Y.; Hu, Z.L. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Rep. 2014, 33, 1851–1863. [Google Scholar] [CrossRef]
- Wang, X.; Huang, M.; Zhou, Q.; Cai, J.; Dai, T.B.; Cao, W.X.; Jiang, D. Physiological and proteomic mechanisms of waterlogging priming improves tolerance to waterlogging stress in wheat (Triticum aestivum L.). Environ. Exp. Bot. 2016, 132, 175–182. [Google Scholar] [CrossRef]
- Magwanga, R.O.; Lu, P.; Kirungu, J.N.; Lu, H.; Wang, X.; Cai, X.; Zhou, Z.; Zhang, Z.; Salih, H.; Wang, K.; et al. Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet. 2018, 19, 6. [Google Scholar] [CrossRef]
- Kamarudin, Z.S.; Yusop, M.R.; Ismail, M.R.; Tengku Muda Mohamed, M.; Harun, A.R.; Yusuff, O.; Magaji, U.; Fatai, A. LEA Gene Expression Assessment in Advanced Mutant Rice Genotypes under Drought Stress. Int. J. Genom. 2019, 2019, 8406036. [Google Scholar] [CrossRef]
- Budak, H.; Kantar, M.; Yucebilgili Kurtoglu, K. Drought tolerance in modern and wild wheat. Sci. World. J. 2013, 4, 66–75. [Google Scholar] [CrossRef]
- Cho, E.K.; Hong, C.B. Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep. 2006, 25, 349–358. [Google Scholar] [CrossRef]
- Juenger, T.E.; Verslues, P.E. Time for a drought experiment: Do you know your plant’s water status? Plant Cell 2022, 35, 10–23. [Google Scholar] [CrossRef]
- Eckardt, N.A.; Cutler, S.; Juenger, T.E.; Marshall-Colon, A.; Udvardi, M.; Verslues, P.E. Focus on climate change and plant abiotic stress biology. Plant Cell 2023, 35, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Bowerman, A.F.; Byrt, C.S.; Roy, S.J.; Whitney, S.M.; Mortimer, J.C.; Ankeny, R.A.; Gilliham, M.; Zhang, D.; Millar, A.A.; Rebetzke, G.J.; et al. Potential abiotic stress targets for modern genetic manipulation. Plant Cell 2023, 35, 139–161. [Google Scholar] [CrossRef] [PubMed]
- Cooper, M.; Messina, C.D. Breeding crops for drought-affected environments and improved climate resilience. Plant Cell 2023, 35, 162–186. [Google Scholar] [CrossRef]
- Marrou, H.; Wery, J.; Dufour, L.; Dupraz, C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur. J. Agron. 2012, 44, 54–66. [Google Scholar] [CrossRef]
- Amaducci, S.; Yin, X.; Colauzzi, M. Agrivoltaic systems to optimise land use for electric energy production. Appl. Energy 2018, 220, 545–561. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Lionetto, M.G.; Caricato, R.; Calisi, A.; Giordano, M.E.; Erroi, E.; Schettino, T. Biomonitoring of water and soil quality: A case study of ecotoxicological methodology application to the assessment of reclaimed agroindustrial wastewaters used for irrigation. Rend. Lincei 2016, 27, 105–112. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508. [Google Scholar] [CrossRef]
- Pellegrini, L.; Tasciotti, L. Crop diversification, dietary diversity and agricultural income: Empirical evidence from eight developing countries. Can. J. Dev. Stud. 2014, 35, 211–227. [Google Scholar] [CrossRef]
- Gaudin, A.C.M.; Tolhurst, T.N.; Ker, A.P.; Janovicek, K.; Tortora, C.; Martin, R.C.; Deen, W. Increasing crop diversity mitigates weather variations and improves yield stability. PLoS ONE 2015, 10, e0113261. [Google Scholar] [CrossRef]
- Mccord, P.F.; Cox, M.; Schmitt-Harsh, M.; Evans, T. Crop diversification as a smallholder livelihood strategy within semi-arid agricultural systems near Mount Kenya. Land Use Policy 2015, 42, 738–750. [Google Scholar] [CrossRef]
- Kankwamba, H.; Kadzamira, M.; Pauw, K. How diversified is cropping in Malawi? Patterns, determinants and policy implications. Food Secur. 2018, 10, 323–338. [Google Scholar] [CrossRef]
- Renard, D.; Tilman, D. National food production stabilized by crop diversity. Nature 2019, 571, 257. [Google Scholar] [CrossRef] [PubMed]
- Ochieng, J.; Kirimi, L.; Ochieng, D.O.; Njagi, T.; Mathenge, M.; Gitau, R.; Ayieko, M. Managing climate risk through crop diversification in rural Kenya. Clim. Change 2020, 162, 1107–1125. [Google Scholar] [CrossRef]
- Malaiarasan, U.; Paramasivam, R.; Felix, K.T. Crop diversification: Determinants and effects under paddy-dominated cropping system. Paddy Water Environ. 2021, 19, 417–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Yan, J.; Peng, T. How does rural labor migration affect crop diversification for adapting to climate change in the Hehuang Valley, Tibetan Plateau? Land Use Policy 2022, 113, 105928. [Google Scholar] [CrossRef]
- Saddique, N.; Jehanzaib, M.; Sarwar, A.; Ahmed, E.; Muzammil, M.; Khan, M.I.; Faheem, M.; Buttar, N.A.; Ali, S.; Bernhofer, C. A Systematic Review on Farmers’ Adaptation Strategies in Pakistan toward Climate Change. Atmosphere 2022, 13, 1280. [Google Scholar] [CrossRef]
- Lal, R.; Delgado, J.A.; Groffman, P.M.; Millar, N.; Dell, C.; Rotz, A. Management to mitigate and adapt to climate change. J. Soil Water Conserv. 2011, 66, 276–285. [Google Scholar] [CrossRef]
- European Environmental Agency. Climate Change Adaptation in the Agriculture Sector in Europe. EEA Report No 04/2019; European Environmental Agency: Copenhagen, Denmark, 2019. [Google Scholar]
- Sandhu, S.S.; Kaur, P.; Gill, K.K.; Vashisth, B.B. The effect of recent climate shifts on optimal sowing windows for wheat in Punjab, India. J. Water Clim. Change 2020, 11, 1177–1190. [Google Scholar] [CrossRef]
- Semeraro, T.; Aretano, R.; Barca, A.; Pomes, A.; Del Giudice, C.; Gatto, E.; Lenucci, M.; Buccolieri, R.; Emmanuel, R.; Gao, Z.; et al. A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems. Land 2020, 9, 238. [Google Scholar] [CrossRef]
- Sahar, A.; Zafar, M.M.; Razzaq, A.; Manan, A.; Haroon, M.; Sajid, S.; Rehman, A.; Ashraf, M.; Ren, M.; Shakeel, A.; et al. Genetic variability for yield and fiber related traits in genetically modified cotton. J. Cotton Res. 2021, 4, 19. [Google Scholar] [CrossRef]
- Manan, A.; Zafar, M.M.; Ren, M.; Khurshid, M.; Sahar, A.; Rehman, A.; Firdous, H.; Youlu, Y.; Razzaq, A.; Shakeel, A. Genetic analysis of biochemical, fiber yield and quality traits of upland cotton under high-temperature. Plant Prod. Sci. 2022, 25, 105–119. [Google Scholar] [CrossRef]
- Semeraro, T.; Aretano, R.; Pomes, A.; Del Giudice, C.; Nigro, D. Planning ground based utility scale solar energy as Green Infrastructure to enhance ecosystem services. Energy Policy 2018, 117, 218–227. [Google Scholar] [CrossRef]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Dinesh, H.; Pearce, J.M. The potential of agrivoltaic systems. Renew Sustain. Energy Rev. 2016, 54, 299–308. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J.M.; Dejean, C.; Belaud, G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Mange, A.; Dejean, C.; Liron, F.; Belaud, G. Rain concentration and sheltering effect of solar panels on cultivated plots. Hydrol. Earth Syst. Sci. 2018, 22, 1285–1298. [Google Scholar] [CrossRef]
- Adeh, E.H.; Selker, J.S.; Higgins, C.W. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PLoS ONE 2018, 13, e0203256. [Google Scholar] [CrossRef]
- AL-agele, H.A.; Proctor, K.; Murthy, G.; Higgins, C. A case study of tomato (Solanum lycopersicon var. Legend) production and water productivity in agrivoltaic systems. Sustainability 2021, 13, 2850. [Google Scholar] [CrossRef]
- Mamun, M.A.A.; Dargusch, P.; Wadley, D.; Zulkarnain, N.A. A review of research on agrivoltaic systems. Renewable and Sustainable Energy Reviews. Renew. Sustain. Energy Rev. 2022, 161, 112351. [Google Scholar] [CrossRef]
- Yavari, R.; Zaliwciw, D.; Cibin, R.; McPhillips, L. Minimizing environmental impacts of solar farms: A review of current science on landscape hydrology and guidance on stormwater management. Environ. Res. Infrastruct. Sustain. 2022, 2, 032002. [Google Scholar] [CrossRef]
- Potenza, E.; Croci, M.; Colauzzi, M.; Amaducci, S. Agrivoltaic System and Modelling Simulation: A Case Study of Soybean (Glycine max L.) in Italy. Horticulturae 2022, 8, 1160. [Google Scholar] [CrossRef]
- Semeraro, T.; Scarano, A.; Santino, A.; Emmanuel, R. An innovative approach to combine solar photovoltaic gardenswith agricultural production and ecosystem services. Ecosyst. Serv. 2022, 56, 101450. [Google Scholar] [CrossRef]
- Quandt, A.; Neufeldt, H.; Gorman, K. Climate change adaptation through agroforestry: Opportunities and gaps. Curr. Opin. Environ. Sustain. 2023, 60, 101244. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Climate Change Resource Center, Agroforestry. 2023. Available online: https://www.fs.usda.gov/ccrc/topics/agroforestry (accessed on 26 April 2023).
- Watts, M.; Hutton, C.; Mata Guel, E.O.; Suckall, N.; Peh, K.S.-H. Impacts of climate change on tropical agroforestry systems: A systematic review for identifying future research priorities. Front. For. Glob. Change 2022, 5, 880621. [Google Scholar] [CrossRef]
- Yasin, G.; Nawaz, M.F.; Zubair, M.; Azhar, M.F.; Mohsin Gilani, M.; Ashraf, M.N.; Qin, A.; Ur Rahman, S. Role of Traditional Agroforestry Systems in Climate Change Mitigation through Carbon Sequestration: An Investigation from the Semi-Arid Region of Pakistan. Land 2023, 12, 513. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Semeraro, T.; Scarano, A.; Leggieri, A.; Calisi, A.; De Caroli, M. Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies. Land 2023, 12, 1117. https://doi.org/10.3390/land12061117
Semeraro T, Scarano A, Leggieri A, Calisi A, De Caroli M. Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies. Land. 2023; 12(6):1117. https://doi.org/10.3390/land12061117
Chicago/Turabian StyleSemeraro, Teodoro, Aurelia Scarano, Angelo Leggieri, Antonio Calisi, and Monica De Caroli. 2023. "Impact of Climate Change on Agroecosystems and Potential Adaptation Strategies" Land 12, no. 6: 1117. https://doi.org/10.3390/land12061117