Impacts of Soil Management and Sustainable Plant Protection Strategies on Soil Biodiversity in a Sangiovese Vineyard
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area, Vineyards Treatments and Soil Samplings
2.2. Soil Chemical Characterization
2.3. Assessment of Soil Microbial Biodiversity
2.4. Evaluation of Nematode and Microarthropod Edaphic Communities
2.5. Statistical Testing
3. Results
3.1. Climate during the Study Trial and Soil Chemical Properties
3.2. Composition and Structure of the Edaphic Communities
3.3. Soil Biological Diversity Assessment
3.4. Investigation of Trans-Kingdom Relations
4. Discussion
- The effect of the soil management and vine treatment on the structure of the edaphic communities (alone and joined in a single “meta-community”), and their possible relationships with soil chemical features (see Section 4.1);
- The effect of soil management and vine treatment on the diversity and ecological indices of the different levels of soil biota (see Section 4.2);
- The effect of soil management on the relationships among the different soil trophic levels (see Section 4.3). This comprehensive multi-level integration of soil biota data represents the focus of the present work, aiming to contribute to the filling of the current information gap on vineyard edaphic community associations and interactions.
4.1. Study of the Effect of the Soil Management and Vine Protection Treatment on the Structure of the Edaphic Community
4.2. Analysis of the Effect of Environmental Variables on Soil Biological and Ecological Indices
4.3. Effect of the Application of Sustainable Soil Managements on Soil Organisms Relationships
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pertot, I.; Caffi, T.; Rossi, V.; Mugnai, L.; Hoffmann, C.; Grando, M.S.; Gary, C.; Lafond, D.; Duso, C.; Thiery, D.; et al. A Critical Review of Plant Protection Tools for Reducing Pesticide Use on Grapevine and New Perspectives for the Implementation of IPM in Viticulture. Crop Prot. 2017, 97, 70–84. [Google Scholar] [CrossRef]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; Le Cadre, E.; d’Errico, G.; et al. Vineyard Management and Its Impacts on Soil Biodiversity, Functions, and Ecosystem Services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
- Paiola, A.; Assandri, G.; Brambilla, M.; Zottini, M.; Pedrini, P.; Nascimbene, J. Exploring the Potential of Vineyards for Biodiversity Conservation and Delivery of Biodiversity-Mediated Ecosystem Services: A Global-Scale Systematic Review. Sci. Total Environ. 2020, 706, 135839. [Google Scholar] [CrossRef] [PubMed]
- Creamer, R.E.; Hannula, S.E.; Leeuwen, J.P.V.; Stone, D.; Rutgers, M.; Schmelz, R.M.; de Ruiter, P.C.; Hendriksen, N.B.; Bolger, T.; Bouffaud, M.L.; et al. Ecological Network Analysis Reveals the Inter-Connection between Soil Biodiversity and Ecosystem Function as Affected by Land Use across Europe. Appl. Soil Ecol. 2016, 97, 112–124. [Google Scholar] [CrossRef]
- Thakur, M.P.; Phillips, H.R.P.; Brose, U.; De Vries, F.T.; Lavelle, P.; Loreau, M.; Mathieu, J.; Mulder, C.; Van der Putten, W.H.; Rillig, M.C.; et al. Towards an Integrative Understanding of Soil Biodiversity. Biol. Rev. 2020, 95, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Reich, P.B.; Trivedi, C.; Eldridge, D.J.; Abades, S.; Alfaro, F.D.; Bastida, F.; Berhe, A.A.; Cutler, N.A.; Gallardo, A.; et al. Multiple Elements of Soil Biodiversity Drive Ecosystem Functions across Biomes. Nat. Ecol. Evol. 2020, 4, 210–220. [Google Scholar] [CrossRef]
- ISTAT—Istituto Nazionale Di Statistica. Available online: http://dati.istat.it/ (accessed on 15 January 2024).
- MacKie, K.A.; Müller, T.; Kandeler, E. Remediation of Copper in Vineyards—A Mini Review. Environ. Pollut. 2012, 167, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Droz, B.; Payraudeau, S.; Rodríguez Martín, J.A.; Tóth, G.; Panagos, P.; Montanarella, L.; Borrelli, P.; Imfeld, G. Copper Content and Export in European Vineyard Soils Influenced by Climate and Soil Properties. Environ. Sci. Technol. 2021, 55, 7327–7334. [Google Scholar] [CrossRef]
- López-Piñeiro, A.; Muñoz, A.; Zamora, E.; Ramírez, M. Influence of the Management Regime and Phenological State of the Vines on the Physicochemical Properties and the Seasonal Fluctuations of the Microorganisms in a Vineyard Soil under Semi-Arid Conditions. Soil Tillage Res. 2013, 126, 119–126. [Google Scholar] [CrossRef]
- Jacomini, C.; Nappi, P.; Sbrilli, G.; Mancini, L. Indicatori Ed Indici Eco Tossicologici e Biologici Applicati al Suolo: Stato Dell’arte; Agenzia Nazionale per la Protezione dell’Ambiente (ANPA): Rome, Italy, 2000. [Google Scholar]
- Mocali, S.; Landi, S.; Fabiani, A.; Piccolo, R.; Agnelli, A.; D’Errico, G.; Mazza, G.; Fedrizzi, M.; Sperandio, G.; Guerrieri, M.; et al. Environmental Effectiveness of GAEC Cross-Compliance Standard 4.2 on Biodiversity in Set-aside Management and Economic Evaluation of the Competitiveness Gap for Farmers, Part I. Ital. J. Agron. 2016, 10, 711. [Google Scholar] [CrossRef]
- Salome, C.; Coll, P.; Lardo, E.; Villenave, C.; Blanchart, E.; Hinsinger, P.; Marsden, C.; Le Cadre, E. Relevance of Use-Invariant Soil Properties to Assess Soil Quality of Vulnerable Ecosystems: The Case of Mediterranean Vineyards. Ecol. Indic. 2014, 43, 83–93. [Google Scholar] [CrossRef]
- Landi, S.; Valboa, G.; Vignozzi, N.; d’Errico, G.; Pellegrini, S.; Simoncini, S.; Torrini, G.; Roversi, P.F.; Priori, S. Response of Nematode Community Structure to Different Restoration Practices in Two Vineyard Soils in Tuscany (Italy). Biol. Agric. Hortic. 2023, 39, 149–169. [Google Scholar] [CrossRef]
- Dagostin, S.; Schärer, H.J.; Pertot, I.; Tamm, L. Are There Alternatives to Copper for Controlling Grapevine Downy Mildew in Organic Viticulture? Crop Prot. 2011, 30, 776–788. [Google Scholar] [CrossRef]
- La Torre, A.; Righi, L.; Iovino, V.; Battaglia, V. Evaluation of Copper Alternative Products to Control Grape Downy Mildew in Organic Farming. J. Plant Pathol. 2019, 101, 1005–1012. [Google Scholar] [CrossRef]
- Pertot, I.; Giovannini, O.; Benanchi, M.; Caffi, T.; Rossi, V.; Mugnai, L. Combining Biocontrol Agents with Different Mechanisms of Action in a Strategy to Control Botrytis Cinerea on Grapevine. Crop Prot. 2017, 97, 85–93. [Google Scholar] [CrossRef]
- Burketova, L.; Trda, L.; Ott, P.G.; Valentova, O. Bio-Based Resistance Inducers for Sustainable Plant Protection against Pathogens. Biotechnol. Adv. 2015, 33, 994–1004. [Google Scholar] [CrossRef] [PubMed]
- Landis, D.A.; Wratten, S.D.; Gurr, G.M. Habitat Management to Conserve Natural Enemies of Arthropod Pests in Agriculture. Annu. Rev. Entomol. 2000, 45, 175–201. [Google Scholar] [CrossRef] [PubMed]
- Daane, K.M.; Hogg, B.N.; Wilson, H.; Yokota, G.Y. Native Grass Ground Covers Provide Multiple Ecosystem Services in Californian Vineyards. J. Appl. Ecol. 2018, 55, 2473–2483. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Úrbez-Torres, J.R.; Hart, M. Cover Crops to Increase Soil Microbial Diversity and Mitigate Decline in Perennial Agriculture. A Review. Agron. Sustain. Dev. 2016, 36, 48. [Google Scholar] [CrossRef]
- Cherr, C.M.; Scholberg, J.M.S.; McSorley, R. Green Manure Approaches to Crop Production: A Synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef]
- Longa, C.M.O.; Nicola, L.; Antonielli, L.; Mescalchin, E.; Zanzotti, R.; Turco, E.; Pertot, I. Soil Microbiota Respond to Green Manure in Organic Vineyards. J. Appl. Microbiol. 2017, 123, 1547–1560. [Google Scholar] [CrossRef] [PubMed]
- Perria, R.; Ciofini, A.; Petrucci, W.A.; D’arcangelo, M.E.M.; Valentini, P.; Storchi, P.; Carella, G.; Pacetti, A.; Mugnai, L. A Study on the Efficiency of Sustainable Wine Grape Vineyard Management Strategies. Agronomy 2022, 12, 392. [Google Scholar] [CrossRef]
- Landi, S.; Papini, R.; d’Errico, G.; Brandi, G.; Rocchini, A.; Roversi, P.F.; Bazzoffi, P.; Mocali, S. Effect of Different Set-aside Management Systems on Soil Nematode Community and Soil Fertility in North, Central and South Italy. Agric. Ecosyst. Environ. 2018, 261, 251–260. [Google Scholar] [CrossRef]
- Storchi, P.; Perria, R.; Carella, G.; Mugnai, L.; Landi, S.; Binazzi, F.; Mocali, S.; Fabiani, A.; Cucu, M.A.; Valentini, P.; et al. Soil Management and Plant Protection Strategies with Reduced Use of Copper: Productive and Environmental Aspects in a Sangiovese Vineyard. BIO Web Conf. 2022, 44, 03002. [Google Scholar] [CrossRef]
- de Menezes, A.B.; Prendergast-Miller, M.T.; Richardson, A.E.; Toscas, P.; Farrell, M.; Macdonald, L.M.; Baker, G.; Wark, T.; Thrall, P.H. Network Analysis Reveals That Bacteria and Fungi Form Modules That Correlate Independently with Soil Parameters. Environ. Microbiol. 2015, 17, 2677–2689. [Google Scholar] [CrossRef]
- Goberna, M.; Verdú, M. Cautionary Notes on the Use of Co-Occurrence Networks in Soil Ecology. Soil Biol. Biochem. 2022, 166, 108534. [Google Scholar] [CrossRef]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A Global Atlas of the Dominant Bacteria Found in Soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef]
- Barros-Rodríguez, A.; Rangseekaew, P.; Lasudee, K.; Pathom-aree, W.; Manzanera, M. Impacts of Agriculture on the Environment and Soil Microbial Biodiversity. Plants 2021, 10, 2325. [Google Scholar] [CrossRef] [PubMed]
- de Souza, L.C.; Procópio, L. The Profile of the Soil Microbiota in the Cerrado Is Influenced by Land Use. Appl. Microbiol. Biotechnol. 2021, 105, 4791–4803. [Google Scholar] [CrossRef]
- Wagg, C.; Schlaeppi, K.; Banerjee, S.; Kuramae, E.E.; van der Heijden, M.G.A. Fungal-Bacterial Diversity and Microbiome Complexity Predict Ecosystem Functioning. Nat. Commun. 2019, 10, 4841. [Google Scholar] [CrossRef]
- Jiao, S.; Lu, Y.; Wei, G. Soil Multitrophic Network Complexity Enhances the Link between Biodiversity and Multifunctionality in Agricultural Systems. Glob. Chang. Biol. 2022, 28, 140–153. [Google Scholar] [CrossRef] [PubMed]
- Puig-Montserrat, X.; Stefanescu, C.; Torre, I.; Palet, J.; Fàbregas, E.; Dantart, J.; Arrizabalaga, A.; Flaquer, C. Effects of Organic and Conventional Crop Management on Vineyard Biodiversity. Agric. Ecosyst. Environ. 2017, 243, 19–26. [Google Scholar] [CrossRef]
- Ostandie, N.; Giffard, B.; Bonnard, O.; Joubard, B.; Richart-Cervera, S.; Thiéry, D.; Rusch, A. Multi-Community Effects of Organic and Conventional Farming Practices in Vineyards. Sci. Rep. 2021, 11, 11979. [Google Scholar] [CrossRef] [PubMed]
- Green Grapes Deliverables—Operational Handbook for Vine Nurserymen and Wine Growers. Available online: https://www.lifegreengrapes.eu/deliverables/#1633458302273-5f2d54e0-0390 (accessed on 10 April 2024).
- Sequi, P.; De Nobili, M. Carbonio Organico. In Metodi di Analisi Chimica del Suolo; Angeli, F., Ed.; Ministero per le Politiche Agricole e Forestali, Osservatorio Nazionale Pedologico e per la Qualità del Suolo: Rome, Italy, 2000. [Google Scholar]
- Herlemann, D.P.R.; Labrenz, M.; Jürgens, K.; Bertilsson, S.; Waniek, J.J.; Andersson, A.F. Transitions in Bacterial Communities along the 2000 Km Salinity Gradient of the Baltic Sea. ISME J. 2011, 5, 1571–1579. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.J.W.T.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods. 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Tedersoo, L.; Bahram, M.; Zinger, L.; Nilsson, R.H.; Kennedy, P.G.; Yang, T.; Anslan, S.; Mikryukov, V. Best Practices in Metabarcoding of Fungi: From Experimental Design to Results. Mol. Ecol. 2022, 31, 2769–2795. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Caporaso, J.G. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-Filtering Vastly Improves Diversity Estimates from Illumina Amplicon Sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing and Web-Based Tools. Nucleic Acids Res. 2012, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.S. Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R. R J. 2016, 8, 352–359. [Google Scholar] [CrossRef]
- Abarenkov, K.; Zirk, A.; Piirmann, T.; Pöhönen, R.; Ivanov, F.; Nilsson, R.H.; Kõljalg, U. UNITE General FASTA Release for Eukaryotes 2. Version 4.
- Castronovo, L.M.; Del Duca, S.; Chioccioli, S.; Vassallo, A.; Fibbi, D.; Coppini, E.; Chioccioli, P.; Santini, G.; Zaccaroni, M.; Fani, R. Biodiversity of Soil Bacterial Communities from the Sasso Fratino Integral Nature Reserve. Microbiol. Res. 2021, 12, 862–877. [Google Scholar] [CrossRef]
- Smit, E.; Leeflang, P.; Gommans, S.; van den Broek, J.; van Mil, S.; Wernars, K. Diversity and Seasonal Fluctuations of the Dominant Members of the Bacterial Soil Community in a Wheat Field as Determined by Cultivation and Molecular Methods. Appl. Environ. Microbiol. 2001, 67, 2284–2291. [Google Scholar] [CrossRef] [PubMed]
- Mai, W.F. Pictorial key to genera of plant-parasitic nematodes. In Nematode Identification and Expert System Technology; Springer: Boston, MA, USA, 1988; pp. 31–34. [Google Scholar]
- Bongers, T. De Nematoden van Nederland; K.N.N.V. The Nederlands: Utrecht, The Nederlands, 1988. [Google Scholar]
- Marinari-Palmisano, A.; Vinciguerra, M.T. Classificazione Dei Nematodi. In Nematologia Agraria Generale e Applicata a Cura di; Ambrogioni, L., d’Errico, F.P., Greco, N., Marinari-Palmisano, A., Roversi, F.P., Eds.; Societa Italiana di Nematologia: Bari, Italy, 2014. [Google Scholar]
- Yeates, G.W.; Bongers, T.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding Habits in Soil Nematode Families And--An Outline for Soil Ecologists. J. Nematol. 1993, 25, 315. [Google Scholar]
- Okada, H.; Harada, H.; Kadota, I. Fungal-Feeding Habits of Six Nematode Isolates in the Genus Filenchus. Soil Biol. Biochem. 2005, 37, 1113–1120. [Google Scholar] [CrossRef]
- Bongers, T. The Maturity Index: An Ecological Measure of Environmental Disturbance Based on Nematode Species Composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Ferris, H.; Bongers, T.; de Goede, R.G.M. A Framework for Soil Food Web Diagnostics: Extension of the Nematode Faunal Analysis Concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod Communities as a Tool to Assess Soil Quality and Biodiversity: A New Approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; Weedon, J. Vegan: Community Ecology Package, R Package Version 2.6-4.
- McMurdie, P.J.; Holmes, S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed]
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research, R Package Version 1.3-7.
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Wickham, H.G. Ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Kurtz, Z.D.; Müller, C.L.; Miraldi, E.R.; Littman, D.R.; Blaser, M.J.; Bonneau, R.A. Sparse and Compositionally Robust Inference of Microbial Ecological Networks. PLoS Comput. Biol. 2015, 11, e1004226. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, Z.; Mueller, C.; Miraldi, E.; Bonneau, R. SpiecEasi: Sparse Inverse Covariance for Ecological Statistical Inference. R Package Version 2017, 1. [Google Scholar]
- Csardi, G. The Igraph Software Package for Complex Network Research. InterJournal 2006, 1695, 1–9. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Bramley, R.G.V. Understanding Variability in Winegrape Production Systems 2. Within Vineyard Variation in Quality over Several Vintages. Aust. J. Grape Wine Res. 2005, 11, 33–42. [Google Scholar] [CrossRef]
- Ramos, M.C.; Martínez-Casasnovas, J.A. Soil Loss and Soil Water Content Affected by Land Levelling in Penedès Vineyards, NE Spain. Catena 2007, 71, 210–217. [Google Scholar] [CrossRef]
- Gutiérrez-López, M.; Jesús, J.B.; Trigo, D.; Fernández, R.; Novo, M.; Díaz-Cosín, D.J. Relationships among Spatial Distribution of Soil Microarthropods, Earthworm Species and Soil Properties. Pedobiologia 2010, 53, 381–389. [Google Scholar] [CrossRef]
- Lejon, D.P.H.; Sebastia, J.; Lamy, I.; Chaussod, R.; Ranjard, L. Relationships between Soil Organic Status and Microbial Community Density and Genetic Structure in Two Agricultural Soils Submitted to Various Types of Organic Management. Microb. Ecol. 2007, 53, 650–663. [Google Scholar] [CrossRef]
- Liang, H.; Wang, X.; Yan, J.; Luo, L. Characterizing the Intra-Vineyard Variation of Soil Bacterial and Fungal Communities. Front. Microbiol. 2019, 10, 1239. [Google Scholar]
- Di Giacinto, S.; Friedel, M.; Poll, C.; Döring, J.; Kunz, R.; Kauer, R. Vineyard Management System Affects Soil Microbiological Properties. OENO One 2020, 54, 131–143. [Google Scholar] [CrossRef]
- Widmer, T.L.; Mitkowski, N.A.; Abawi, G.S. Soil Organic Matter and Management of Plant-Parasitic Nematodes. J. Nematol. 2002, 34, 289. [Google Scholar] [PubMed]
- Landi, S.; Pennacchio, F.; Papini, R.; D’Errico, G.; Torrini, G.; Strangi, A.; Barabaschi, D.; Roversi, P.F. Evaluation of Sheep Grazing Effects on Nematode Community, Insect Infestation and Soil Fertility in Sweet Chestnut Orchards: A Case of Study. Redia 2016, 99, 117–126. [Google Scholar]
- Landi, S.; Simoncini, S.; Priori, S. Nematode communities as indicators of soil quality in vineyard system: A case of study in degraded areas. EQA-Int. J. Environ. Qual. 2018, 31, 41–46. [Google Scholar]
- Rogovska, N.P.; Blackmer, A.M.; Tylka, G.L. Soybean Yield and Soybean Cyst Nematode Densities Related to Soil PH, Soil Carbonate Concentrations, and Alkalinity Stress Index. Agron. J. 2009, 101, 1019–1026. [Google Scholar] [CrossRef]
- Bates, S.T.; Garcia-Pichel, F. A Culture-independent Study of Free-living Fungi in Biological Soil Crusts of the Colorado Plateau: Their Diversity and Relative Contribution to Microbial Biomass. Environ. Microbiol. 2009, 11, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Hendgen, M.; Hoppe, B.; Döring, J.; Friedel, M.; Kauer, R.; Frisch, M.; Dahl, A.; Kellner, H. Effects of Different Management Regimes on Microbial Biodiversity in Vineyard Soils. Sci. Rep. 2018, 8, 9393. [Google Scholar] [CrossRef] [PubMed]
- Avramidis, P.; Nikolaou, K.; Bekiari, V. Total Organic Carbon and Total Nitrogen in Sediments and Soils: A Comparison of the Wet Oxidation—Titration Method with the Combustion-Infrared Method. Agric. Agric. Sci. Procedia. 2015, 4, 425–430. [Google Scholar] [CrossRef]
- Thoden, T.C.; Korthals, G.W.; Termorshuizen, A.J. Organic Amendments and Their Influences on Plant-Parasitic and Free-Living Nematodes: A Promising Method for Nematode Management? Nematology 2011, 13, 133–153. [Google Scholar] [CrossRef]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An Underground Revolution: Biodiversity and Soil Ecological Engineering for Agricultural Sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef]
- Tsiafouli, M.A.; Thébault, E.; Sgardelis, S.P.; de Ruiter, P.C.; van der Putten, W.H.; Birkhofer, K.; Hemerik, L.; de Vries, F.T.; Bardgett, R.D.; Brady, M.V.; et al. Intensive Agriculture Reduces Soil Biodiversity across Europe. Glob. Chang. Biol. 2015, 21, 973–985. [Google Scholar] [CrossRef] [PubMed]
- Morriën, E.; Hannula, S.E.; Snoek, L.B.; Helmsing, N.R.; Zweers, H.; de Hollander, M.; Soto, R.L.; Bouffaud, M.-L.; Buée, M.; Dimmers, W.; et al. Soil Networks Become More Connected and Take up More Carbon as Nature Restoration Progresses. Nat. Commun. 2017, 8, 14349. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Chu, H.; Godoy, O.; Fan, K.; Gao, G.-F.; Yang, T.; Ma, Y.; Delgado-Baquerizo, M. Positive Associations Fuel Soil Biodiversity and Ecological Networks Worldwide. Proc. Natl. Acad. Sci. USA 2024, 121, e2308769121. [Google Scholar] [CrossRef] [PubMed]
- Barker, K.R.; Koenning, S.R. Developing sustainable systems for nematode management. Annu. Rev. Phytopathol. 1998, 36, 165–205. [Google Scholar] [CrossRef]
Biological Community | TN | TOC | CaCO3 | pH | ||||
---|---|---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Bacteria | 2.79 | 0.003 | - | - | - | - | - | - |
Fungi | 2.27 | 0.001 | - | - | - | - | 1.76 | 0.015 |
Nematodes | - | - | 2.71 | 0.031 | 2.14 | 0.042 | - | - |
Microarthropods | - | - | - | - | - | - | - | - |
Factor | Year | Soil Managements | Vine Protection Treatments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Subset | IPM | All | 2020 | |||||||
Groups | IPM 2017 | IPM 2020 | ST 2017 | PCC 2020 | GM 2020 | IPM | IPM 50 GG | BIO | BIO 50 GG | GG |
Bacteria | ||||||||||
R | 98.40 ± 0.68 | 98.83 ± 0.31 | 98.4 ± 0.68 | 98.6 ± 0.34 | 98.13 ± 0.47 | 98.83 ± 0.31 | 98.83 ± 0.31 | 98.83 ± 0.65 | 98 ± 0.86 | 97.33 ± 0.8 |
H | 4.02 ± 0.03 | 4.03 ± 0.02 | 4.02 ± 0.03 | 4.03 ± 0.02 | 4.06 ± 0.01 | 4.03 ± 0.02 | 4.09 ± 0.03 | 4.02 ± 0.03 | 4.08 ± 0.01 | 4.03 ± 0.02 |
J | 0.88 ± 0.01 | 0.88 ± 0.00 | 0.88 ± 0.01 | 0.88 ± 0.00 | 0.89 ± 0.00 | 0.88 ± 0.00 | 0.89 ± 0.01 | 0.88 ± 0.01 | 0.89 ± 0.00 | 0.88 ± 0.00 |
P/A | 2.80 ± 0.18 | 2.42 ± 0.10 | 2.80 ± 0.18 | 2.84 ± 0.18 | 2.92 ± 0.18 | 2.42 b ± 0.10 | 2.42 b ± 0.10 | 2.62 b ± 0.23 | 3.50 a ± 0.25 | 3.45 a ± 0.26 |
Fungi | ||||||||||
R | 73.6 ± 4.78 | 80.17 ± 0.91 | 73.60 c ± 4.78 | 84.53 a ± 1.07 | 79.33 b ± 0.72 | 80.17 ± 0.91 | 83.00 ± 2.29 | 80.17 ± 1.11 | 83.50 ± 2.16 | 82.83 ± 2.07 |
H | 2.85 ± 0.13 | 3.03 ± 0.12 | 2.85 ± 0.13 | 2.97 ± 0.05 | 2.86 ± 0.07 | 3.03 ± 0.12 | 2.89 ± 0.11 | 2.89 ± 0.05 | 2.90 ± 0.08 | 2.86 ± 0.14 |
J | 0.66 ± 0.02 | 0.69 ± 0.03 | 0.66 ± 0.02 | 0.67 ± 0.01 | 0.65 ± 0.01 | 0.69 ± 0.03 | 0.65 ± 0.02 | 0.66 ± 0.01 | 0.66 ± 0.02 | 0.65 ± 0.03 |
Nematodes | ||||||||||
R | 7.40 ± 0.40 | 6.50 ± 0.22 | 7.40 ± 0.40 | 6.47 ± 0.24 | 6.73 ± 0.25 | 6.50 ± 0.22 | 6.83 ± 0.31 | 6.67 ± 0.33 | 6.17 ± 0.40 | 6.83 ± 0.60 |
H | 1.13 b ± 0.10 | 1.67 a ± 0.03 | 1.13 b ± 0.10 | 1.62 a ± 0.04 | 1.69 a ± 0.06 | 1.67 ± 0.03 | 1.65 ± 0.12 | 1.66 ± 0.05 | 1.59 ± 0.06 | 1.71 ± 0.10 |
J | 0.42 b ± 0.02 | 0.82 a ± 0.02 | 0.42 b ± 0.02 | 0.80 a ± 0.02 | 0.82 a ± 0.04 | 0.82 ± 0.02 | 0.79 ± 0.08 | 0.80 ± 0.04 | 0.81 ± 0.03 | 0.83 ± 0.05 |
MI | 1.22 b ± 0.04 | 2.40 a ± 0.14 | 1.22 b ± 0.04 | 2.23 a ± 0.07 | 2.32 a ± 0.04 | 2.43 ± 0.14 | 2.17 ± 0.05 | 2.32 ± 0.05 | 2.28 ± 0.10 | 2.17 ± 0.06 |
PPI | 2.92 ± 0.11 | 2.33 ± 0.49 | 2.92 ± 0.11 | 2.80 ± 0.20 | 3.00 ± 0.08 | 2.33 ± 0.49 | 3.03 ± 0.03 | 3.08 ± 0.07 | 3.08 ± 0.08 | 2.97 ± 0.03 |
BI | 11.20 ± 3.75 | 22.13 ± 6.31 | 11.20 b ± 3.75 | 18.51 b ± 2.29 | 30.51 a ± 4.08 | 22.13 ± 6.31 | 27.73 ± 3.83 | 33.33 ± 7.38 | 18.93 ± 4.57 | 20.40 ± 5.60 |
EI | 96.52 a ± 0.94 | 52.43 b ± 9.44 | 96.52 a ± 0.94 | 68.60 b ± 2.94 | 42.38 c ± 4.66 | 52.43 ± 0.44 | 51.55 ± 5.86 | 51.87 ± 5.33 | 50.62 ± 11.31 | 70.98 ± 6.68 |
SI | 48.94 b ± 5.00 | 64.80 a ± 3.89 | 48.94 b ± 5.00 | 66.19 a ± 2.80 | 58.04ab ± 2.35 | 64.80 ± 3.89 | 52.57 ± 3.55 | 61.22 ± 4.88 | 62.92 ± 2.92 | 69.08 ± 4.52 |
CI | 2.84 b ± 0.93 | 36.28 a ± 10.82 | 2.84 b ± 0.93 | 13.15 b ± 2.75 | 46.23 a ± 5.82 | 36.28 ± 10.82 | 30.70 ± 6.64 | 34.55 ± 6.46 | 29.06 ± 16.32 | 17.87 ± 7.25 |
Microarthr. | ||||||||||
R | 5.80 ± 0.20 | 6.33 ± 0.84 | 5.80 ± 0.20 | 6.53 ± 0.46 | 6.53 ± 0.40 | 6.33 ± 0.84 | 6.33 ± 0.61 | 6.67 ± 0.56 | 5.50 ± 0.72 | 7.83 ± 0.31 |
H | 0.99 ± 0.04 | 1.16 ± 0.09 | 0.99 ± 0.04 | 1.15 ± 0.06 | 1.06 ± 0.06 | 1.16 ± 0.09 | 1.14 ± 0.12 | 1.01 ± 0.10 | 1.17 ± 0.09 | 1.05 ± 0.04 |
J | 0.52 ± 0.03 | 0.53 ± 0.04 | 0.52 ± 0.03 | 0.53 ± 0.04 | 0.47 ± 0.04 | 0.53 ± 0.04 | 0.53 ± 0.07 | 0.45 ± 0.08 | 0.62 ± 0.05 | 0.37 ± 0.03 |
QBS-ar | 69.40 ± 3.11 | 92.83 ± 10.15 | 69.40 ± 3.11 | 87.07 ± 6.11 | 92.67 ± 5.31 | 92.83 ± 10.15 | 87.17 ± 7.88 | 85.17 ± 7.17 | 74.33 ± 8.50 | 109.83 ± 6.49 |
Subnetwork | ST 2017 | GM 2020 | PCC 2020 |
---|---|---|---|
Bacteria | 0.84 | 0.86 | 0.91 |
Fungi | 0.94 | 0.89 | 0.96 |
Nematodes | 0.18 | 0.19 | 0.20 |
Microarthropods | 0.19 | 0.22 | 0.24 |
Subnetwork | Trophic Level Retrieved | ST 2017 | GM 2020 | PCC 2020 |
---|---|---|---|---|
Bacteria | Fungi | 92 | 87 (−5%) | 95 (+3%) |
Nematodes | 16 | 11 (−31%) | 14 (−13%) | |
Microarthropods | 8 | 14 (+75%) | 14 (+75%) | |
Fungi | Bacteria | 93 | 89 (−4%) | 94 (+1%) |
Nematodes | 14 | 14 (+0%) | 16 (+14%) | |
Microarthropods | 19 | 15 (−21%) | 18 (−5%) | |
Nematodes | Bacteria | 29 | 31 (+7%) | 25 (−14%) |
Fungi | 23 | 24 (+4%) | 28 (+22%) | |
Microarthropods | 2 | 5 (+150%) | 6 (+200%) | |
Microarthropods | Bacteria | 10 | 22 (+120%) | 25 (+150%) |
Fungi | 18 | 32 (+78%) | 34 (+89%) | |
Nematodes | 1 | 10 (+900%) | 4 (+300%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Duca, S.; Mocali, S.; Vitali, F.; Fabiani, A.; Cucu, M.A.; Valboa, G.; d’Errico, G.; Binazzi, F.; Storchi, P.; Perria, R.; et al. Impacts of Soil Management and Sustainable Plant Protection Strategies on Soil Biodiversity in a Sangiovese Vineyard. Land 2024, 13, 599. https://doi.org/10.3390/land13050599
Del Duca S, Mocali S, Vitali F, Fabiani A, Cucu MA, Valboa G, d’Errico G, Binazzi F, Storchi P, Perria R, et al. Impacts of Soil Management and Sustainable Plant Protection Strategies on Soil Biodiversity in a Sangiovese Vineyard. Land. 2024; 13(5):599. https://doi.org/10.3390/land13050599
Chicago/Turabian StyleDel Duca, Sara, Stefano Mocali, Francesco Vitali, Arturo Fabiani, Maria Alexandra Cucu, Giuseppe Valboa, Giada d’Errico, Francesco Binazzi, Paolo Storchi, Rita Perria, and et al. 2024. "Impacts of Soil Management and Sustainable Plant Protection Strategies on Soil Biodiversity in a Sangiovese Vineyard" Land 13, no. 5: 599. https://doi.org/10.3390/land13050599