Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- The unimodal rainfall region covers the western and southwestern parts (one wet period November-December-January-February-March-April (NDJFMA)) and
- The bimodal rainfall region includes the eastern and northeastern part of the basin (two wet periods, October-November-December (OND), and March-April-May (MAM)).
2.2. Data Acquisitions and Preparation
2.3. Classification and Change Detection
3. Results
3.1. Accuracy Assessment
3.2. Upstream Sub-Catchment (Kinyasungwe)
3.3. Downstream Sub-Catchment (Wami)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rawart, J.S.; Biswas, V.; Kumar, M. Changes in land use/cover using geospatial techniques: A case study of Ramnagar town area, district Nainital, Uttarakhand, India. Egypt. J. Remote Sens. Space Sci. 2013, 16, 111–117. [Google Scholar] [Green Version]
- Kumar, M.; Arup, D.; Richa, S.; Supratik, S. Change detection analysis using multi-temporal satellite data of Poba reserve forest, Assam and Arunachal Pradesh. Int. J. Geomat. Geosci. 2014, 4, 517–527. [Google Scholar]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.M.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Emiru, B.; Ashfare, H.; Fenta, A.A.; Hishe, H.; Gebremedhin, M.A.; Wahed, H.G.; Solomon, N. Land use land cover changes along topographic gradients in Hugumburda national forest priority area, Northern Ethiopia. Remote Sens. Appl. Soc. Environ. 2018, 13, 61–68. [Google Scholar]
- Sankhala, S.; Singh, B. Evaluation of urban sprawl and land use/land cover change using remote sensing and GIS techniques: A case study of Jaipur City, India. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 66–72. [Google Scholar]
- Hegazy, I.R.; Mosbeh, R.K. Monitoring urban growth and land use change detection with GIS and remote sensing technique in Daqahlia governorate Egypt. Int. J. Sustain. Built Environ. 2015, 4, 117–124. [Google Scholar] [CrossRef]
- Chomitz, K.M.; Kamari, K. The domestic benefits of tropical forests. World Bank Res. Obs. 1998, 13, 13–35. [Google Scholar] [PubMed]
- Bruijnzeel, L.A. Hydrological functions of tropical forests: Not seeing the soil for the trees? Agric. Ecosyst. Environ. 2004, 104, 185–228. [Google Scholar] [CrossRef]
- Cheruto, M.C.; Kauti, M.K.; Kisangau, P.D.; Kariuki, P. Assessment of land use and land cover change using GIS and remote sensing techniques: A case study of Makueni County, Kenya. J. Remote Sens. GIS 2016, 5, 175. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Minale, A.S. Retrospective analysis of land cover and use dynamics in Gilgel Abbay Watershed using GIS and remote sensing technique, Northwestern Ethiopia. Int. J. Geosci. 2013, 4, 1003–1008. [Google Scholar]
- Meshesha, T.W.; Tripathi, S.K.; Khare, D.M. Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Model. Earth Syst. Environ. 2016, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Adeel, M. Methodology for identifying urban growth potential using land use and population data: A case study of Islamabad Zone IV. Procedia Environ. Sci. 2010, 2, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Rawart, J.S.; Kumar, M. Monitoring land use/cover change using remote sensing and GIS techniques: A case of Hawallbagh block, district Almora, Utterkland, India. Egypt. J. Remote Sens. Space Sci. 2015, 18, 77–84. [Google Scholar]
- Weng, Q. A remote sensing-GIS evaluation of urban expansion and its impacts on the temperature in the Zhujiang Delta, China. Int. J. Remote Sens. 2001, 22, 1999–2014. [Google Scholar]
- Hassan, Z.; Rabia, S.; Sheikh, A.; Amir, H.M.; Neelam, A.; Amna, B.; Summra, E. Dynamics of land use and land cover change (LULCC) using geospatial techniques: A case study of Islamabad Pakistan. SpringerPlus 2016, 5, 812. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Fang, H.; Morisette, J.T.; Chen, M.; Shuey, C.J.; Walthall, C.L.; Daughtry, C.S. Atmospheric correction of Landsat ETM+ Land surface imagery. II. Validation and applications. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2736–2746. [Google Scholar] [CrossRef]
- Ayele, G.T.; Demessie, S.S.; Mengistu, K.T.; Tilahun, S.A.; Melesse, A.M. Multitemporal land use/land cover change detection for the Batena Watershed, Rift Valley Lakes Basin, Ethiopia. In Landscape Dynamics, Soils and Hydrological Processes in Varied Climates; Springer: Berlin, Germany, 2016; pp. 51–72. [Google Scholar]
- Lambin, E.F.; Geist, H.J. Global land-use and land-cover change: What have we learned so far. Glob. Chang. Newsl. 2001, 46, 27–30. [Google Scholar]
- Woldeamlak, B. Land covers dynamics since the 1950s in Chemoga Watershed, Blue Nile Basin, Ethiopia. Mt. Res. Dev. 2002, 22, 263–269. [Google Scholar]
- Ginblett, R. Modelling human-landscape interactions in spatially complex settings: Where are we and where are we going? In Proceedings of the MODISM05, Melbourne, Australia, 12–15 December 2005; pp. 11–20. [Google Scholar]
- Alemayehu, F.; Taha, N.; Nyssen, J.; Girma, A.; Zenebe, A.; Behailu, M.; Deckers, S.; Poesen, J. The impacts of watershed management on land use and land cover dynamics in eastern Tigray (Ethiopia). Resour. Conserv. Recycl. 2009, 53, 192–198. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Saxena, A. Change Detection of Land Use/Landcover Pattern in an Around Mandideep and Obedullaganj Area, using Remote Sensing and GIS. Int. J. Technol. Eng. Syst. 2011, 2, 398–402. [Google Scholar]
- Bakr, N.; Weindorf, D.C.; Bahnassy, M.H.; Marei, S.M.; EI-Badawi, M.M. Monitoring land use changes in the newly reclaimed area of Egypt using multi-temporal Landsat data. Appl. Geogr. 2010, 30, 592–605. [Google Scholar] [CrossRef]
- Abd EI-Kway, O.R.A.; Rod, J.K.; Ismail, H.A.; Suliman, S. Land use land cover change detection in western Nile delta of Egypt using remote sensing data. Appl. Geogr. 2011, 31, 483–494. [Google Scholar]
- Thakkar, A.M.; Venkappayya, R.D.; Ajay, P.; Madhukar, B.P. Post-classification corrections in improving the classification of land use/land cover of the arid region using RS and GIS: The case of Arjuna watershed, Gujarat, India. Egypt. J. Rem. Sens. Space Sci. 2017, 20, 79–89. [Google Scholar] [CrossRef]
- El Gammal, E.A.; Salem, S.M.; El Gammal, A.E.A. Change detection studies on the world’s biggest artificial lake (Lake Nasser, Egypt). Egypt. J. Remote Sens. Space Sci. 2010, 13, 89–99. [Google Scholar] [CrossRef]
- Mahmoud, A.; Samy, E.; Biswajeet, P.; Buchroithner, M.F. Field-based land-cover classification using TerraSAR-X texture analysis. Adv. Space Res. 2011, 48, 799–805. [Google Scholar] [CrossRef]
- Akinyemi, F.O. Land change in the central Albertine rift: Insights from analysis and mapping of land use-land cover change in north-western Rwanda. Appl. Geogr. 2017, 87, 127–138. [Google Scholar] [CrossRef]
- Soergel, U. Review of radar remote sensing on Urban Areas. In Radar Remote Sensing of Urban Areas; Springer: New York, NY, USA, 2010. [Google Scholar]
- Dewan, A.; Corner, R. Dhaka Megacity: Geospatial Perspectives on Urbanisation, Environment and Health; Springer Science & Business Media: Berlin, Germany, 2014. [Google Scholar]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [Google Scholar] [CrossRef]
- Lu, D.; Moran, E.; Hetrick, S.; Li, G. Land-use and land-cover change detection. In Advances in Environmental Remote Sensing: Sensors, Algorithms and Applications; Weng, Q., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 273–291. [Google Scholar]
- Mesev, V. Integration of GIS and Remote Sensing; Wiley: Chichester, UK, 2007. [Google Scholar]
- Attri, P.; Chaudhry, S.; Sharma, S. Remote Sensing and GIS based Approac for LULC Change Detection—A Review. Int. J. Curr. Eng. Technol. 2015, 5, 3126–3137. [Google Scholar]
- Chen, X.; Vierling, L.; Deering, D. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sens. Environ. 2005, 98, 63–79. [Google Scholar] [CrossRef]
- Nuñez, M.N.; Ciapessoni, H.H.; Rolla, A.; Kalnay, E.; Cai, M. Impact of land use and precipitation changes on surface temperature trends in Argentina. J. Geophys. Res. 2008. [Google Scholar] [CrossRef]
- Rahman, A.; Kumar, S.; Fazal, S.; Siddiqui, M.A. Assessment of land use/land cover change in the North-West District of Delhi using remote sensing and GIS techniques. J. Indian Soc. Remote Sens. 2011, 40, 689–697. [Google Scholar] [CrossRef]
- Hathout, S. The use of GIS for monitoring and predicting urban growth in East and West St Paul, Winnipeg, Manitoba, Canada. J. Environ. Manag. 2002, 66, 229–238. [Google Scholar] [CrossRef]
- Lambin, E.F.; Geist, H.; Lepers, E. Dynamics of land use and cover change in tropical regions. Annu. Rev. Environ. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef]
- Poyatos, R.; Latron, J.; Llorens, P. Land-use/land-cover change after farmland abandonment—The case of a Mediterranean mountain area (Catalan Pre-Pyrenees). Mt. Res. Dev. 2003, 23, 362–368. [Google Scholar] [CrossRef]
- Herold, M.; Goldstein, N.C.; Clarke, K.C. The spatiotemporal form of urban growth measurement, analysis and modelling. Remote Sens. Environ. 2003, 86, 286–302. [Google Scholar] [CrossRef]
- Serra, P.; Pons, X.; Saurí, D. Land-cover/land-use change in a Mediterranean landscape: A spatial analysis of driving forces integrating biophysical and human factors. Appl. Geogr. 2008, 28, 189–209. [Google Scholar] [CrossRef]
- López-Granados, E.; Mendoza, M.E.; González, D.I. Linking geomorphologic knowledge, RS and GIS techniques for analysing land cover and land use change: A multitemporal study in the Cointzio watershed, Mexico. An Interdiscip. J. Appl. Sci. 2013, 8, 18–37. [Google Scholar]
- Hazarika, N.; Da, A.K.; Borah, S.B. Assessing land-use changes driven by river dynamics in chronically flooding affected Upper Brahmaputra plains, India, using RS-GIS techniques. Egypt. J. Remote Sens. Space Sci. 2015, 18, 107–118. [Google Scholar]
- Selcuk, R.; Nisanci, R.; Uzun, B.; Yalcin, A.; Inan, H.; Yomralioglu, T. Monitoring land-use changes by GIS and remote sensing techniques: Case study of Trabzon. In Proceedings of the 2nd FIG Regional Conference, Marrakech, Morocco, 2–3 December 2003. [Google Scholar]
- FAO. Sustaining Communities, Livestock and Wildlife; FAO: Rome, Italy, 2009. [Google Scholar]
- Wei, H.; Qiping, G.; Wang, H.; Hong, J. Simulating land use change in urban renewal areas: A case study in Hong Kong. Habitat Int. 2015, 46, 23–34. [Google Scholar] [Green Version]
- Veldkamp, A.; Verburg, P.H. Modelling land use change and environmental impact. J. Environ. Manag. 2004, 72, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Kasischke, E.S.; Goetz, S.; Hansen, M.C.; Ustin, O.M.; Rogan, J.; Ustin, S.L.; Woodcovk, C.E. Temperature and boreal forests. In Remote Sensing for Natural Resource Management and Environmental Monitoring; Uston, S.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; pp. 147–238. [Google Scholar]
- Wambura, F.J.; Ottfried, D.; Gunnar, L. Evaluation of spatio-temporal patterns of remotely sensed evapotranspiration to infer information about hydrological behaviour in a data-scarce region. Water 2017, 9, 333. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency (JICA). The Study on Water Resources Management and Development in Wami/Ruvu Basin in the United Republic of Tanzania (RUWASA-CAD); Project: Report Ministry of Water and Livestock Development (2002); National Water Policy: Dodoma, Tanzania, 2013.
- Mas, J. Monitoring land-cover changes: A comparison of change detection techniques. Int. J. Remote Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Xiao, H.; Weng, Q. The impact of land use and land cover changes on land surface temperature in a karst area of China. J. Environ. Manag. 2007, 85, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.; Alvarez, R. TM digital processing of a tropical forest region in southern Mexico. Int. J. Remote Sens. 1994, 15, 1611–1632. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Y. Determination of land degradation causes in Tongyu County, Northeast China via land cover change detection. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 9–16. [Google Scholar] [CrossRef]
- Bolstad, P.V.; Lillesand, T.D. Rapid maximum likelihood classification. Photogramm. Eng. Remote Sens. 1991, 57, 67–74. [Google Scholar]
- Harris, P.M.; Ventura, S.J. The integration of geographic data with remotely sensed imagery to improve classification in an urban area. Photogramm. Eng. Remote Sens. 1995, 61, 993–998. [Google Scholar]
- Owojori, A.; Xie, H. Landsat image-based LULC changes of San Antonio, Texas using advanced atmospheric correction and object-oriented image analysis approaches. In Proceedings of the 5th International Symposium on Remote Sensing of Urban Areas, Tempe, AZ, USA, 14–16 March 2005. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Rosenfield, G.H.; Fitzpatirck-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; Geological Survey Professional Paper 964; US Government Printing Office: Washington, DC, USA, 1976.
- Kashaigili, J.J.; Majaliwa, A.M. Integrated assessment of land use and cover changes in the Malagarasi river catchment in Tanzania. Phys. Chem. Earth Parts A B C 2010, 35, 730–741. [Google Scholar] [CrossRef]
- IUCN. Rapid Environmental Appraisal of Developments in and Around Murree Hills; IUCN Pakistan: Karachi City, Pakistan, 2005. [Google Scholar]
- Tanvir, A.; Shahbaz, B.; Suleri, A. Analysis of myths and realities of deforestation in northwest Pakistan: Implications for forestry extension. Int. J. Agric. Biol. 2006, 8, 107–110. [Google Scholar]
- Butt, A.; Rabia, S.; Sheikh, S.A.; Neelam, A. Land use change mapping and analysis using remote sensing and GIS: A case study of Simly watershed, Islamabad, Pakistan. Egypt. J. Remote Sens. Space Sci. 2015, 18, 251–259. [Google Scholar] [CrossRef]
- Wasige, J.E.; Groen, T.A.; Smaling, E.; Jetten, V. Monitoring basin-scale land cover changes in Kagera Basin of Lake Victoria using ancillary data and remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 32–42. [Google Scholar] [CrossRef]
- Al-Faraj, F.A.; Scholz, M. Impact of upstream anthropogenic river regulation on downstream water availability in transboundary river watersheds. Int. J. Water Resour. Dev. 2015, 31, 28–49. [Google Scholar] [CrossRef]
- Drieschova, A.; Giordano, M.; Fischhendler, I. Governance mechanisms to address flow variability in water treaties. Glob. Environ. Chang. 2008, 18, 285–295. [Google Scholar] [CrossRef]
- Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.; Doll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; et al. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nat. Commun. 2017, 8, 15697. [Google Scholar] [CrossRef] [PubMed]
Year | Satellite | Sensor | Path/Row | Resolution (m) | Acquisition Date | Cloud Cover |
---|---|---|---|---|---|---|
2000 | Landsat 5 | TM | 166/64 | 30 | 8 July 2000 | 17% (not in the study area) |
Landsat 7 | ETM | 167/64 | 30 | 7 July 2000 | 5% | |
Landsat 7 | ETM | 167/65 | 30 | 7 July 2000 | 2% | |
Landsat 7 | ETM | 168/64 | 30 | 16 September 2000 | 0% | |
Landsat 7 | ETM | 168/65 | 30 | 16 September 2000 | 7% | |
2006/2007 | Landsat 7 | ETM | 166/64 | 30 | 23 February 2006 | 5% |
Landsat 5 | TM | 167/64 | 30 | 24 January 2007 | 2% | |
Landsat 5 | TM | 167/65 | 30 | 24 January 2007 | 5% | |
Landsat 7 | ETM | 168/64 | 30 | 17 September 2006 | 0% | |
Landsat 7 | ETM | 168/65 | 30 | 17 September 2006 | 3% | |
2011 | Landsat 5 | TM | 166/64 | 30 | 7 July 2011 | 10% (not in the study area) |
Landsat 7 | ETM | 167/64 | 30 | 26 October 2011 | 4% | |
Landsat 7 | ETM | 167/65 | 30 | 6 July 2011 | 1% | |
Landsat 7 | ETM | 168/64 | 30 | 11 June 2011 | 11% (not in the study area) | |
Landsat 7 | ETM | 168/65 | 30 | 5 July 2011 | 5% | |
2016 | Landsat 8 | OLI | 166/64 | 30 | 4 July 2016 | 10% (not in the study area) |
Landsat 8 | OLI | 167/64 | 30 | 24 May 2016 | 6% | |
Landsat 8 | OLI | 167/65 | 30 | 24 May 2016 | 4% | |
Landsat 8 | OLI | 168/64 | 30 | 16 June 2016 | 0% | |
Landsat 8 | OLI | 168/65 | 30 | 16 June 2016 | 1% |
Class | Descriptions |
---|---|
Bushland | Mainly comprised of plants that are multi-stemmed from a single root base. |
Woodland | An assemblage of trees with canopy ranging from 20% to 80% but which may, or rare occasions, is closed entirely. |
Swamp | The low-lying, uncultivated ground where water collects; a bog or marsh. |
Cultivated land | Crop fields and fallow lands. |
Settlement area | Residential, commercial, industry, transportation, roads, mixed urban. |
Grassland | Mainly composed of grass. |
Forest | The continuous stand of trees, many of which may attain a height of 50 m including natural forest, mangrove and plantation forest. |
Water | River, open water, lakes, ponds and reservoirs. |
Open land | The land area of exposed soil and barren area influenced by a human. |
Airfield | Area of the plot set aside for the take-off, landing and maintenance of aircraft. |
2000 | 2006 | 2011 | 2016 | |||||
---|---|---|---|---|---|---|---|---|
LULC | PA | UA | PA | UA | PA | UA | PA | UA |
Bushland | 99.53 | 95.33 | 100 | 93.26 | 99.10 | 93.41 | 99.28 | 76.56 |
Woodland | 98.87 | 98.94 | 99.85 | 96.35 | 100 | 96.62 | 98.15 | 91.89 |
Swamp | 90.33 | 93.61 | 86.06 | 90.42 | 92.29 | 90.39 | 77.54 | 81.21 |
Cultivated land | 70.02 | 95.41 | 54.82 | 97.01 | 76.30 | 97.40 | 76.32 | 96.42 |
Settlement area | 77.87 | 100 | 84.62 | 100 | 90.39 | 100 | 50.45 | 100 |
Grassland | 97.61 | 98.54 | 100 | 95.63 | 98.71 | 95.96 | 98.31 | 78.65 |
Water | 70.15 | 95.67 | 91.17 | 98.56 | 41.72 | 100 | 32.95 | 95.01 |
Forest | 100 | 87.10 | 100 | 93.88 | 100 | 93.87 | 100 | 50.97 |
Open land | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Overall | 97.81 | 96.93 | 97.26 | 91.69 | ||||
Kappa | 0.90 | 0.88 | 0.93 | 0.95 |
2000 | 2006 | 2011 | 2016 | |||||
---|---|---|---|---|---|---|---|---|
LULC | PA | UA | PA | UA | PA | UA | PA | UA |
Bushland | 100 | 80.25 | 100 | 84.71 | 100 | 80.65 | 100 | 72.87 |
Woodland | 93.89 | 92.61 | 97.50 | 96.93 | 86.95 | 93.80 | 85.84 | 89.74 |
Swamp | 95.49 | 90.21 | 99.37 | 95.26 | 97.16 | 89.91 | 96.13 | 8126 |
Cultivated land | 97.07 | 93.91 | 100 | 97.51 | 95.36 | 97.78 | 94.72 | 81.59 |
Settlement area | 100 | 77.87 | 100 | 87.60 | 100 | 64.68 | 100 | 60.73 |
Grassland | 74.42 | 85.81 | 79.78 | 100 | 63.24 | 99.65 | 71.44 | 97.49 |
Water | 70.01 | 100 | 68.22 | 100 | 34.92 | 100.22 | 11.82 | 100. |
Forest | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Open land | 85.68 | 89.74 | 81.38 | 86.37 | 79.96 | 89.34 | 76.93 | 90.65 |
Overall | 97.33 | 97.67 | 94.92 | 91.25 | ||||
Kappa | 0.88 | 0.89 | 0.79 | 0.76 |
Year | 2000 | 2006 | 2011 | 2016 | ||||
---|---|---|---|---|---|---|---|---|
LULC (Area) | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % |
Bushland | 5643.63 | 33.67 | 4940.49 | 29.47 | 4646.94 | 27.72 | 4320.24 | 25.77 |
Woodland | 5062.27 | 30.2 | 4934.55 | 29.44 | 4770.86 | 28.46 | 4705.63 | 28.07 |
Swamp | 710.45 | 4.24 | 796.38 | 4.75 | 775.95 | 4.63 | 754.23 | 4.50 |
Cultivated land | 1408.16 | 8.4 | 2621.27 | 15.64 | 3210.88 | 19.16 | 3763.79 | 22.45 |
Settlement area | 82.43 | 0.49 | 97.77 | 0.58 | 108.34 | 0.65 | 169.11 | 1.01 |
Grassland | 3708.05 | 22.12 | 3279.77 | 19.57 | 3168.52 | 18.9 | 2965.09 | 17.69 |
Water | 30.36 | 0.18 | 20.53 | 0.12 | 13.88 | 0.08 | 24.96 | 0.15 |
Forest | 114.58 | 0.68 | 69.18 | 0.41 | 64.58 | 0.39 | 56.89 | 0.34 |
Open land | 1.35 | 0.01 | 1.35 | 0.01 | 1.35 | 0.01 | 1.35 | 0.01 |
Airfield | 0.39 | 0.01 | 0.39 | 0.001 | 0.39 | 0.001 | 0.39 | 0.01 |
Total | 16,762 | 100 | 16,762 | 100 | 16,762 | 100 | 16,762 | 100 |
Year | 2000–2006 | 2006–2011 | 2011–2016 | 2000–2016 | ||||
---|---|---|---|---|---|---|---|---|
LULC Change | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % |
Bushland | −703.14 | −4.2 | −293.55 | −1.75 | −326.7 | −1.95 | −1323.39 | −7.9 |
Woodland | −127.72 | −0.76 | −163.69 | −0.98 | −65.23 | −0.39 | −356.64 | −2.13 |
Swamp | +85.93 | +0.51 | −20.43 | −0.12 | −21.72 | −0.13 | 43.78 | 0.26 |
Cultivated land | +1213.11 | +7.24 | +589.61 | +3.52 | +552.91 | +3.29 | 2355.63 | 14.05 |
Settlement area | +15.34 | +0.09 | +10.57 | +0.07 | +60.77 | +0.36 | 86.68 | 0.52 |
Grassland | −428.28 | −2.55 | −111.25 | +0.67 | −203.43 | −1.21 | −742.96 | −4.43 |
Water | −9.83 | −0.06 | −6.65 | −0.04 | +11.08 | +0.07 | −5.4 | −0.03 |
Forest | −45.4 | −0.27 | −4.6 | −0.02 | −7.69 | −0.05 | −57.69 | −0.34 |
LULC | Unit | BL | WL | SWP | CL | SA | GL | WT | FR |
---|---|---|---|---|---|---|---|---|---|
BL | (km2) | 4289.16 | 0 | 56.43 | 1298.03 | 0 | 0 | 0 | 0 |
% | 76 | 0 | 1 | 23 | 0 | 0 | 0 | 0 | |
WL | (km2) | 0 | 4606.67 | 50.63 | 404.98 | 0 | 0 | 0 | 0 |
% | 0 | 91 | 1 | 8 | 0 | 0 | 0 | 0 | |
SWP | (km2) | 7.10 | 28.42 | 575.46 | 42.63 | 0 | 49.73 | 7.10 | 0 |
% | 1 | 4 | 81 | 6 | 0 | 7 | 1 | 0 | |
CL | (km2) | 14.08 | 0 | 14.08 | 1351.83 | 28.16 | 0 | 0 | 0 |
% | 1 | 0 | 1 | 96 | 2 | 0 | 0 | 0 | |
SA | (km2) | 0 | 0 | 0 | 0 | 82.43 | 0 | 0 | 0 |
% | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
GL | (km2) | 0 | 0 | 74.16 | 667.45 | 37.08 | 2892.28 | 0 | 0 |
% | 0 | 0 | 2 | 18 | 1 | 78 | 0 | 0 | |
WT | (km2) | 0 | 0.30 | 19.73 | 0.60 | 0 | 0 | 9.72 | 0 |
% | 0 | 1 | 65 | 2 | 0 | 0 | 32 | 0 | |
FR | (km2) | 2.29 | 48.12 | 0 | 1.15 | 0 | 5.73 | 0 | 57.29 |
% | 2 | 42 | 0 | 1 | 0 | 5 | 0 | 50 |
Year | 2000 | 2006 | 2011 | 2016 | ||||
---|---|---|---|---|---|---|---|---|
LULC | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % |
Bushland | 2336.81 | 16.21 | 1970.88 | 13.67 | 1870.67 | 12.98 | 1685.75 | 11.69 |
Woodland | 8917.01 | 61.86 | 8621.68 | 59.81 | 8208.92 | 56.94 | 7511.02 | 52.10 |
Swamp | 287.36 | 1.99 | 285.53 | 1.98 | 310.24 | 2.15 | 301.23 | 2.09 |
Cultivated land | 1178.31 | 8.17 | 1989.03 | 13.8 | 2679.33 | 18.59 | 3655.96 | 25.36 |
Settlement area | 7.71 | 0.05 | 11.28 | 0.08 | 22.73 | 0.16 | 68.86 | 0.48 |
Grassland | 621.12 | 4.31 | 604.55 | 4.19 | 632.79 | 4.39 | 532.34 | 3.69 |
Water | 22 | 0.16 | 23.34 | 0.17 | 24.74 | 0.17 | 26.05 | 0.18 |
Forest | 1038.78 | 7.21 | 902.8 | 6.26 | 660.14 | 4.58 | 627.88 | 4.36 |
Open land | 6.32 | 0.04 | 6.32 | 0.04 | 6.32 | 0.04 | 6.32 | 0.01 |
Total | 14,415 | 100 | 14,415 | 100 | 14,415 | 100 | 14,415 | 100 |
Year | 2000–2006 | 2006–2011 | 2011–2016 | 2000–2016 | ||||
---|---|---|---|---|---|---|---|---|
LULC Change | Area (km2) | % | Area (km2) | % | Area (km2) | % | Area (km2) | % |
Bushland | −365.93 | −2.54 | −100 | −0.69 | −184.92 | −1.29 | −651.06 | −4.52 |
Woodland | −295.33 | −2.05 | −412.76 | −2.87 | −697.90 | −4.84 | −1405.99 | −9.76 |
Swamp | −1.83 | −0.01 | +24.71 | +0.17 | −9.01 | −0.06 | +13.87 | +0.1 |
Cultivated land | +810.72 | +5.63 | +690.30 | +4.79 | +977.09 | +6.77 | +2477.65 | +17.19 |
Settlement area | +3.57 | +0.03 | +11.45 | +0.08 | +46.13 | +0.33 | +61.15 | +0.43 |
Grassland | −16.57 | −0.12 | +28.24 | +0.20 | −100.45 | −0.70 | −88.78 | −0.62 |
Water | +1.34 | +0.01 | +1.40 | +0.01 | +1.31 | +0.01 | +4.05 | +0.02 |
Forest | −135.98 | −0.95 | −242.66 | −1.68 | −32.26 | −0.22 | −410.9 | −2.85 |
LULC | Unit | BL | WL | SWP | CL | SA | GL | WT | FR |
---|---|---|---|---|---|---|---|---|---|
BL | (km2) | 1682.50 | 0 | 0 | 630.94 | 23.37 | 0 | 0 | 0 |
% | 72 | 0 | 0 | 27 | 1 | 0 | 0 | 0 | |
WL | (km2) | 0 | 7311.95 | 0 | 1605.06 | 0 | 0 | 0 | 0 |
% | 0 | 82 | 0 | 18 | 0 | 0 | 0 | 0 | |
SWP | (km2) | 0 | 2.87 | 255.75 | 28.74 | 0 | 0 | 0 | 0 |
% | 0 | 1 | 89 | 10 | 0 | 0 | 0 | 0 | |
CL | (km2) | 0 | 0 | 0 | 1142.96 | 35.35 | 0 | 0 | 0 |
% | 0 | 0 | 0 | 97 | 3 | 0 | 0 | 0 | |
SA | (km2) | 0 | 0 | 0 | 0 | 7.71 | 0 | 0 | 0 |
% | 0 | 0 | 0 | 0 | 100 | 0 | 0 | 0 | |
GL | (km2) | 0 | 0 | 6.21 | 111.80 | 0 | 503.11 | 0 | 0 |
% | 0 | 0 | 1 | 18 | 0 | 81 | 0 | 0 | |
WT | (km2) | 0.44 | 0.44 | 1.32 | 0 | 0 | 0 | 19.8 | 0 |
% | 2 | 2 | 6 | 0 | 0 | 0 | 90 | 0 | |
FR | (km2) | 0 | 270.08 | 0 | 114.27 | 0 | 31.16 | 0 | 623.27 |
% | 0 | 26 | 0 | 11 | 0 | 3 | 0 | 60 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Twisa, S.; Buchroithner, M.F. Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania. Land 2019, 8, 136. https://doi.org/10.3390/land8090136
Twisa S, Buchroithner MF. Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania. Land. 2019; 8(9):136. https://doi.org/10.3390/land8090136
Chicago/Turabian StyleTwisa, Sekela, and Manfred F. Buchroithner. 2019. "Land-Use and Land-Cover (LULC) Change Detection in Wami River Basin, Tanzania" Land 8, no. 9: 136. https://doi.org/10.3390/land8090136