Autoantibodies in SLE: Specificities, Isotypes and Receptors
Abstract
:1. Introduction
2. Why Are the Autoantibodies Produced?
3. Autoantibody Specificities: An Antigenic Detonation
3.1. Common Antigens
Autoantibody specificity | Prevalence (%) | Ref. | Isotype | Diagnostic marker (SLICC) | Association with disease activity | Pathogenesis involvement | Ref. |
---|---|---|---|---|---|---|---|
ANA | 95 | [7] | IgG | yes | no | Autoimmune disease | [53] |
34 | [54] | IgA | no | no | cutaneous lupus | [55] | |
dsDNA | 60–90 | [56] | IgG | yes | yes | nephritis, skin and cerebral lupus | [57,58,59,60] |
63 | [61] | IgG1 | no | yes | LN | [62] | |
4 | [61] | IgG2 | no | no | - | - | |
14 | [61] | IgG3 | no | no | complement activation, LN | [63] | |
7 | [61] | IgG4 | no | no | - | - | |
52 | [64] | IgM | no | yes | negative association with LN | [64,65] | |
40 | [5] | IgE | no | yes | LN | [66] | |
49 | [67] | IgA | no | yes | LN | [67] | |
Nucleosome | 50–90 | [68] | IgG | no | yes | LN | [68] |
15 | [69] | IgG3 | no | yes | LN | [70] | |
Sm | 20–40 | [71] | IgG | yes | no | renal, neurologic, vasculitis and hematologic disorders | [71] |
58 | [61] | IgG1 | no | no | - | - | |
40 | [61] | IgG3 | no | no | - | - | |
40 | UP | IgE | no | no | - | - | |
snRNP | 20–30 | [72] | IgG | no | no | - | - |
65 | [73] | IgM | no | no | - | - | |
SSA/Ro | 30–40 | [74] | IgG | no | no | neonatal lupus | [75] |
30 | UP | IgE | no | no | - | - | |
SSB/La | 10–15 | [76] | IgG | no | no | neonatal lupus | [75] |
25 | UP | IgE | no | no | - | - | |
PL | 30–40 | [77] | IgG | yes | no | hematologic involvement | [78] |
β2GP1 | 10–35 | [79] | IgA | no | no | thromboembolic events | [79] |
C1q | 20–50 | [80] | IgG | no | yes | LN | [81] |
Rib P protein | 10-40 | [82] | IgG | no | no | neuropsychiatric symptoms, liver disease | [82] |
NMDAR | 30 | [83] | IgG | no | no | neuropsychiatric symptoms | [84] |
3.1.1. Anti-Nuclear Antibodies (ANAs)
3.1.2. Anti-dsDNA Antibodies
3.1.3. Anti-Nucleosome Antibodies
3.1.4. Anti-Sm Antibodies
3.1.5. Anti-RNP Antibodies
3.1.6. Anti Ro/SSA and anti La/SSB Antibodies
3.1.7. Anti-Phospholipid Antibodies
3.1.8. Anti-C1q Antibodies
3.1.9. Anti-Ribosomal P (anti-P) Antibodies
3.1.10. Anti-NMDAR Antibodies
3.2. Newly Described Antigens
4. Autoantibody Isotypes: Classes and/or Subclasses Matter
4.1. Natural Antibodies
4.2. IgD Antibodies
4.3. IgG Antibodies
4.4. IgE Antibodies
4.5. IgA Antibodies
5. The 9G4 Idiotype: The Unique Sequence of Autoantibodies
6. Fc Receptors: The Autoimmune Effector Bridge
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tan, E.M. Antinuclear antibodies: Diagnostic markers for autoimmune diseases and probes for cell biology. Adv. Immunol. 1989, 44, 93–151. [Google Scholar] [PubMed]
- Conrad, K.; Roggenbuck, D.; Reinhold, D.; Sack, U. Autoantibody diagnostics in clinical practice. Autoimmun. Rev. 2012, 11, 207–211. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Leng, X.; Li, Z.; Ye, Z.; Li, C.; Li, X.; Zhu, P.; Wang, Z.; Zheng, Y.; Li, X.; et al. Chinese SLE treatment and research group registry: III. Association of autoantibodies with clinical manifestations in chinese patients with systemic lupus erythematosus. J. Immunol. Res. 2014, 2014, 809389. [Google Scholar] [CrossRef] [PubMed]
- Yaniv, G.; Twig, G.; Shor, D.B.; Furer, A.; Sherer, Y.; Mozes, O.; Komisar, O.; Slonimsky, E.; Klang, E.; Lotan, E.; et al. A volcanic explosion of autoantibodies in systemic lupus erythematosus: A diversity of 180 different antibodies found in SLE patients. Autoimmun. Rev. 2015, 14, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Dema, B.; Charles, N. Advances in mechanisms of systemic lupus erythematosus. Discov. Med. 2014, 17, 247–255. [Google Scholar] [PubMed]
- Gatto, M.; Zen, M.; Ghirardello, A.; Bettio, S.; Bassi, N.; Iaccarino, L.; Punzi, L.; Doria, A. Emerging and critical issues in the pathogenesis of lupus. Autoimmun. Rev. 2013, 12, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Agmon-Levin, N.; Mosca, M.; Petri, M.; Shoenfeld, Y. Systemic lupus erythematosus one disease or many? Autoimmun. Rev. 2012, 11, 593–595. [Google Scholar] [CrossRef] [PubMed]
- Rekvig, O.P.; Putterman, C.; Casu, C.; Gao, H.X.; Ghirardello, A.; Mortensen, E.S.; Tincani, A.; Doria, A. Autoantibodies in lupus: Culprits or passive bystanders? Autoimmun. Rev. 2012, 11, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Gualtierotti, R.; Biggioggero, M.; Penatti, A.E.; Meroni, P.L. Updating on the pathogenesis of systemic lupus erythematosus. Autoimmun. Rev. 2010, 10, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Rose, N.R.; Bona, C. Defining criteria for autoimmune diseases (witebsky's postulates revisited). Immunol. Today 1993, 14, 426–430. [Google Scholar] [CrossRef]
- Li, X.; Kimberly, R.P. Targeting the fc receptor in autoimmune disease. Expert Opin. Ther. Targets 2014, 18, 335–350. [Google Scholar] [CrossRef] [PubMed]
- Crispin, J.C.; Hedrich, C.M.; Tsokos, G.C. Gene-function studies in systemic lupus erythematosus. Nat. Rev. Rheumatol. 2013, 9, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.E.; Edberg, J.C.; Kimberly, R.P. Fc receptor genes and the systemic lupus erythematosus diathesis. Autoimmunity 2007, 40, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, R.; Leach, S.; Liu, W.; Ralston, E.; Scheffel, J.; Zhang, W.; Lowell, C.A.; Rivera, J. Molecular editing of cellular responses by the high-affinity receptor for IgE. Science 2014, 343, 1021–1025. [Google Scholar] [CrossRef] [PubMed]
- Rekvig, O.P. The anti-DNA antibody: Origin and impact, dogmas and controversies. Nat. Rev. Rheumatol. 2015, 11, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Fossati-Jimack, L.; Reininger, L.; Chicheportiche, Y.; Clynes, R.; Ravetch, J.V.; Honjo, T.; Izui, S. High pathogenic potential of low-affinity autoantibodies in experimental autoimmune hemolytic anemia. J. Exp. Med. 1999, 190, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Sciascia, S.; Kamal, A.; Khamashta, M. Biologicals for the treatment of systemic lupus erythematosus: Current status and emerging therapies. Expert Rev. Clin. Immunol. 2015, 11, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Beckwith, H.; Lightstone, L. Rituximab in systemic lupus erythematosus and lupus nephritis. Nephron. Clin. Pract. 2014, 128, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Sakthiswary, R.; D'Cruz, D. Intravenous immunoglobulin in the therapeutic armamentarium of systemic lupus erythematosus: A systematic review and meta-analysis. Medicine (Baltimore) 2014, 93, e86. [Google Scholar] [CrossRef] [PubMed]
- Giltiay, N.V.; Chappell, C.P.; Clark, E.A. B-cell selection and the development of autoantibodies. Arthritis Res. Ther. 2012, 14 (Suppl. 4), S1. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Zhuang, H.; Shumyak, S.; Yang, L.; Reeves, W.H. Mechanisms of autoantibody production in systemic lupus erythematosus. Front. Immunol. 2015, 6, 228. [Google Scholar] [CrossRef] [PubMed]
- Mohan, C.; Putterman, C. Genetics and pathogenesis of systemic lupus erythematosus and lupus nephritis. Nat. Rev. Nephrol. 2015, 11, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Woods, M.; Zou, Y.R.; Davidson, A. Defects in germinal center selection in sle. Front. Immunol. 2015, 6, 425. [Google Scholar] [CrossRef] [PubMed]
- Wardemann, H.; Yurasov, S.; Schaefer, A.; Young, J.W.; Meffre, E.; Nussenzweig, M.C. Predominant autoantibody production by early human b cell precursors. Science 2003, 301, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Lamagna, C.; Hu, Y.; DeFranco, A.L.; Lowell, C.A. B cell-specific loss of lyn kinase leads to autoimmunity. J. Immunol. 2014, 192, 919–928. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.C.; Yen, T.S.; Lowell, C.A.; DeFranco, A.L. Lupus-like kidney disease in mice deficient in the Src family tyrosine kinases Lyn and Fyn. Curr. Biol. 2001, 11, 34–38. [Google Scholar] [CrossRef]
- Flores-Borja, F.; Kabouridis, P.S.; Jury, E.C.; Isenberg, D.A.; Mageed, R.A. Decreased Lyn expression and translocation to lipid raft signaling domains in b lymphocytes from patients with systemic lupus erythematosus. Arthritis Rheum. 2005, 52, 3955–3965. [Google Scholar] [CrossRef] [PubMed]
- Lu, R.; Vidal, G.S.; Kelly, J.A.; Delgado-Vega, A.M.; Howard, X.K.; Macwana, S.R.; Dominguez, N.; Klein, W.; Burrell, C.; Harley, I.T.; et al. Genetic associations of Lyn with systemic lupus erythematosus. Genes Immun. 2009, 10, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Samuelson, E.M.; Laird, R.M.; Papillion, A.M.; Tatum, A.H.; Princiotta, M.F.; Hayes, S.M. Reduced B lymphoid kinase (Blk) expression enhances proinflammatory cytokine production and induces nephrosis in C57BL/6-lpr/lpr mice. PLoS ONE 2014, 9, e92054. [Google Scholar] [CrossRef] [PubMed]
- Manjarrez-Orduno, N.; Marasco, E.; Chung, S.A.; Katz, M.S.; Kiridly, J.F.; Simpfendorfer, K.R.; Freudenberg, J.; Ballard, D.H.; Nashi, E.; Hopkins, T.J.; et al. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nat. Genet. 2012, 44, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Rhee, I.; Veillette, A. Protein tyrosine phosphatases in lymphocyte activation and autoimmunity. Nat. Immunol. 2012, 13, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Mayeux, J.; Skaug, B.; Luo, W.; Russell, L.M.; John, S.; Saelee, P.; Abbasi, H.; Li, Q.Z.; Garrett-Sinha, L.A.; Satterthwaite, A.B. Genetic interaction between Lyn, Ets1, and Btk in the control of antibody levels. J. Immunol. 2015, 195, 1955–1963. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Li, A.; Wang, Z.; Pei, F.; Xia, Q.; Liu, G.; Ren, Y.; Hu, Z. Blimp-1 siRNA inhibits B cell differentiation and prevents the development of lupus in mice. Hum. Immunol. 2013, 74, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Vincent, F.B.; Morand, E.F.; Schneider, P.; Mackay, F. The BAFF/APRIL system in sle pathogenesis. Nat. Rev. Rheumatol. 2014, 10, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Stohl, W.; Scholz, J.L.; Cancro, M.P. Targeting blys in rheumatic disease: The sometimes-bumpy road from bench to bedside. Curr. Opin. Rheumatol. 2011, 23, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Thien, M.; Phan, T.G.; Gardam, S.; Amesbury, M.; Basten, A.; Mackay, F.; Brink, R. Excess baff rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 2004, 20, 785–798. [Google Scholar] [CrossRef] [PubMed]
- Elkon, K.B.; Wiedeman, A. Type I IFN system in the development and manifestations of SLE. Curr. Opin. Rheumatol. 2012, 24, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zou, Y.; Davidson, A. Plasma cells in systemic lupus erythematosus: The long and short of it all. Eur. J. Immunol. 2011, 41, 588–591. [Google Scholar] [CrossRef] [PubMed]
- Le Coz, C.; Joublin, A.; Pasquali, J.L.; Korganow, A.S.; Dumortier, H.; Monneaux, F. Circulating tfh subset distribution is strongly affected in lupus patients with an active disease. PLoS ONE 2013, 8, e75319. [Google Scholar] [CrossRef] [PubMed]
- Sweet, R.A.; Lee, S.K.; Vinuesa, C.G. Developing connections amongst key cytokines and dysregulated germinal centers in autoimmunity. Curr. Opin. Immunol. 2012, 24, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Denzel, A.; Maus, U.A.; Rodriguez Gomez, M.; Moll, C.; Niedermeier, M.; Winter, C.; Maus, R.; Hollingshead, S.; Briles, D.E.; Kunz-Schughart, L.A.; et al. Basophils enhance immunological memory responses. Nat. Immunol. 2008, 9, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Charles, N.; Hardwick, D.; Daugas, E.; Illei, G.G.; Rivera, J. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat. Med. 2010, 16, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Gaipl, U.S.; Voll, R.E.; Sheriff, A.; Franz, S.; Kalden, J.R.; Herrmann, M. Impaired clearance of dying cells in systemic lupus erythematosus. Autoimmun. Rev. 2005, 4, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Bijl, M.; Reefman, E.; Horst, G.; Limburg, P.C.; Kallenberg, C.G. Reduced uptake of apoptotic cells by macrophages in systemic lupus erythematosus: Correlates with decreased serum levels of complement. Ann. Rheum. Dis. 2006, 65, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Hakkim, A.; Furnrohr, B.G.; Amann, K.; Laube, B.; Abed, U.A.; Brinkmann, V.; Herrmann, M.; Voll, R.E.; Zychlinsky, A. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc. Natl. Acad. Sci. USA 2010, 107, 9813–9818. [Google Scholar] [CrossRef] [PubMed]
- Deane, J.A.; Pisitkun, P.; Barrett, R.S.; Feigenbaum, L.; Town, T.; Ward, J.M.; Flavell, R.A.; Bolland, S. Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 2007, 27, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Pisitkun, P.; Deane, J.A.; Difilippantonio, M.J.; Tarasenko, T.; Satterthwaite, A.B.; Bolland, S. Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006, 312, 1669–1672. [Google Scholar] [CrossRef] [PubMed]
- Tipton, C.M.; Fucile, C.F.; Darce, J.; Chida, A.; Ichikawa, T.; Gregoretti, I.; Schieferl, S.; Hom, J.; Jenks, S.; Feldman, R.J.; et al. Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat. Immunol. 2015, 16, 755–765. [Google Scholar] [CrossRef] [PubMed]
- Petri, M.; Orbai, A.M.; Alarcon, G.S.; Gordon, C.; Merrill, J.T.; Fortin, P.R.; Bruce, I.N.; Isenberg, D.; Wallace, D.J.; Nived, O.; et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012, 64, 2677–2686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, E.M.; Cohen, A.S.; Fries, J.F.; Masi, A.T.; McShane, D.J.; Rothfield, N.F.; Schaller, J.G.; Talal, N.; Winchester, R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982, 25, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, M.R.; McClain, M.T.; Rubertone, M.V.; Scofield, R.H.; Dennis, G.J.; James, J.A.; Harley, J.B. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 2003, 349, 1526–1533. [Google Scholar] [CrossRef] [PubMed]
- Artim-Esen, B.; Cene, E.; Sahinkaya, Y.; Ertan, S.; Pehlivan, O.; Kamali, S.; Gul, A.; Ocal, L.; Aral, O.; Inanc, M. Cluster analysis of autoantibodies in 852 patients with systemic lupus erythematosus from a single center. J. Rheumatol. 2014, 41, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Agmon-Levin, N.; Damoiseaux, J.; Kallenberg, C.; Sack, U.; Witte, T.; Herold, M.; Bossuyt, X.; Musset, L.; Cervera, R.; Plaza-Lopez, A.; et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann. Rheum. Dis. 2014, 73, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Jost, S.A.; Tseng, L.C.; Matthews, L.A.; Vasquez, R.; Zhang, S.; Yancey, K.B.; Chong, B.F. IgG, IgM, and IgA antinuclear antibodies in discoid and systemic lupus erythematosus patients. Sci. World J. 2014, 2014, 171028. [Google Scholar] [CrossRef] [PubMed]
- Kontos, A.P.; Jirsari, M.; Jacobsen, G.; Fivenson, D.P. Immunoglobulin M predominance in cutaneous lupus erythematosus. J. Cutan. Pathol. 2005, 32, 352–355. [Google Scholar] [CrossRef] [PubMed]
- Rekvig, O.P. Anti-dsdna antibodies as a classification criterion and a diagnostic marker for systemic lupus erythematosus: Critical remarks. Clin. Exp. Immunol. 2015, 179, 5–10. [Google Scholar] [CrossRef] [PubMed]
- DeGiorgio, L.A.; Konstantinov, K.N.; Lee, S.C.; Hardin, J.A.; Volpe, B.T.; Diamond, B. A subset of lupus anti-DNA antibodies cross-reacts with the NR2 glutamate receptor in systemic lupus erythematosus. Nat. Med. 2001, 7, 1189–1193. [Google Scholar] [CrossRef] [PubMed]
- Fenton, K.; Fismen, S.; Hedberg, A.; Seredkina, N.; Fenton, C.; Mortensen, E.S.; Rekvig, O.P. Anti-dsdna antibodies promote initiation, and acquired loss of renal dnase1 promotes progression of lupus nephritis in autoimmune (NZBxNZW)f1 mice. PLoS ONE 2009, 4, e8474. [Google Scholar] [CrossRef] [PubMed]
- Fismen, S.; Hedberg, A.; Fenton, K.A.; Jacobsen, S.; Krarup, E.; Kamper, A.L.; Rekvig, O.P.; Mortensen, E.S. Circulating chromatin-anti-chromatin antibody complexes bind with high affinity to dermo-epidermal structures in murine and human lupus nephritis. Lupus 2009, 18, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Grootscholten, C.; van Bruggen, M.C.; van der Pijl, J.W.; de Jong, E.M.; Ligtenberg, G.; Derksen, R.H.; Berden, J.H.; Dutch Working Party on Systemic Lupus Erythematosus. Deposition of nucleosomal antigens (histones and DNA) in the epidermal basement membrane in human lupus nephritis. Arthritis Rheum. 2003, 48, 1355–1362. [Google Scholar] [CrossRef] [PubMed]
- Rubin, R.L.; Tang, F.L.; Chan, E.K.; Pollard, K.M.; Tsay, G.; Tan, E.M. IgG subclasses of autoantibodies in systemic lupus erythematosus, Sjogren's syndrome, and drug-induced autoimmunity. J. Immunol. 1986, 137, 2528–2534. [Google Scholar] [PubMed]
- Yap, D.Y.; Yung, S.; Zhang, Q.; Tang, C.; Chan, T.M. Mesangial cell-binding activity of serum immunoglobulin G in patients with lupus nephritis. PLoS ONE 2014, 9, e101987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karsten, C.M.; Kohl, J. The immunoglobulin, IgG Fc receptor and complement triangle in autoimmune diseases. Immunobiology 2012, 217, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Witte, T. IgM antibodies against dsdna in sle. Clin. Rev. Allergy Immunol. 2008, 34, 345–347. [Google Scholar] [CrossRef] [PubMed]
- Forger, F.; Matthias, T.; Oppermann, M.; Becker, H.; Helmke, K. Clinical significance of anti-dsDNA antibody isotypes: IgG/IgM ratio of anti-dsDNA antibodies as a prognostic marker for lupus nephritis. Lupus 2004, 13, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Dema, B.; Pellefigues, C.; Hasni, S.; Gault, N.; Jiang, C.; Ricks, T.K.; Bonelli, M.M.; Scheffel, J.; Sacre, K.; Jablonski, M.; et al. Autoreactive IgE is prevalent in systemic lupus erythematosus and is associated with increased disease activity and nephritis. PLoS ONE 2014, 9, e90424. [Google Scholar] [CrossRef] [PubMed]
- Villalta, D.; Bizzaro, N.; Bassi, N.; Zen, M.; Gatto, M.; Ghirardello, A.; Iaccarino, L.; Punzi, L.; Doria, A. Anti-dsDNA antibody isotypes in systemic lupus erythematosus: IgA in addition to IgG anti-dsDNA help to identify glomerulonephritis and active disease. PLoS ONE 2013, 8, e71458. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Prokopec, S.D.; Morrison, S.; Lou, W.; Reich, H.; Gladman, D.; Urowitz, M.; Scholey, J.; Fortin, P.R.; Boutros, P.C.; et al. Anti-nucleosome antibodies outperform traditional biomarkers as longitudinal indicators of disease activity in systemic lupus erythematosus. Rheumatology (Oxford) 2015, 54, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Amoura, Z.; Koutouzov, S.; Chabre, H.; Cacoub, P.; Amoura, I.; Musset, L.; Bach, J.F.; Piette, J.C. Presence of antinucleosome autoantibodies in a restricted set of connective tissue diseases: Antinucleosome antibodies of the IgG3 subclass are markers of renal pathogenicity in systemic lupus erythematosus. Arthritis Rheum. 2000, 43, 76–84. [Google Scholar] [CrossRef]
- Mehra, S.; Fritzler, M.J. The spectrum of anti-chromatin/nucleosome autoantibodies: Independent and interdependent biomarkers of disease. J. Immunol. Res. 2014, 2014, 368274. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Avila, M.; Santiago-Casas, Y.; McGwin, G., Jr.; Cantor, R.S.; Petri, M.; Ramsey-Goldman, R.; Reveille, J.D.; Kimberly, R.P.; Alarcon, G.S.; Vila, L.M.; et al. Clinical associations of anti-smith antibodies in profile: A multi-ethnic lupus cohort. Clin. Rheumatol. 2015, 34, 1217–1223. [Google Scholar] [CrossRef] [PubMed]
- Williamson, G.G.; Pennebaker, J.; Boyle, J.A. Clinical characteristics of patients with rheumatic disorders who possess antibodies against ribonucleoprotein particles. Arthritis Rheum. 1983, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Vlachoyiannopoulos, P.G.; Guialis, A.; Tzioufas, G.; Moutsopoulos, H.M. Predominance of IgM anti-U1RNP antibodies in patients with systemic lupus erythematosus. Br. J. Rheum. 1996, 35, 534–541. [Google Scholar] [CrossRef]
- Bell, D.A.; Maddison, P.J. Serologic subsets in systemic lupus erythematosus: An examination of autoantibodies in relationship to clinical features of disease and HLA antigens. Arthritis Rheum. 1980, 23, 1268–1273. [Google Scholar] [CrossRef] [PubMed]
- Izmirly, P.M.; Buyon, J.P.; Saxena, A. Neonatal lupus: Advances in understanding pathogenesis and identifying treatments of cardiac disease. Curr. Opin. Rheumatol. 2012, 24, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Harley, J.B.; Alexander, E.L.; Bias, W.B.; Fox, O.F.; Provost, T.T.; Reichlin, M.; Yamagata, H.; Arnett, F.C. Anti-Ro (SS-A) and anti-La (SS-B) in patients with Sjogren's syndrome. Arthritis Rheum. 1986, 29, 196–206. [Google Scholar] [CrossRef] [PubMed]
- Vikerfors, A.; Johansson, A.B.; Gustafsson, J.T.; Jonsen, A.; Leonard, D.; Zickert, A.; Nordmark, G.; Sturfelt, G.; Bengtsson, A.; Ronnblom, L.; et al. Clinical manifestations and anti-phospholipid antibodies in 712 patients with systemic lupus erythematosus: Evaluation of two diagnostic assays. Rheumatology (Oxford) 2013, 52, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Silvarino, R.; Sant, F.; Espinosa, G.; Pons-Estel, G.; Sole, M.; Cervera, R.; Arrizabalaga, P. Nephropathy associated with antiphospholipid antibodies in patients with systemic lupus erythematosus. Lupus 2011, 20, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, L.; Fredi, M.; Nalli, C.; Piantoni, S.; Reggia, R.; Dall'Ara, F.; Franceschini, F.; Tincani, A. Clinical significance of IgA anti-cardiolipin and IgA anti-beta2glycoprotein I antibodies. Curr. Rheum. Rep. 2013, 15, 343. [Google Scholar] [CrossRef] [PubMed]
- Fremeaux-Bacchi, V.; Weiss, L.; Demouchy, C.; Blouin, J.; Kazatchkine, M.D. Autoantibodies to the collagen-like region of C1q are strongly associated with classical pathway-mediated hypocomplementemia in systemic lupus erythematosus. Lupus 1996, 5, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Trendelenburg, M.; Lopez-Trascasa, M.; Potlukova, E.; Moll, S.; Regenass, S.; Fremeaux-Bacchi, V.; Martinez-Ara, J.; Jancova, E.; Picazo, M.L.; Honsova, E.; et al. High prevalence of anti-C1q antibodies in biopsy-proven active lupus nephritis. Nephrol. Dial. Transplant. 2006, 21, 3115–3121. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.; Derk, C.T. Anti-ribosomal-P antibodies in lupus nephritis, neuropsychiatric lupus, lupus hepatitis, and Chagas' disease: Promising yet limited in clinical utility. Rheumatol. Int. 2015, 35, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Husebye, E.S.; Sthoeger, Z.M.; Dayan, M.; Zinger, H.; Elbirt, D.; Levite, M.; Mozes, E. Autoantibodies to a NR2A peptide of the glutamate/NMDA receptor in sera of patients with systemic lupus erythematosus. Ann. Rheum. Dis. 2005, 64, 1210–1213. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Liu, R.; Li, X.; Sun, L. Possible novel biomarkers of organ involvement in systemic lupus erythematosus. Clin. Rheumatol. 2014, 33, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Coons, A.H.; Kaplan, M.H. Localization of antigen in tissue cells; improvements in a method for the detection of antigen by means of fluorescent antibody. J. Exp. Med. 1950, 91, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Ceppellini, R.; Polli, E.; Celada, F. A DNA-reacting factor in serum of a patient with lupus erythematosus diffusus. Proc. Soc. Exp. Biol. Med. 1957, 96, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Robbins, W.C.; Holman, H.R.; Deicher, H.; Kunkel, H.G. Complement fixation with cell nuclei and DNA in lupus erythematosus. Proc. Soc. Exp. Biol. Med. 1957, 96, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Compagno, M.; Jacobsen, S.; Rekvig, O.P.; Truedsson, L.; Heegaard, N.H.; Nossent, J.; Jonsen, A.; Jacobsen, R.S.; Eilertsen, G.O.; Sturfelt, G.; et al. Low diagnostic and predictive value of anti-dsDNA antibodies in unselected patients with recent onset of rheumatic symptoms: Results from a long-term follow-up scandinavian multicentre study. Scand. J. Rheumatol. 2013, 42, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Compagno, M.; Rekvig, O.P.; Bengtsson, A.A.; Sturfelt, G.; Heegaard, N.H.; Jonsen, A.; Jacobsen, R.S.; Eilertsen, G.O.; Fenton, C.G.; Truedsson, L.; et al. Clinical phenotype associations with various types of anti-dsDNA antibodies in patients with recent onset of rheumatic symptoms. Results from a multicentre observational study. Lupus Sci. Med. 2014, 1, e000007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cutter, A.R.; Hayes, J.J. A brief review of nucleosome structure. FEBS Lett. 2015, 589, 2914–2922. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.J.; Stollar, B.D. Anti-DNA antibodies: Aspects of structure and pathogenicity. Cell. Mol. Life Sci. 2003, 60, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Edgington, S.M.; Stollar, B.D. Immunogenicity of z-DNA depends on the size of polynucleotide presented in complexes with methylated BSA. Mol. Immunol. 1992, 29, 609–617. [Google Scholar] [CrossRef]
- Lafer, E.M.; Rauch, J.; Andrzejewski, C., Jr.; Mudd, D.; Furie, B.; Furie, B.; Schwartz, R.S.; Stollar, B.D. Polyspecific monoclonal lupus autoantibodies reactive with both polynucleotides and phospholipids. J. Exp. Med. 1981, 153, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Mostoslavsky, G.; Fischel, R.; Yachimovich, N.; Yarkoni, Y.; Rosenmann, E.; Monestier, M.; Baniyash, M.; Eilat, D. Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein: A case for tissue injury by molecular mimicry. Eur. J. Immunol. 2001, 31, 1221–1227. [Google Scholar] [CrossRef]
- Amital, H.; Heilweil, M.; Ulmansky, R.; Szafer, F.; Bar-Tana, R.; Morel, L.; Foster, M.H.; Mostoslavsky, G.; Eilat, D.; Pizov, G.; et al. Treatment with a laminin-derived peptide suppresses lupus nephritis. J. Immunol. 2005, 175, 5516–5523. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, M.R.; Wang, C.; Marion, T.N. Anti-DNA autoantibodies initiate experimental lupus nephritis by binding directly to the glomerular basement membrane in mice. Kidney Int. 2012, 82, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Putterman, C.; Diamond, B. Immunization with a peptide surrogate for double-stranded DNA (dsDNA) induces autoantibody production and renal immunoglobulin deposition. J. Exp. Med. 1998, 188, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Davidson, A. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat. Med. 2012, 18, 871–882. [Google Scholar] [CrossRef] [PubMed]
- Desai, D.D.; Krishnan, M.R.; Swindle, J.T.; Marion, T.N. Antigen-specific induction of antibodies against native mammalian DNA in nonautoimmune mice. J. Immunol. 1993, 151, 1614–1626. [Google Scholar] [PubMed]
- Caza, T.; Oaks, Z.; Perl, A. Interplay of infections, autoimmunity, and immunosuppression in systemic lupus erythematosus. Int. Rev. Immunol. 2014, 33, 330–363. [Google Scholar] [CrossRef] [PubMed]
- Mjelle, J.E.; Rekvig, O.P.; Fenton, K.A. Nucleosomes possess a high affinity for glomerular laminin and collagen iv and bind nephritogenic antibodies in murine lupus-like nephritis. Ann. Rheum. Dis. 2007, 66, 1661–1668. [Google Scholar] [CrossRef] [PubMed]
- Seredkina, N.; Zykova, S.N.; Rekvig, O.P. Progression of murine lupus nephritis is linked to acquired renal dnase1 deficiency and not to up-regulated apoptosis. Am. J. Pathol. 2009, 175, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Kalaaji, M.; Sturfelt, G.; Mjelle, J.E.; Nossent, H.; Rekvig, O.P. Critical comparative analyses of anti-alpha-actinin and glomerulus-bound antibodies in human and murine lupus nephritis. Arthritis Rheum. 2006, 54, 914–926. [Google Scholar] [CrossRef] [PubMed]
- Kalaaji, M.; Mortensen, E.; Jorgensen, L.; Olsen, R.; Rekvig, O.P. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am. J. Pathol. 2006, 168, 1779–1792. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, V.V.; Khaiboullina, S.F.; Cherenkova, E.E.; Martynova, E.V.; Nevzorova, T.A.; Kunst, M.A.; Sibgatullin, T.B.; Maksudova, A.N.; Oliveira, P.J.; Lombardi, V.C.; et al. Differential immuno-reactivity to genomic DNA, RNA and mitochondrial DNA is associated with auto-immunity. Cell. Physiol. Biochem. 2014, 34, 2200–2208. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, T.; Chen, S.; Gu, Y.; Ye, S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheum. 2015, 67, 3190–3200. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, C.A.; van Steensel, B. Chromatin organization: Form to function. Curr. Opin. Genet. Dev. 2013, 23, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Rekvig, O.P.; van der Vlag, J.; Seredkina, N. Review: Antinucleosome antibodies: A critical reflection on their specificities and diagnostic impact. Arthritis Rheum. 2014, 66, 1061–1069. [Google Scholar] [CrossRef] [PubMed]
- Min, D.J.; Kim, S.J.; Park, S.H.; Seo, Y.I.; Kang, H.J.; Kim, W.U.; Cho, C.S.; Kim, H.Y. Anti-nucleosome antibody: Significance in lupus patients lacking anti-double-stranded DNA antibody. Clin. Exp. Rheum. 2002, 20, 13–18. [Google Scholar]
- Koutouzov, S.; Jeronimo, A.L.; Campos, H.; Amoura, Z. Nucleosomes in the pathogenesis of systemic lupus erythematosus. Rheum. Dis. Clin. N. Am. 2004, 30, 529–558, ix. [Google Scholar] [CrossRef] [PubMed]
- Ullal, A.J.; Reich, C.F., 3rd; Clowse, M.; Criscione-Schreiber, L.G.; Tochacek, M.; Monestier, M.; Pisetsky, D.S. Microparticles as antigenic targets of antibodies to DNA and nucleosomes in systemic lupus erythematosus. J. Autoimmun. 2011, 36, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Pisetsky, D.S. The origin and properties of extracellular DNA: From pamp to damp. Clin. Immunol. 2012, 144, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Magna, M.; Pisetsky, D.S. The role of hmgb1 in the pathogenesis of inflammatory and autoimmune diseases. Mol. Med. 2014, 20, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Urbonaviciute, V.; Furnrohr, B.G.; Meister, S.; Munoz, L.; Heyder, P.; De Marchis, F.; Bianchi, M.E.; Kirschning, C.; Wagner, H.; Manfredi, A.A.; et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: Implications for the pathogenesis of SLE. J. Exp. Med. 2008, 205, 3007–3018. [Google Scholar] [CrossRef] [PubMed]
- Bigler, C.; Lopez-Trascasa, M.; Potlukova, E.; Moll, S.; Danner, D.; Schaller, M.; Trendelenburg, M. Antinucleosome antibodies as a marker of active proliferative lupus nephritis. Am. J. Kidney Dis. 2008, 51, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.T.; Chen, Y.M.; Lan, J.L.; Chen, H.H.; Chen, Y.H.; Chen, D.Y.; Hsieh, C.W.; Wen, M.C. Antinucleosome antibodies as a potential biomarker for the evaluation of renal pathological activity in patients with proliferative lupus nephritis. Lupus 2011, 20, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Ghirardello, A.; Doria, A.; Zampieri, S.; Tarricone, E.; Tozzoli, R.; Villalta, D.; Bizzaro, N.; Piccoli, A.; Gambari, P.F. Antinucleosome antibodies in sle: A two-year follow-up study of 101 patients. J. Autoimmun. 2004, 22, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Mohan, C.; Adams, S.; Stanik, V.; Datta, S.K. Nucleosome: A major immunogen for pathogenic autoantibody-inducing t cells of lupus. J. Exp. Med. 1993, 177, 1367–1381. [Google Scholar] [CrossRef] [PubMed]
- Lartigue, A.; Courville, P.; Auquit, I.; Francois, A.; Arnoult, C.; Tron, F.; Gilbert, D.; Musette, P. Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J. Immunol. 2006, 177, 1349–1354. [Google Scholar] [CrossRef] [PubMed]
- Zieve, G.W.; Khusial, P.R. The anti-Sm immune response in autoimmunity and cell biology. Autoimmun. Rev. 2003, 2, 235–240. [Google Scholar] [CrossRef]
- McClain, M.T.; Ramsland, P.A.; Kaufman, K.M.; James, J.A. Anti-Sm autoantibodies in systemic lupus target highly basic surface structures of complexed spliceosomal autoantigens. J. Immunol. 2002, 168, 2054–2062. [Google Scholar] [CrossRef] [PubMed]
- Talken, B.L.; Schafermeyer, K.R.; Bailey, C.W.; Lee, D.R.; Hoffman, R.W. T cell epitope mapping of the smith antigen reveals that highly conserved smith antigen motifs are the dominant target of t cell immunity in systemic lupus erythematosus. J. Immunol. 2001, 167, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Sundar, K.; Jacques, S.; Gottlieb, P.; Villars, R.; Benito, M.E.; Taylor, D.K.; Spatz, L.A. Expression of the Epstein-Barr virus nuclear antigen-1 (EBNA-1) in the mouse can elicit the production of anti-dsDNA and anti-Sm antibodies. J. Autoimmun. 2004, 23, 127–140. [Google Scholar] [CrossRef] [PubMed]
- Mannik, M.; Merrill, C.E.; Stamps, L.D.; Wener, M.H. Multiple autoantibodies form the glomerular immune deposits in patients with systemic lupus erythematosus. J. Rheumatol. 2003, 30, 1495–1504. [Google Scholar] [PubMed]
- Hirohata, S.; Sakuma, Y.; Yanagida, T.; Yoshio, T. Association of cerebrospinal fluid anti-Sm antibodies with acute confusional state in systemic lupus erythematosus. Arthritis Res. Ther. 2014, 16, 450. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, P.; Baldini, C.; Rocchi, V.; Bombardieri, S. Anti-Sm and anti-RNP antibodies. Autoimmunity 2005, 38, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Greidinger, E.L.; Hoffman, R.W. The appearance of U1 RNP antibody specificities in sequential autoimmune human antisera follows a characteristic order that implicates the U1-70 kd and B'/B proteins as predominant U1 RNP immunogens. Arthritis Rheum. 2001, 44, 368–375. [Google Scholar] [CrossRef]
- Greidinger, E.L.; Casciola-Rosen, L.; Morris, S.M.; Hoffman, R.W.; Rosen, A. Autoantibody recognition of distinctly modified forms of the U1-70-kd antigen is associated with different clinical disease manifestations. Arthritis Rheum. 2000, 43, 881–888. [Google Scholar] [CrossRef]
- Hall, J.C.; Casciola-Rosen, L.; Rosen, A. Altered structure of autoantigens during apoptosis. Rheum. Dis. Clin. N. Am. 2004, 30, 455–471, vii. [Google Scholar] [CrossRef] [PubMed]
- Cozzani, E.; Drosera, M.; Gasparini, G.; Parodi, A. Serology of lupus erythematosus: Correlation between immunopathological features and clinical aspects. Autoimmun. Dis. 2014, 2014, 321359. [Google Scholar] [CrossRef] [PubMed]
- Routsias, J.G.; Tzioufas, A.G. B-cell epitopes of the intracellular autoantigens Ro/SSA and La/SSB: Tools to study the regulation of the autoimmune response. J. Autoimmun. 2010, 35, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Clancy, R.M.; Neufing, P.J.; Zheng, P.; O'Mahony, M.; Nimmerjahn, F.; Gordon, T.P.; Buyon, J.P. Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J. Clin. Invest. 2006, 116, 2413–2422. [Google Scholar] [CrossRef] [PubMed]
- McClain, M.T.; Scofield, R.H.; Kurien, B.T.; Gross, T.F.; James, J.A. Selective small antigenic structures are capable of inducing widespread autoimmunity which closely mimics the humoral fine specificity of human SLE. Scand. J. Immunol. 2002, 56, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Sciascia, S.; Cuadrado, M.J.; Khamashta, M.; Roccatello, D. Renal involvement in antiphospholipid syndrome. Nat. Rev. Nephrol. 2014, 10, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Giannakopoulos, B.; Krilis, S.A. The pathogenesis of the antiphospholipid syndrome. N. Engl. J. Med. 2013, 368, 1033–1044. [Google Scholar] [CrossRef] [PubMed]
- Toscano, M.A.; Ilarregui, J.M.; Bianco, G.A.; Campagna, L.; Croci, D.O.; Salatino, M.; Rabinovich, G.A. Dissecting the pathophysiologic role of endogenous lectins: Glycan-binding proteins with cytokine-like activity? Cytokine Growth F. R. 2007, 18, 57–71. [Google Scholar] [CrossRef] [PubMed]
- Sarter, K.; Janko, C.; Andre, S.; Munoz, L.E.; Schorn, C.; Winkler, S.; Rech, J.; Kaltner, H.; Lorenz, H.M.; Schiller, M.; et al. Autoantibodies against galectins are associated with antiphospholipid syndrome in patients with systemic lupus erythematosus. Glycobiology 2013, 23, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Ricklin, D.; Hajishengallis, G.; Yang, K.; Lambris, J.D. Complement: A key system for immune surveillance and homeostasis. Nat. Immunol. 2010, 11, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Pickering, M.C.; Botto, M.; Taylor, P.R.; Lachmann, P.J.; Walport, M.J. Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv. Immunol. 2000, 76, 227–324. [Google Scholar] [PubMed]
- Kallel-Sellami, M.; Baili-Klila, L.; Zerzeri, Y.; Laadhar, L.; Blouin, J.; Abdelmoula, M.S.; Zitouni, M.; Fremeaux-Bacchi, V.; Ben Dridi, M.F.; Makni, S. Pediatric systemic lupus erythematosus with C1q deficiency. Ann. NY Acad. Sci. 2007, 1108, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, S.; Frayling, T.M.; Vyse, T.J.; Cunninghame Graham, D.S.; Eggleton, P. Assessing association of common variation in the C1q gene cluster with systemic lupus erythematosus. Clin. Exp. Immunol. 2010, 161, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Mosaad, Y.M.; Hammad, A.; Fawzy, Z.; El-Refaaey, A.; Tawhid, Z.; Hammad, E.M.; Youssef, L.F.; ElAttar, E.A.; Radwan, D.F.; Fawzy, I.M. C1q rs292001 polymorphism and C1q antibodies in juvenile lupus and their relation to lupus nephritis. Clin. Exp. Immunol. 2015, 182, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Schaller, M.; Bigler, C.; Danner, D.; Ditzel, H.J.; Trendelenburg, M. Autoantibodies against C1q in systemic lupus erythematosus are antigen-driven. J. Immunol. 2009, 183, 8225–8231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigler, C.; Schaller, M.; Perahud, I.; Osthoff, M.; Trendelenburg, M. Autoantibodies against complement C1q specifically target C1q bound on early apoptotic cells. J. Immunol. 2009, 183, 3512–3521. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Yang, X.W.; Song, Y.; Yu, F.; Zhao, M.H. Anti-C1q autoantibodies from active lupus nephritis patients could inhibit the clearance of apoptotic cells and complement classical pathway activation mediated by C1q in vitro. Immunobiology 2014, 219, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Thanei, S.; Vanhecke, D.; Trendelenburg, M. Anti-C1q autoantibodies from systemic lupus erythematosus patients activate the complement system via both the classical and lectin pathways. Clin. Immunol. 2015, 160, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Nisihara, R.M.; Magrini, F.; Mocelin, V.; Messias-Reason, I.J. Deposition of the lectin pathway of complement in renal biopsies of lupus nephritis patients. Hum. Immunol. 2013, 74, 907–910. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Maeng, Y.I.; Lee, S.J.; Lee, I.H.; Bae, J.; Kang, Y.N.; Park, B.T.; Park, K.K. Pathogenesis and significance of glomerular C4D deposition in lupus nephritis: Activation of classical and lectin pathways. Int. J. Clin. Exp. Pathol. 2013, 6, 2157–2167. [Google Scholar] [PubMed]
- Mannik, M.; Wener, M.H. Deposition of antibodies to the collagen-like region of C1q in renal glomeruli of patients with proliferative lupus glomerulonephritis. Arthritis Rheum. 1997, 40, 1504–1511. [Google Scholar] [CrossRef] [PubMed]
- Elkon, K.B.; Parnassa, A.P.; Foster, C.L. Lupus autoantibodies target ribosomal p proteins. J. Exp. Med. 1985, 162, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Kiss, E.; Shoenfeld, Y. Are anti-ribosomal P protein antibodies relevant in systemic lupus erythematosus? Clin. Rev. Allergy Immunol. 2007, 32, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Arinuma, Y.; Yanagida, T.; Yamamoto, K.; Hirohata, S. Anti-ribosomal P protein antibody in human systemic lupus erythematosus up-regulates the expression of proinflammatory cytokines by human peripheral blood monocytes. Arthritis Rheum. 2005, 52, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Nagai, T.; Yanagida, T.; Hirohata, S. Anti-ribosomal P protein antibody induces Th1 responses by enhancing the production of IL-12 in activated monocytes. Mod. Rheumatol. 2011, 21, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Mahler, M.; Kessenbrock, K.; Szmyrka, M.; Takasaki, Y.; Garcia-De La Torre, I.; Shoenfeld, Y.; Hiepe, F.; Shun-le, C.; von Muhlen, C.A.; Locht, H.; et al. International multicenter evaluation of autoantibodies to ribosomal P proteins. Clin. Vaccine Immunol. 2006, 13, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Karassa, F.B.; Afeltra, A.; Ambrozic, A.; Chang, D.M.; De Keyser, F.; Doria, A.; Galeazzi, M.; Hirohata, S.; Hoffman, I.E.; Inanc, M.; et al. Accuracy of anti-ribosomal p protein antibody testing for the diagnosis of neuropsychiatric systemic lupus erythematosus: An international meta-analysis. Arthritis Rheum. 2006, 54, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Matus, S.; Burgos, P.V.; Bravo-Zehnder, M.; Kraft, R.; Porras, O.H.; Farias, P.; Barros, L.F.; Torrealba, F.; Massardo, L.; Jacobelli, S.; et al. Antiribosomal-p autoantibodies from psychiatric lupus target a novel neuronal surface protein causing calcium influx and apoptosis. J. Exp. Med. 2007, 204, 3221–3234. [Google Scholar] [CrossRef] [PubMed]
- Segovia-Miranda, F.; Serrano, F.; Dyrda, A.; Ampuero, E.; Retamal, C.; Bravo-Zehnder, M.; Parodi, J.; Zamorano, P.; Valenzuela, D.; Massardo, L.; et al. Pathogenicity of lupus anti-ribosomal p antibodies: Role of cross-reacting neuronal surface p antigen in glutamatergic transmission and plasticity in a mouse model. Arthritis Rheum. 2015, 67, 1598–1610. [Google Scholar] [CrossRef] [PubMed]
- Koscec, M.; Koren, E.; Wolfson-Reichlin, M.; Fugate, R.D.; Trieu, E.; Targoff, I.N.; Reichlin, M. Autoantibodies to ribosomal p proteins penetrate into live hepatocytes and cause cellular dysfunction in culture. J. Immunol. 1997, 159, 2033–2041. [Google Scholar] [PubMed]
- Pan, Z.J.; Anderson, C.J.; Stafford, H.A. Anti-idiotypic antibodies prevent the serologic detection of antiribosomal p autoantibodies in healthy adults. J. Clin. Invest. 1998, 102, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Kowal, C.; DeGiorgio, L.A.; Nakaoka, T.; Hetherington, H.; Huerta, P.T.; Diamond, B.; Volpe, B.T. Cognition and immunity: Antibody impairs memory. Immunity 2004, 21, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Huerta, P.T.; Kowal, C.; DeGiorgio, L.A.; Volpe, B.T.; Diamond, B. Immunity and behavior: Antibodies alter emotion. Proc. Natl. Acad. Sci. USA 2006, 103, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Faust, T.W.; Chang, E.H.; Kowal, C.; Berlin, R.; Gazaryan, I.G.; Bertini, E.; Zhang, J.; Sanchez-Guerrero, J.; Fragoso-Loyo, H.E.; Volpe, B.T.; et al. Neurotoxic lupus autoantibodies alter brain function through two distinct mechanisms. Proc. Natl. Acad. Sci. USA 2010, 107, 18569–18574. [Google Scholar] [CrossRef] [PubMed]
- Kowal, C.; Degiorgio, L.A.; Lee, J.Y.; Edgar, M.A.; Huerta, P.T.; Volpe, B.T.; Diamond, B. Human lupus autoantibodies against nmda receptors mediate cognitive impairment. Proc. Natl. Acad. Sci. USA 2006, 103, 19854–19859. [Google Scholar] [CrossRef] [PubMed]
- Doyle, H.A.; Yang, M.L.; Raycroft, M.T.; Gee, R.J.; Mamula, M.J. Autoantigens: Novel forms and presentation to the immune system. Autoimmunity 2014, 47, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Mamula, M.J.; Gee, R.J.; Elliott, J.I.; Sette, A.; Southwood, S.; Jones, P.J.; Blier, P.R. Isoaspartyl post-translational modification triggers autoimmune responses to self-proteins. J. Biol. Chem. 1999, 274, 22321–22327. [Google Scholar] [CrossRef] [PubMed]
- Cornaby, C.; Gibbons, L.; Mayhew, V.; Sloan, C.S.; Welling, A.; Poole, B.D. B cell epitope spreading: Mechanisms and contribution to autoimmune diseases. Immunol. Lett. 2015, 163, 56–68. [Google Scholar] [CrossRef] [PubMed]
- Fritzler, M.J.; Rubin, R.L. Antibodies to Histones and Nucleosome-Related Antigens; Lippincott Williams &Wilkins: Philadelphia, PA, USA, 2007; pp. 464–486. [Google Scholar]
- van Bavel, C.C.; Dieker, J.; Muller, S.; Briand, J.P.; Monestier, M.; Berden, J.H.; van der Vlag, J. Apoptosis-associated acetylation on histone H2b is an epitope for lupus autoantibodies. Mol. Immunol. 2009, 47, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Dieker, J.W.; Fransen, J.H.; van Bavel, C.C.; Briand, J.P.; Jacobs, C.W.; Muller, S.; Berden, J.H.; van der Vlag, J. Apoptosis-induced acetylation of histones is pathogenic in systemic lupus erythematosus. Arthritis Rheum. 2007, 56, 1921–1933. [Google Scholar] [CrossRef] [PubMed]
- Pieterse, E.; Hofstra, J.; Berden, J.; Herrmann, M.; Dieker, J.; van der Vlag, J. Acetylated histones contribute to the immunostimulatory potential of neutrophil extracellular traps in systemic lupus erythematosus. Clin. Exp. Immunol. 2015, 179, 68–74. [Google Scholar] [CrossRef] [PubMed]
- Rigante, D.; Mazzoni, M.B.; Esposito, S. The cryptic interplay between systemic lupus erythematosus and infections. Autoimmun. Rev. 2014, 13, 96–102. [Google Scholar] [CrossRef] [PubMed]
- McClain, M.T.; Heinlen, L.D.; Dennis, G.J.; Roebuck, J.; Harley, J.B.; James, J.A. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med. 2005, 11, 85–89. [Google Scholar] [CrossRef] [PubMed]
- Pavlovic, M.; Kats, A.; Cavallo, M.; Shoenfeld, Y. Clinical and molecular evidence for association of SLE with parvovirus B19. Lupus 2010, 19, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.; Fernandez, D.; Telarico, T.; Phillips, P.E. Endogenous retroviral pathogenesis in lupus. Curr. Opin. Rheumatol. 2010, 22, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Yung, S.; Cheung, K.F.; Zhang, Q.; Chan, T.M. Anti-dsdna antibodies bind to mesangial annexin II in lupus nephritis. J. Am. Soc. Nephrol. 2010, 21, 1912–1927. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Sinico, R.A.; Moroni, G.; Pratesi, F.; Migliorini, P.; Galetti, M.; Murtas, C.; Tincani, A.; Madaio, M.; Radice, A.; et al. Glomerular autoimmune multicomponents of human lupus nephritis in vivo: Alpha-enolase and annexin ai. J. Am. Soc. Nephrol. 2014, 25, 2483–2498. [Google Scholar] [CrossRef] [PubMed]
- Pratesi, F.; Moscato, S.; Sabbatini, A.; Chimenti, D.; Bombardieri, S.; Migliorini, P. Autoantibodies specific for alpha-enolase in systemic autoimmune disorders. J. Rheumatol. 2000, 27, 109–115. [Google Scholar] [PubMed]
- Pancholi, V. Multifunctional alpha-enolase: Its role in diseases. Cell. Mol. Life Sci. 2001, 58, 902–920. [Google Scholar] [CrossRef] [PubMed]
- Migliorini, P.; Pratesi, F.; Bongiorni, F.; Moscato, S.; Scavuzzo, M.; Bombardieri, S. The targets of nephritogenic antibodies in systemic autoimmune disorders. Autoimmun. Rev. 2002, 1, 168–173. [Google Scholar] [CrossRef]
- Caster, D.J.; Korte, E.A.; Merchant, M.L.; Klein, J.B.; Wilkey, D.W.; Rovin, B.H.; Birmingham, D.J.; Harley, J.B.; Cobb, B.L.; Namjou, B.; et al. Autoantibodies targeting glomerular annexin a2 identify patients with proliferative lupus nephritis. Proteom. Clin. Appl. 2015. [Google Scholar] [CrossRef] [PubMed]
- Canas, F.; Simonin, L.; Couturaud, F.; Renaudineau, Y. Annexin a2 autoantibodies in thrombosis and autoimmune diseases. Thromb. Res. 2015, 135, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Leffler, J.; Blom, A.M. Annexin a2 and a5 serve as new ligands for C1q on apoptotic cells. J. Biol. Chem. 2012, 287, 33733–33744. [Google Scholar] [CrossRef] [PubMed]
- Iaccarino, L.; Ghirardello, A.; Canova, M.; Zen, M.; Bettio, S.; Nalotto, L.; Punzi, L.; Doria, A. Anti-annexins autoantibodies: Their role as biomarkers of autoimmune diseases. Autoimmun. Rev. 2011, 10, 553–558. [Google Scholar] [CrossRef] [PubMed]
- Youinou, P.; Putterman, C. The role of anti-alpha-actinin antibodies in the pathogenesis and monitoring of lupus nephritis. Arthritis Res. Ther. 2009, 11, 137. [Google Scholar] [CrossRef] [PubMed]
- Deocharan, B.; Zhou, Z.; Antar, K.; Siconolfi-Baez, L.; Angeletti, R.H.; Hardin, J.; Putterman, C. Alpha-actinin immunization elicits anti-chromatin autoimmunity in nonautoimmune mice. J. Immunol. 2007, 179, 1313–1321. [Google Scholar] [CrossRef] [PubMed]
- Deocharan, B.; Qing, X.; Lichauco, J.; Putterman, C. Alpha-actinin is a cross-reactive renal target for pathogenic anti-DNA antibodies. J. Immunol. 2002, 168, 3072–3078. [Google Scholar] [CrossRef] [PubMed]
- Renaudineau, Y.; Deocharan, B.; Jousse, S.; Renaudineau, E.; Putterman, C.; Youinou, P. Anti-alpha-actinin antibodies: A new marker of lupus nephritis. Autoimmun. Rev. 2007, 6, 464–468. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.J.; Ma, A.; Rogers, P.; Mason, L.J.; Berden, J.H.; van der Vlag, J.; D'Cruz, D.P.; Isenberg, D.A.; Rahman, A. Relationship between anti-dsDNA, anti-nucleosome and anti-alpha-actinin antibodies and markers of renal disease in patients with lupus nephritis: A prospective longitudinal study. Arthritis Res. Ther. 2009, 11, R154. [Google Scholar] [CrossRef] [PubMed]
- Onishi, S.; Adnan, E.; Ishizaki, J.; Miyazaki, T.; Tanaka, Y.; Matsumoto, T.; Suemori, K.; Shudou, M.; Okura, T.; Takeda, H.; et al. Novel autoantigens associated with lupus nephritis. PLoS ONE 2015, 10, e0126564. [Google Scholar] [CrossRef] [PubMed]
- Haddon, D.J.; Diep, V.K.; Price, J.V.; Limb, C.; Utz, P.J.; Balboni, I. Autoantigen microarrays reveal autoantibodies associated with proliferative nephritis and active disease in pediatric systemic lupus erythematosus. Arthritis Res. Ther. 2015, 17, 162. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, A.M.; Flesher, D.T.; Yang, J.; Wolslegel, K.; Wang, X.; Brady, A.; Abbas, A.R.; Quarmby, V.; Wakshull, E.; Richardson, B.; et al. Association of endogenous anti-interferon-alpha autoantibodies with decreased interferon-pathway and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2011, 63, 2407–2415. [Google Scholar] [CrossRef] [PubMed]
- Vincent, T.; Plawecki, M.; Goulabchand, R.; Guilpain, P.; Eliaou, J.F. Emerging clinical phenotypes associated with anti-cytokine autoantibodies. Autoimmun. Rev. 2015, 14, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Price, J.V.; Haddon, D.J.; Kemmer, D.; Delepine, G.; Mandelbaum, G.; Jarrell, J.A.; Gupta, R.; Balboni, I.; Chakravarty, E.F.; Sokolove, J.; et al. Protein microarray analysis reveals baff-binding autoantibodies in systemic lupus erythematosus. J. Clin. Invest. 2013, 123, 5135–5145. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zan, H.; Pone, E.J.; Mai, T.; Casali, P. Immunoglobulin class-switch DNA recombination: Induction, targeting and beyond. Nat. Rev. Immunol. 2012, 12, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Panda, S.; Ding, J.L. Natural antibodies bridge innate and adaptive immunity. J. Immunol. 2015, 194, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Asano, M.; Shinton, S.A.; Gui, M.; Allman, D.; Stewart, C.L.; Silver, J.; Hardy, R.R. Positive selection of natural autoreactive b cells. Science 1999, 285, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Gronwall, C.; Vas, J.; Silverman, G.J. Protective roles of natural IgM antibodies. Front. Immunol. 2012, 3, 66. [Google Scholar] [CrossRef] [PubMed]
- Kasaian, M.T.; Ikematsu, H.; Balow, J.E.; Casali, P. Structure of the Vh and Vl segments of monoreactive and polyreactive IgA autoantibodies to DNA in patients with systemic lupus erythematosus. J. Immunol. 1994, 152, 3137–3151. [Google Scholar] [PubMed]
- Notley, C.A.; Brown, M.A.; Wright, G.P.; Ehrenstein, M.R. Natural igm is required for suppression of inflammatory arthritis by apoptotic cells. J. Immunol. 2011, 186, 4967–4972. [Google Scholar] [CrossRef] [PubMed]
- Boes, M.; Schmidt, T.; Linkemann, K.; Beaudette, B.C.; Marshak-Rothstein, A.; Chen, J. Accelerated development of igg autoantibodies and autoimmune disease in the absence of secreted IgM. Proc. Natl. Acad. Sci. USA 2000, 97, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Werwitzke, S.; Trick, D.; Kamino, K.; Matthias, T.; Kniesch, K.; Schlegelberger, B.; Schmidt, R.E.; Witte, T. Inhibition of lupus disease by anti-double-stranded DNA antibodies of the IgM isotype in the (NZB x NZW)f1 mouse. Arthritis Rheum. 2005, 52, 3629–3638. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Zhao, M.L.; Scearce, R.M.; Diaz, M. Activation-induced deaminase-deficient MRL/LPR mice secrete high levels of protective antibodies against lupus nephritis. Arthritis Rheum. 2011, 63, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Stoehr, A.D.; Schoen, C.T.; Mertes, M.M.; Eiglmeier, S.; Holecska, V.; Lorenz, A.K.; Schommartz, T.; Schoen, A.L.; Hess, C.; Winkler, A.; et al. Tlr9 in peritoneal B-1b cells is essential for production of protective self-reactive IgM to control Th17 cells and severe autoimmunity. J. Immunol. 2011, 187, 2953–2965. [Google Scholar] [CrossRef] [PubMed]
- Silverman, G.J.; Srikrishnan, R.; Germar, K.; Goodyear, C.S.; Andrews, K.A.; Ginzler, E.M.; Tsao, B.P. Genetic imprinting of autoantibody repertoires in systemic lupus erythematosus patients. Clin. Exp. Immunol. 2008, 153, 102–116. [Google Scholar] [CrossRef] [PubMed]
- Gronwall, C.; Akhter, E.; Oh, C.; Burlingame, R.W.; Petri, M.; Silverman, G.J. IgM autoantibodies to distinct apoptosis-associated antigens correlate with protection from cardiovascular events and renal disease in patients with SLE. Clin. Immunol. 2012, 142, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Mehrani, T.; Petri, M. IgM anti-beta2 glycoprotein I is protective against lupus nephritis and renal damage in systemic lupus erythematosus. J. Rheumatol. 2011, 38, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Z.; Xie, C.; Wu, T.; Mackay, M.; Aranow, C.; Putterman, C.; Mohan, C. Identification of autoantibody clusters that best predict lupus disease activity using glomerular proteome arrays. J. Clin. Invest. 2005, 115, 3428–3439. [Google Scholar] [CrossRef] [PubMed]
- Hess, C.; Winkler, A.; Lorenz, A.K.; Holecska, V.; Blanchard, V.; Eiglmeier, S.; Schoen, A.L.; Bitterling, J.; Stoehr, A.D.; Petzold, D.; et al. T cell-independent B cell activation induces immunosuppressive sialylated igg antibodies. J. Clin. Invest. 2013, 123, 3788–3796. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Xu, W.; Wilson, M.; He, B.; Miller, N.W.; Bengten, E.; Edholm, E.S.; Santini, P.A.; Rath, P.; Chiu, A.; et al. Immunoglobulin d enhances immune surveillance by activating antimicrobial, proinflammatory and b cell-stimulating programs in basophils. Nat. Immunol. 2009, 10, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Cerutti, A. The function and regulation of immunoglobulin D. Curr. Opin. Immunol. 2011, 23, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, H.W., Jr.; Cavacini, L. Structure and function of immunoglobulins. J. Allergy Clin. Immunol. 2010, 125, S41–S52. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Tian, J.; Guo, Z.; Zheng, B.; Han, S. The absence of immunoglobulin D B cell receptor-mediated signals promotes the production of autoantibodies and exacerbates glomerulonephritis in murine lupus. Clin. Exp. Immunol. 2011, 164, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Baudino, L.; Azeredo da Silveira, S.; Nakata, M.; Izui, S. Molecular and cellular basis for pathogenicity of autoantibodies: Lessons from murine monoclonal autoantibodies. Spring. Semin. Immunopathol. 2006, 28, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Fossati, L.; Iwamoto, M.; Merino, R.; Motta, R.; Kobayakawa, T.; Izui, S. Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J. Clin. Invest. 1996, 97, 1597–1604. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.L.; Szabo, S.J.; Glimcher, L.H. T-bet regulates IgG class switching and pathogenic autoantibody production. Proc. Natl. Acad. Sci. USA 2002, 99, 5545–5550. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, A.; Vaglio, A.; Bruschi, M.; Sinico, R.A.; Cavagna, L.; Moroni, G.; Franceschini, F.; Allegri, L.; Pratesi, F.; Migliorini, P.; et al. Multi-antibody composition in lupus nephritis: Isotype and antigen specificity make the difference. Autoimmun. Rev. 2015, 14, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Imai, H.; Hamai, K.; Komatsuda, A.; Ohtani, H.; Miura, A.B. IgG subclasses in patients with membranoproliferative glomerulonephritis, membranous nephropathy, and lupus nephritis. Kidney Int. 1997, 51, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Schur, P.H.; Monroe, M.; Rothfield, N. The gammag subclass of antinuclear and antinucleic acid antibodies. Arthritis Rheum. 1972, 15, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Sammaritano, L.R. Significance of apl igg subclasses. Lupus 1996, 5, 436–439. [Google Scholar] [PubMed]
- Heimall, J.; Freeman, A.; Holland, S.M. Pathogenesis of hyper IgE syndrome. Clin. Rev. Allergy Immunol. 2010, 38, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Dema, B.; Charles, N.; Pellefigues, C.; Ricks, T.K.; Suzuki, R.; Jiang, C.; Scheffel, J.; Hasni, S.; Hoffman, V.; Jablonski, M.; et al. Immunoglobulin E plays an immunoregulatory role in lupus. J. Exp. Med. 2014, 211, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Erazo, A.; Kutchukhidze, N.; Leung, M.; Christ, A.P.; Urban, J.F., Jr.; Curotto de Lafaille, M.A.; Lafaille, J.J. Unique maturation program of the ige response in vivo. Immunity 2007, 26, 191–203. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Dolpady, J.; Wabl, M.; Curotto de Lafaille, M.A.; Lafaille, J.J. Sequential class switching is required for the generation of high affinity IgE antibodies. J. Exp. Med. 2012, 209, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Jakobsen, C.G.; Bodtger, U.; Kristensen, P.; Poulsen, L.K.; Roggen, E.L. Isolation of high-affinity human IgE and IgG antibodies recognising Bet v 1 and humicola lanuginosa lipase from combinatorial phage libraries. Mol. Immunol. 2004, 41, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Dahlke, I.; Nott, D.J.; Ruhno, J.; Sewell, W.A.; Collins, A.M. Antigen selection in the IgE response of allergic and nonallergic individuals. J. Allergy Clin. Immunol. 2006, 117, 1477–1483. [Google Scholar] [CrossRef] [PubMed]
- Eckl-Dorna, J.; Pree, I.; Reisinger, J.; Marth, K.; Chen, K.W.; Vrtala, S.; Spitzauer, S.; Valenta, R.; Niederberger, V. The majority of allergen-specific IgE in the blood of allergic patients does not originate from blood-derived B cells or plasma cells. Clin. Exp. Allergy 2012, 42, 1347–1355. [Google Scholar] [CrossRef] [PubMed]
- Butt, D.; Chan, T.D.; Bourne, K.; Hermes, J.R.; Nguyen, A.; Statham, A.; O'Reilly, L.A.; Strasser, A.; Price, S.; Schofield, P.; et al. Fas inactivation releases unconventional germinal center B cells that escape antigen control and drive ige and autoantibody production. Immunity 2015, 42, 890–902. [Google Scholar] [CrossRef] [PubMed]
- Mkaddem, S.B.; Christou, I.; Rossato, E.; Berthelot, L.; Lehuen, A.; Monteiro, R.C. IgA, IgA receptors, and their anti-inflammatory properties. Curr. Top. Microbiol. Immunol. 2014, 382, 221–235. [Google Scholar] [PubMed]
- Roberts, I.S. Pathology of IgA nephropathy. Nat. Rev. Nephrol. 2014, 10, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Hongyan, L.; Yi, Z.; Bao, D.; Yuewu, L.; Juan, M. A study on clinical and pathologic features in lupus nephritis with mainly IgA deposits and a literature review. Clin. Dev. Immunol. 2013, 2013, 289316. [Google Scholar] [CrossRef] [PubMed]
- Gronhagen, C.M.; Nyberg, F. Cutaneous lupus erythematosus: An update. Indian Dermatol. Online J. 2014, 5, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, H.; Strominger, J.L. Involvement of a tissue-specific autoantibody in skin disorders of murine systemic lupus erythematosus and autoinflammatory diseases. Proc. Natl. Acad. Sci. USA 2006, 103, 3292–3297. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.; Willis, R.; Romay-Penabad, Z.; Ruiz-Limon, P.; Martinez-Martinez, L.A.; Jatwani, S.; Jajoria, P.; Seif, A.; Alarcon, G.S.; Papalardo, E.; et al. Value of isolated iga anti-beta2 -glycoprotein i positivity in the diagnosis of the antiphospholipid syndrome. Arthritis Rheum. 2013, 65, 3186–3193. [Google Scholar] [CrossRef] [PubMed]
- Isenberg, D.A.; McClure, C.; Farewell, V.; Spellerberg, M.; Williams, W.; Cambridge, G.; Stevenson, F. Correlation of 9g4 idiotope with disease activity in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 1998, 57, 566–570. [Google Scholar] [CrossRef] [PubMed]
- Pugh-Bernard, A.E.; Silverman, G.J.; Cappione, A.J.; Villano, M.E.; Ryan, D.H.; Insel, R.A.; Sanz, I. Regulation of inherently autoreactive Vh4-34 B cells in the maintenance of human B cell tolerance. J. Clin. Invest. 2001, 108, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Gouel-Cheron, A.; Jonsson, F.; Bruhns, P. Contribution of human fcgammars to disease with evidence from human polymorphisms and transgenic animal studies. Front. Immunol. 2014, 5, 254. [Google Scholar] [CrossRef] [PubMed]
- Bruhns, P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood 2012, 119, 5640–5649. [Google Scholar] [CrossRef] [PubMed]
- Song, G.G.; Kim, J.H.; Choi, S.J.; Ji, J.D.; Lee, Y.H. Fc receptor-like 3 (FCRL3) -169 C/T polymorphism and systemic lupus erythematosus: A meta-analysis. Rheumatol. Int. 2013, 33, 2323–2329. [Google Scholar] [CrossRef] [PubMed]
- Li, F.J.; Schreeder, D.M.; Li, R.; Wu, J.; Davis, R.S. FCRL3 promotes TLR9-induced B-cell activation and suppresses plasma cell differentiation. Eur. J. Immunol. 2013, 43, 2980–2992. [Google Scholar] [CrossRef] [PubMed]
- Piotrowski, P.; Lianeri, M.; Prokop, E.; Wudarski, M.; Olesinska, M.; Jagodzinski, P.P. The FCRL3 -169t>C polymorphism might be associated with some autoantibody presence in patients with SLE in a Polish population. Mod. Rheumatol. 2014, 24, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.G.; Clatworthy, M.R. Fcgammariib in autoimmunity and infection: Evolutionary and therapeutic implications. Nat. Rev. Immunol. 2010, 10, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Su, K.; Yang, H.; Li, X.; Li, X.; Gibson, A.W.; Cafardi, J.M.; Zhou, T.; Edberg, J.C.; Kimberly, R.P. Expression profile of fcgammariib on leukocytes and its dysregulation in systemic lupus erythematosus. J. Immunol. 2007, 178, 3272–3280. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, N.; Honda, Z.; Tokunaga, K. Role of B cell inhibitory receptor polymorphisms in systemic lupus erythematosus: A negative times a negative makes a positive. J. Hum. Genet. 2006, 51, 741–750. [Google Scholar] [CrossRef] [PubMed]
- Bolland, S.; Ravetch, J.V. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 2000, 13, 277–285. [Google Scholar] [CrossRef]
- Brownlie, R.J.; Lawlor, K.E.; Niederer, H.A.; Cutler, A.J.; Xiang, Z.; Clatworthy, M.R.; Floto, R.A.; Greaves, D.R.; Lyons, P.A.; Smith, K.G. Distinct cell-specific control of autoimmunity and infection by FcgammaRIIB. J. Exp. Med. 2008, 205, 883–895. [Google Scholar] [CrossRef] [PubMed]
- McGaha, T.L.; Sorrentino, B.; Ravetch, J.V. Restoration of tolerance in lupus by targeted inhibitory receptor expression. Science 2005, 307, 590–593. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dema, B.; Charles, N. Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies 2016, 5, 2. https://doi.org/10.3390/antib5010002
Dema B, Charles N. Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies. 2016; 5(1):2. https://doi.org/10.3390/antib5010002
Chicago/Turabian StyleDema, Barbara, and Nicolas Charles. 2016. "Autoantibodies in SLE: Specificities, Isotypes and Receptors" Antibodies 5, no. 1: 2. https://doi.org/10.3390/antib5010002
APA StyleDema, B., & Charles, N. (2016). Autoantibodies in SLE: Specificities, Isotypes and Receptors. Antibodies, 5(1), 2. https://doi.org/10.3390/antib5010002