Symmetry-Break in Voronoi Tessellations
Abstract
:1. Introduction
2. Data and Methods
2.a. Scaling Properties of Voronoi tessellations
2.b. Some Exact Results
2.b.1. 2D Tessellations
- for square tessellation, we have , ;for honeycomb tessellation, we have and ,
- for triangular tessellation, we have and .
2.b.2. 3D Tessellations
- the average number of vertices is and its standard deviation is ; exploiting the Euler-Poincare relation plus the genericity property, we obtain , , , and ;
- the average surface area is (with here indicating the usual Gamma function), and its standard deviation is ;
- the average volume is, by definition, , whereas its standard deviation is .
2.c. Simulations
3. Results
3.a. Two-dimensional case
3.a.1. Number of sides of the cells
3.a.2. Area and Perimeter of the cells
3.a.3. Area and perimeter of n-sided cells
3.a.4. Anomalous Scaling
3.b. Three-dimensional case
3.b.1. Faces, Edges, Vertices
3.b.2. Area and Volume of the cells
3.b.3. Shape of the cells
4. Summary and Conclusions
Acknowledgements
References
- Voronoi, G. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier Mémoire: Sur quelques propriétées des formes quadritiques positives parfaites. J. Reine Angew. Math. 1907, 133, 97–178. [Google Scholar]
- Voronoi, G. Nouvelles Applications des Parametres Continus a la Theorie des Formes Quadratiques. Duesieme Memoire: Recherches sur les Paralleloderes Primitifs. J. Reine Angew. Math. 1908, 134, 198–287. [Google Scholar]
- Isokawa, Y. Poisson-Voronoi tessellations in three-dimensional hyperbolic spaces. Adv. Appl. Probl. 2000, 32, 648–662. [Google Scholar] [CrossRef]
- Okabe, A.; Boots, B.; Sugihara, K.; Chiu, S. N. Spatial Tessellations - Concepts and Applications of Voronoi Diagrams, 2nd ed.; Wiley: London, UK, 2000. [Google Scholar]
- Sortais, M.; Hermann, S.; Wolisz, A. Analytical Investigation of Intersection-Based Range-Free Localization Information Gain. In Proceedings of the European Wireless 2007, Paris, France, April 2007. [Google Scholar]
- Finney, J. L. Volume occupation, environment and. accessibility in proteins. The problem of the protein surface. J. Mol. Biol. 1975, 96, 721–732. [Google Scholar] [CrossRef]
- Icke, V. Particles, space and time. Astrophys. Space Sci. 1996, 244, 293–312. [Google Scholar] [CrossRef]
- Barrett, T. M. Voronoi tessellation methods to delineate harvest units for spatial forest planning. Can. J. For. Res. 1997, 27, 903–910. [Google Scholar] [CrossRef]
- Goede, A.; Preissner, R.; Frömmel, C. Voronoi cell: New method for allocation of space among atoms: Elimination of avoidable errors in calculation of atomic volume and density. J. Comp. Chem. 1997, 18, 1113–1118. [Google Scholar] [CrossRef]
- Weaire, D.; Kermode, J.P.; Wejchert, J. On the distribution of cell areas in a Voronoi network. Phil. Mag. B 1986, 53, L101–L105. [Google Scholar] [CrossRef]
- Dotera, T. Cell Crystals: Kelvin’s Polyhedra in Block Copolymer Melts. Phys. Rev. Lett. 1999, 82, 105–108. [Google Scholar] [CrossRef]
- Bennett, L. H.; Kuriyama, M.; Long, G. G.; Melamud, M.; Watson, R. E.; Weinert, M. Local atomic environments in periodic and aperiodic Al-Mn alloys. Phys. Rev. B 1986, 34, 8270–8272. [Google Scholar] [CrossRef]
- Li, S.; Wongsto, A. Unit cells for micromechanical analyses of particle-reinforced composites. Mechanics of Materials 2004, 36, 543–572. [Google Scholar] [CrossRef]
- Soyer, A.; Chomilier, J.; Mornon, J.P.; Jullien, R.; Sadoc, J.F. Voronoi tessellation reveals the condensed matter character of folded proteins. Phys. Rev. Lett. 2000, 85, 3532–3535. [Google Scholar] [CrossRef] [PubMed]
- Bassani, F.; Pastori-Parravicini, G. Electronic States and Optical Transitions in Solids; Pergamon: Oxford, UK, 1975. [Google Scholar]
- Ashcroft, N. W.; Mermin, N. D. Solid State Physics; Saunders: Philadelphia, USA, 1976. [Google Scholar]
- Tsumuraya, K.; Ishibashi, K.; Kusunoki, K. Statistics of Voronoi polyhedra in a model silicon glass. Phys. Rev. B 1993, 47, 8552. [Google Scholar] [CrossRef]
- Yu, D.-Q.; Chen, M.; Han, X.-J. Structure analysis methods for crystalline solids and supercooled liquids. Phys. Rev. E 2005, 72, 051202. [Google Scholar] [CrossRef] [PubMed]
- Hentschel, H. G. E.; Ilyin, V.; Makedonska, N.; Procaccia, I.; Schupper, N. Statistical mechanics of the glass transition as revealed by a Voronoi tessellation. Phys. Rev. E 2007, 75, 50404(R). [Google Scholar] [CrossRef] [PubMed]
- Luchnikov, V. A.; Medvedev, N. N.; Naberukhin, Yu. I.; Schober, H. R. Voronoi-Delaunay analysis of normal modes in a simple model glass. Phys. Rev. B 2000, 62, 3181. [Google Scholar] [CrossRef]
- Averill, F. W.; Painter, G. S. Pseudospherical integration scheme for electronic-structure calculations. Phys. Rev. B 1989, 39, 8115. [Google Scholar] [CrossRef]
- Rapcewicz, K.; Chen, B.; Yakobson, B.; Bernholc, J. Consistent methodology for calculating surface and interface energies. Phys. Rev. B 1998, 57, 007281. [Google Scholar] [CrossRef]
- Rapaport, D. C. Hexagonal convection patterns in atomistically simulated fluids. Phys. Rev. E 2006, 73, 025301. [Google Scholar] [CrossRef]
- Tsai F., T.-C.; Sun, N.-Z.; Yeh W., W.-G. Geophysical parameterization and parameter structure identification using natural neighbors in groundwater inverse problems. J. Hydrology 2004, 308, 269–283. [Google Scholar] [CrossRef]
- Lucarini, V.; Danihlik, E.; Kriegerova, I.; Speranza, A. Does the Danube exist? Versions of reality given by various regional climate models and climatological data sets. J. Geophys. Res. 2007, 112, D13103. [Google Scholar] [CrossRef]
- Lucarini, V.; Danihlik, R.; Kriegerova, I.; Speranza, A. Hydrological Cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models. J. Geophys. Res. 2008, 113, D09107. [Google Scholar] [CrossRef]
- Thiessen, A. H.; Alter, J. C. Climatological Data for July, 1911: District No. 10, Great Basin. Monthly Weather Review 1911, 1082–1089. [Google Scholar]
- Bowyer, A. Computing Dirichlet tessellations. Computer J. 1981, 24, 162–166. [Google Scholar] [CrossRef]
- Watson, D. F. Computing the n-dimensional tessellation with application to Voronoi polytopes. Computer J. 1981, 24, 167–172. [Google Scholar] [CrossRef]
- Tanemura, M.; Ogawa, T.; Ogita, N. A new algorithm for three-dimensional Voronoi tessellation. J. Compu. Phys. 1983, 51, 191–207. [Google Scholar] [CrossRef]
- Barber, C. B.; Dobkin, D. P.; Huhdanpaa, H.T. The Quickhull Algorithm for Convex Hulls. ACM TOMS 1996, 22, 469–483. [Google Scholar] [CrossRef]
- Han, D.; Bray, M. Automated Thiessen polygon generation. Water Resour. Res. 2006, 42, W11502. [Google Scholar] [CrossRef]
- Meijering, J. L. Interface area, edge length, and number of vertices in crystal aggregates with random nucleation: Phillips Research Reports. Philips Res. Rep. 1953, 8, 270–290. [Google Scholar]
- Christ, N. H.; Friedberg, R.; Lee, T. D. Random lattice field theory: General formulation. Nuclear Physics B 1982, 202, 89–125. [Google Scholar] [CrossRef]
- Drouffe, J. M.; Itzykson, C. Random geometry and the statistics of two-dimensional cells. Nucl. Phys. B 1984, 235, 45–53. [Google Scholar] [CrossRef]
- Miles, R. E. A synopsis of Poisson Flats In Euclidean Spaces. In Stochastic Geometry; Harding, E. F., Kendall, D. G., Eds.; Wiley: London, UK, 1974; pp. 202–227. [Google Scholar]
- Møller, J. Random tessellations in Rd. Adv. Appl. Prob. 1989, 21, 37–73. [Google Scholar] [CrossRef]
- Calka, P. Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional Poisson Voronoi tessellation and a Poisson line process. Adv. Appl. Probab. 2003, 35, 551–562. [Google Scholar] [CrossRef]
- Hilhorst, H. J. Planar Voronoi cells: the violation of Aboav’s law explained. J. Phys. A: Math. Gen. 2006, 39, 7227–7243. [Google Scholar] [CrossRef]
- Finch, S. R. unpublished. Available on http://algo.inria.fr/csolve/vi.pdf. Addendum to Finch S. R.; Mathematical Constants; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Kovalenko, I. N. Proof of David Kendall’s conjecture concerning the shape of large random polygons. Cybernetics and Systems Analysis 1997, 33, 461–467. [Google Scholar] [CrossRef]
- Hug, D.; Schneider, R. Typical cells in Poisson hyperplane tessellations. Discr. Comput. Geom. 2007, 38, 305–319. [Google Scholar] [CrossRef]
- Hug, D.; Reitzner, M.; Schneider, R. The limit shape of the zero cell in a stationary Poisson hyperplane tessellation. Ann. Probab. 2004, 32, 1140–1167. [Google Scholar]
- Kumar, S.; Kurtz, S. K.; Banavar, J. R.; Sharma, M. G. Properties of a three-dimensional Poisson-Voronoi tessellation: a Monte Carlo study. Journal of Statistical Physics 1992, 67, 523–551. [Google Scholar] [CrossRef]
- Hinde, A. L.; Miles, R. E. Monte Carlo estimates of the distributions of the random polygons of the Voronoi tessellation with respect to a Poisson process. Journal of Statistical Computation and Simulation 1980, 10, 205–223. [Google Scholar] [CrossRef]
- Zhu, H. X.; Thorpe, S. M.; Windle, A. H. The geometrical properties of irregular two-dimensional Voronoi tessellations. Philosophical Magazine A 2001, 81, 2765–2783. [Google Scholar] [CrossRef]
- Tanemura, M. Statistical distributions of Poisson-Voronoi cells in two and three Dimensions. Forma 2003, 18, 221–247. [Google Scholar]
- Hilhorst, H. J. Asymptotic statistics of the n-sided planar Poisson–Voronoi cell: I. Exact results. J. Stat. Mech. 2005, P09005. [Google Scholar] [CrossRef]
- Kumar, V. S.; Kumaran, V. Voronoi neighbor statistics of hard-disks and hard-spheres. J. Chem. Phys. 2005, 123, 074502. [Google Scholar] [CrossRef] [PubMed]
- Newman, D. The Hexagon Theorem. IEEE Trans. Inform. Theory 1982, 28, 129–137. [Google Scholar] [CrossRef]
- Du, Q.; Wang, D. The Optimal Centroidal Voronoi Tessellations and the Gersho’s Conjecture in the Three Dimensional Space. Comput. Math. Appl. 2005, 49, 1355–1373. [Google Scholar] [CrossRef]
- Karch, R.; Neumann, M.; Neumann, F.; Ullrich, R.; Neumüller, J.; Schreiner, W. A Gibbs point field model for the spatial pattern of coronary capillaries. Physica A 2006, 369, 599–611. [Google Scholar] [CrossRef]
- Swift, J.; Hohenberg, P.C. Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 1977, 15, 319–328. [Google Scholar] [CrossRef]
- Hales, T. C. A Proof of the Kepler Conjecture. Ann. Math. 2005, 162, 1065–1185. [Google Scholar] [CrossRef]
- Weaire, D.; Phelan, R. A Counter-Example to Kelvin’s Conjecture on Minimal Surfaces. Philos. Mag. Lett. 1994, 69, 107–110. [Google Scholar] [CrossRef]
- Gabbrielli, R. A new counter-example to Kelvin’s conjecture on minimal surfaces. Phil. Mag. Lett. 2009, 89. [Google Scholar] [CrossRef]
- Entezari, A.; van de Ville, D.; Möller, T. Practical Box Splines for Reconstruction on the Body Centered Cubic Lattice. IEEE T. Vis. Comput. Gr. 2008, 14, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Troadec, J. P.; Gervois, A.; Oger, L. Statistics of Voronoi cells of slightly perturbed face-centered cubic and hexagonal close-packed lattices. Europhy. Lett. 1998, 42, 167–172. [Google Scholar] [CrossRef]
- Lucarini, V. From Symmetry Breaking to Poisson Point Process in 2D Voronoi Tessellations: the Generic Nature of Hexagons. J. Stat. Phys. 2008, 130, 1047–1062. [Google Scholar] [CrossRef]
- Lucarini, V. Three-Dimensional Random Voronoi Tessellations: From Cubic Crystal Lattices to Poisson Point Processes. J. Stat. Phys. 2009, 134, 185–206. [Google Scholar] [CrossRef]
- Lewis, F. T. The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of Cucumis. Anat. Rec. 1928, 38, 341–376. [Google Scholar] [CrossRef]
- Desch, C. H. The solidification of metals from the liquid state. J. Inst. Metals 1919, 22, 241. [Google Scholar]
- Finch, S. R. Mathematical Constants; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Geim, A. K.; Novoselov, K. S. The rise of grapheme. Nature Materials 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Hilhorst, H. J. Heuristic theory for many-faced d-dimensional Poisson-Voronoi cells, 2009; arXiv:cond-mat/0906.4449v1.
- Dodson, C. T. J. On the entropy flows to disorder. 2008; arXiv:math-ph /0811.4318v2. [Google Scholar]
- Coles, S. G. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001. [Google Scholar]
© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lucarini, V. Symmetry-Break in Voronoi Tessellations. Symmetry 2009, 1, 21-54. https://doi.org/10.3390/sym1010021
Lucarini V. Symmetry-Break in Voronoi Tessellations. Symmetry. 2009; 1(1):21-54. https://doi.org/10.3390/sym1010021
Chicago/Turabian StyleLucarini, Valerio. 2009. "Symmetry-Break in Voronoi Tessellations" Symmetry 1, no. 1: 21-54. https://doi.org/10.3390/sym1010021
APA StyleLucarini, V. (2009). Symmetry-Break in Voronoi Tessellations. Symmetry, 1(1), 21-54. https://doi.org/10.3390/sym1010021