Next Article in Journal
Tsallis, Rényi and Sharma-Mittal Holographic Dark Energy Models in Loop Quantum Cosmology
Next Article in Special Issue
A New Class of Hermite-Apostol Type Frobenius-Euler Polynomials and Its Applications
Previous Article in Journal
An Iterated Hybrid Local Search Algorithm for Pick-and-Place Sequence Optimization
Previous Article in Special Issue
On Classical Gauss Sums and Some of Their Properties
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Symmetric Properties of Carlitz’s Type q-Changhee Polynomials

1
Department of Mathematics, Dong-A University, Busan 49315, Korea
2
Department of Mechanical System Engineering, Dongguk University, Gyeongju 38066, Korea
3
Department of Mathematics Education, Daegu University, Gyeongsan 38066, Korea
*
Author to whom correspondence should be addressed.
Symmetry 2018, 10(11), 634; https://doi.org/10.3390/sym10110634
Submission received: 23 October 2018 / Revised: 9 November 2018 / Accepted: 10 November 2018 / Published: 13 November 2018
(This article belongs to the Special Issue Current Trends in Symmetric Polynomials with their Applications)

Abstract

:
Changhee polynomials were introduced by Kim, and the generalizations of these polynomials have been characterized. In our paper, we investigate various interesting symmetric identities for Carlitz’s type q-Changhee polynomials under the symmetry group of order n arising from the fermionic p-adic q-integral on Z p .

1. Introduction

For an odd prime number p, Z p , Q p , and C p denote the ring of p-adic integers, the field of p-adic rational numbers, and the completions of algebraic closure of Q p , respectively, throughout this paper.
The p-adic norm is normalized as | p | p = 1 p , and let q be an indeterminate in C p with | q - 1 | p < p - 1 p - 1 . The q-analogue of number x is defined as
[ x ] q = 1 - q x 1 - q .
Note that lim q 1 [ x ] q = x for each x Z p .
Let C ( Z p ) = { f | f : Z p R is continuous } . Then, a fermionic p-adic q-integral of f C ( Z p ) is defined by Kim as [1,2,3,4,5,6] :
I - q ( f ) = Z p f ( x ) d μ - q ( x ) = lim N x = 0 p N - 1 f ( x ) μ - q x + p N Z p = lim N 1 [ p N ] - q x = 0 p N - 1 f ( x ) ( - q ) x = lim N [ 2 ] q 2 x = 0 p N - 1 f ( x ) ( - q ) x .
On the other hand, it is well known that the Euler polynomial E n ( x ) is given by the Appell sequence with g ( t ) = 1 2 e t + 1 , giving the the generating function
2 e t + 1 e x t = n = 0 E n ( x ) t n n ! ,
(see [7,8,9,10,11,12,13,14,15,16,17]). In particular, if x = 0 , E n = E n ( 0 ) n N is called the Euler number.
As a q-analogue of Euler polynomials, the Carlitz’s type q-Euler polynomial E n , q ( x ) is defined by
n = 0 E n , q ( x ) t n n ! = Z p e [ x + y ] q t d μ - q ( y ) ,
(see [2,13,14,15,16,17]). In particular, if x = 0 , E n , q = E n , q ( 0 ) is called the q-Euler number.
By (3), the Carlitz’s type q-Euler polynomial E n , q ( x ) is obtained as
E n , q ( x ) = Z p [ x + y ] q n d μ - q ( y ) , ( n 0 ) .
From the fermionic p-adic q-integral on Z p , the degenerate q-Euler polynomial E n , λ , q ( x ) is defined as [16]:
n = 0 E n , λ , q ( x ) t n n ! = Z p ( 1 + λ t ) [ x + y ] q λ d μ - q ( y ) .
By the binomial expansion of ( 1 + λ t ) [ x + y ] q λ , we get
Z p ( 1 + λ t ) [ x + y ] q λ d μ - q ( y ) = n = 0 λ n Z p [ x + y ] q λ n d μ - q ( y ) t n n ! ,
where ( α ) n = α ( α - 1 ) ( α - n + 1 ) for n N , and by (5) and (6), we have
E n , λ , q ( x ) = λ n Z p [ x + y ] q λ n d μ - q ( y ) , ( n N ) .
Since
( α ) n = α ( α - 1 ) ( α - n + 1 ) = l = 0 n S 1 n , l α l ,
E n , λ , q ( x ) = λ n l = 0 n S 1 ( n , l ) Z p [ x + y ] q λ l d μ - q ( y ) = l = 0 n λ n - l S 1 ( n , l ) E l , q ( x ) ,
where S 1 ( n , m ) is the Stirling number of the first kind (see [2,7,8,12,17,18]).
Now, we apply these polynomials to Changhee polynomials, introduced by Kim et al. [19]. The Changhee polynomial of the first kind C h n ( x ) is defined by the generating function to be
n = 0 C h n ( x ) t n n ! = Z p ( 1 + t ) x + y d μ - 1 ( y ) = 2 2 + t ( 1 + t ) x .
(see [20,21]).
In view point of (3) and (9), Carlitz’s type q-Changhee polynomial C h n , q ( x ) is defined by
n = 0 C h n , q ( x ) t n n ! = Z p ( 1 + t ) [ x + y ] q d μ - q ( y ) ,
(see [18,22]).
By the binomial expansion of ( 1 + t ) [ x + y ] q ,
n = 0 C h n , q ( x ) t n n ! = Z p ( 1 + t ) [ x + y ] q d μ - q ( y ) = n = 0 Z p [ x + y ] q n d μ - q ( y ) t n n ! ,
and so the equation (10) and (11) yield the following:
C h n , q ( x ) = Z p [ x + y ] q n d μ - q ( y ) ,
(see [20,21]).
In the past decade, many different generalizations of Changhee polynomials have been studied (see [19,20,22,23,24,25,26,27,28,29,30,31,32]), and the relationship between important combinatorial polynomials and those polynomials was found.
Symmetric identities of special polynomials are important and interesting in number theory, pure and applied mathematics. Symmetric identities of many different polynomials were investigated in [5,10,14,16,32,33,34,35,36,37,38,39]. In particular, C. Cesarano [40] presented some techniques regarding the generating functions used, and these identities can be applicable to the theory of porous materials [41].
In current paper, we construct symmetric identities for the Carlitz’s type q-Changhee polynomials under the symmetry group of order n arising from the fermionic p-adic q-integral on Z p , and the proof methods which was used in the Kim’s previous researches are also used as good tools in this paper (see [5,10,14,16,32,33,34,35,36,37,38,39]).

2. Symmetric Identities for the Carlitz’s Type q -Changhee Polynomials

Let t C p with | t | p < p - 1 p - 1 , and let S n be the symmetry group of degree n. For positive integers w 1 , w 2 , , w n with w i 1 ( mod 2 ) for each i = 1 , 2 , n , we consider the following integral equation for the fermionic p-adic q-integral on Z p ;
Z p ( 1 + t ) i = 1 n - 1 w i y + i = 1 n w i x + w n i = 1 n - 1 j = 1 j i n - 1 w j k i q d μ - q w 1 w 2 w n - 1 ( y ) = [ 2 ] q w 1 w n - 1 2 lim N m = 0 w n - 1 y = 0 p N - 1 ( 1 + t ) i = 1 n - 1 w i ( m + w n y ) + i = 1 n w i x + w n i = 1 n j = 1 j i n - 1 w j k i q × ( - 1 ) m + w n y q w 1 w 2 w n - 1 ( m + w n y ) .
From (13), we get
2 [ 2 ] q w 1 w 2 w n - 1 m = 1 n - 1 k m = 0 w m - 1 ( - 1 ) i = 1 n - 1 k i q w n j = 1 n - 1 i = 1 i j n - 1 w i k j × Z p ( 1 + t ) i = 1 n - 1 w i y + i = 1 n w i x + w n i = 1 n - 1 j = 1 j i n - 1 w j k i q d μ - q w 1 w 2 w n - 1 ( y ) = lim N m = 1 n - 1 k m = 0 w m - 1 l = 0 w n - 1 y = 0 p N - 1 ( 1 + t ) i = 1 n - 1 w i ( m + w n y ) + i = 1 n w i x + w n i = 1 n j = 1 j i n - 1 w j k i q × ( - 1 ) i = 1 n - 1 k i + l + y q j = 1 n - 1 l + j = 1 n w j y + w n j = 1 n - 1 i = 1 i j w i k i .
If we put
F ( w 1 , w 2 , , w n ) = 2 [ 2 ] q w 1 w 2 w n - 1 m = 1 n - 1 k m = 0 w m - 1 ( - 1 ) i = 1 n - 1 k i q w n j = 1 n - 1 i = 1 i j n - 1 w i k j × Z p ( 1 + t ) i = 1 n - 1 w i y + i = 1 n w i x + w n i = 1 n - 1 j = 1 j i n - 1 w j k i q d μ - q w 1 w 2 w n - 1 ( y ) ,
then, by (14), we know that F ( w 1 , w 2 , , w n ) is invariant for any permutation σ S n .
Hence, by (14) and (15), we obtain the following theorem.
Theorem 1.
Let w 1 , w 2 , , w n be positive odd integers. For any σ S n , F ( w σ ( 1 ) , w σ ( 2 ) , , w σ ( n ) ) have the same value.
By (1), we know that
i = 1 n - 1 w i q y + w n x + w n i = 1 n - 1 k i w i q w 1 w 2 w n - 1 = i = 1 n - 1 w i y + i = 1 n w i x + w n i = 1 n - 1 j = 1 j i n - 1 w j k i q .
From (5) and (16), we derive the following identities.
Z p ( 1 + t ) i = 1 n - 1 w i y + i = 1 n w i x + w n i = 1 n - 1 j = 1 j i n - 1 w j k i q d μ - q w 1 w 2 w n - 1 ( y ) = ( 1 + t ) i = 1 n - 1 w i q Z p ( 1 + t ) y + w n x + w n i = 1 n - 1 k i w i q w 1 w 2 w n - 1 d μ - q w 1 w 2 w n - 1 ( y ) = l = 0 i = 1 n - 1 w i q l t l m = 0 C h m , q w 1 w 2 w n - 1 w n x + w n i = 1 n - 1 k i w i t m m ! = m = 0 r = 0 m i = 1 n - 1 w i q m - r m r C h r , q w 1 w 2 w n - 1 w n x + w n i = 1 n - 1 k i w i t m m ! ,
for each positive integer n. Thus, by Theorem 1 and (17), we obtain the following corollary.
Corollary 1.
Let w 1 , w 2 , , w n be positive integers with w i 1 ( mod 2 ) for each i = 1 , 2 , , n , and let m be a nonnegative integer. Then, for any permutation τ S n ,
2 [ 2 ] q w τ ( 1 ) w τ ( 2 ) w τ ( n ) r = 0 m l = 1 n - 1 k l = 0 w τ ( l ) - 1 ( - 1 ) i = 1 n - 1 k i q w τ ( n ) i = 1 n - 1 j = 1 j i n - 1 w τ ( j ) k i × i = 1 n - 1 w τ ( i ) q m - r m r C h r , q w τ ( 1 ) w τ ( 2 ) w τ ( n - 1 ) w τ ( n ) x + w τ ( n ) i = 1 n - 1 k i w τ ( i )
have the same expressions.
Note that, by the definition of [ x ] q ,
y + w n x + w n i = 1 n - 1 k i w i q w 1 w 2 w n - 1 = [ w n ] q i = 1 n - 1 w i q i = 1 n - 1 j = 1 j i n - 1 w j k i q w n + q w n i = 1 n - 1 j = 1 j i n - 1 w j k i y + w n x q w 1 w 2 w n - 1 .
By (12), we get
C h m , q w 1 w 2 w n - 1 w n x + w n i = 1 n - 1 k i w i = Z p y + w n x + w n i = 1 n - 1 k i w i q w 1 w 2 w n - 1 m d μ - q w 1 w 2 w n - 1 ,
and by (8) and (18),
y + w n x + w n i = 1 n - 1 k i w i q w 1 w 2 w n - 1 m = [ w n ] q i = 1 n - 1 w i q i = 1 n - 1 j = 1 j i n - 1 w j k i q w n + q w n i = 1 n - 1 j = 1 j i n - 1 w j k i y + w n x q w 1 w 2 w n - 1 m = l = 0 m S 1 ( m , l ) [ w n ] q i = 1 n - 1 w i q i = 1 n - 1 j = 1 j i n - 1 w j k i q w n + q w n i = 1 n - 1 j = 1 j i n - 1 w j k i y + w n x q w 1 w 2 w n - 1 l = l = 0 m S 1 ( m , l ) i = 1 l l i [ w n ] q i = 1 n - 1 w i q l - i i = 1 n - 1 j = 1 j i n - 1 w j k i q w n l - i × q i w n i = 1 n - 1 j = 1 j i n - 1 w j k i y + w n x q 1 w w 2 w n - 1 i .
From (4), (19) and (20), we have
C h m , q w 1 w 2 w n - 1 w n x + w n i = 1 n - 1 k i w i = l = 0 m S 1 ( m , l ) i = 1 l l i [ w n ] q i = 1 n - 1 w i q l - i i = 1 n - 1 j = 1 j i n - 1 w j k i q w n l - i × q i w n i = 1 n - 1 j = 1 j i n - 1 w j k i Z p y + w n x q w 1 w 2 w n - 1 i d μ - q w 1 w 2 w n - 1 ( y ) = l = 0 m S 1 ( m , l ) i = 1 l l i [ w n ] q i = 1 n - 1 w i q l - i i = 1 n - 1 j = 1 j i n - 1 w j k i q w n l - i × q i w n i = 1 n - 1 j = 1 j i n - 1 w j k i C h i , q w 1 w 2 w n - 1 ( w n x ) .
From (21), we have
2 [ 2 ] q w 1 w 2 w n r = 0 m l = 1 n - 1 k l = 0 w l - 1 ( - 1 ) i = 1 n - 1 k i q w n i = 1 n - 1 j = 1 j i n - 1 w j k i × i = 1 n - 1 w i q m - r m r C h r , q w 1 w 2 w n - 1 w n x + w n i = 1 n - 1 k i w i = 2 [ 2 ] q w 1 w 2 w n r = 0 m l = 1 n - 1 k l = 0 w l - 1 ( - 1 ) i = 1 n - 1 k i q w n i = 1 n - 1 j = 1 j i n - 1 w j k i i = 1 n - 1 w i q m - r m r × p = 0 r S 1 ( r , p ) i = 1 l l i [ w n ] q i = 1 n - 1 w i q p - i i = 1 n - 1 j = 1 j i n - 1 w j k i q w n p - i × q i w n i = 1 n - 1 j = 1 j i n - 1 w j k i C h i , q w 1 w 2 w n - 1 ( w n x ) = r = 0 m l = 0 r i = 1 l S 1 ( r , l ) m r l i [ w n ] q i = 1 n - 1 w i q p - i i = 1 n - 1 w i q m - r C h i , q w 1 w 2 w n - 1 ( w n x ) × 2 [ 2 ] q w 1 w 2 w n l = 1 n - 1 k l = 0 w l - 1 ( - 1 ) i = 1 n - 1 k i q ( 1 + i ) w n i = 1 n - 1 j = 1 j i n - 1 w j k i i = 1 n - 1 j = 1 j i n - 1 w j k i q w n p - i = r = 0 m l = 0 r i = 1 l S 1 ( r , l ) m r l i × [ w n ] q i = 1 n - 1 w i q p - i i = 1 n - 1 w i q m - r C h i , q w 1 w 2 w n - 1 ( w n x ) F n , q w n ( w 1 , , w n - 1 | i + 1 ) ,
where
F n , q ( w 1 , , w n - 1 | i ) = 2 [ 2 ] q w 1 w 2 w n l = 1 n - 1 k l = 0 w l - 1 ( - 1 ) i = 1 n - 1 k i q i i = 1 n - 1 j = 1 j i n - 1 w j k i t = 1 n - 1 j = 1 j t n - 1 w j k t q p - i - 1
Theorem 2.
For each nonnegative odd integers w 1 , w 2 , , w n and for any permutation σ in the symmetry group of degree n, the expressions
r = 0 m l = 0 r i = 1 l S 1 ( r , l ) m r l i [ w σ ( n ) ] q i = 1 n - 1 w σ ( i ) q p - i i = 1 n - 1 w σ ( i ) q m - r × C h i , q w σ ( 1 ) w σ ( 2 ) w σ ( n - 1 ) w σ ( n ) x F n , q w σ ( n ) w σ ( 1 ) , , w σ ( n - 1 ) | i + 1
have the same.

3. Conclusion

The Changhee numbers are closely related with the Euler numbers, the Stirling numbers of the first kind and second kind and the harmonic numbers, and so on. Throughout this paper, we investigate that the function F ( w σ ( 1 ) , w σ ( 2 ) , , w σ ( n ) ) for the Carlitz’s type q-Changhee polynomials is invariant under the symmetry group σ S n . From the invariance of F ( w σ ( 1 ) , w σ ( 2 ) , , w σ ( n ) ) , σ S n , we construct symmetric identities of the Carlitz’s type q-Changhee polynomials from the fermionic p-adic q-integral on Z p . As Bernoulli and Euler polynomials, our properties on the Carlitz’s type q-Changhee polynomials play an crucial role in finding identities for numbers in algebraic number theory.

Author Contributions

All authors contributed equally to this work; All authors read and approved the final manuscript.

Funding

This research was supported by the Daegu University Research Grant, 2018.

Acknowledgments

The authors would like to thank the referees for their valuable and detailed comments which have significantly improved the presentation of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kim, T. q-Euler numbers and polynomials associated with p-adic q-integrals. J. Nonlinear Math. Phys. 2007, 14, 15–27. [Google Scholar] [CrossRef]
  2. Kim, T. Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Z p . Russ. J. Math. Phys. 2009, 16, 484–491. [Google Scholar] [CrossRef]
  3. Kim, T. On q-analogue of the p-adic log gamma functions and related integral. J. Number Theory 1999, 76, 320–329. [Google Scholar] [CrossRef]
  4. Kim, T. q-Volkenborn integration. Russ. J. Math. Phys. 2002, 9, 288–299. [Google Scholar]
  5. Kim, T. Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on Z p . Russ. J. Math. Phys. 2009, 16, 93–96. [Google Scholar] [CrossRef]
  6. Kim, D.S.; Kim, T. Some p-adic integrals on Z p associated with trigonometric Functions. Russ. J. Math. Phys. 2018, 25, 300–308. [Google Scholar] [CrossRef]
  7. Kim, T. A study on the q-Euler numbers and the fermionic q-integrals of the product of several type q-Bernstein polynomials on Z p . Adv. Stud. Contemp. Math. 2013, 23, 5–11. [Google Scholar]
  8. Bayad, A.; Kim, T. Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials. Russ. J. Math. Phys. 2011, 18, 133–143. [Google Scholar] [CrossRef]
  9. Gaboury, S.; Tremblay, R.; Fugere, B.-J. Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials. Proc. Jangjeon Math. Soc. 2014, 17, 115–123. [Google Scholar]
  10. Kim, D.S.; Kim, T. Some symmetric identites for the higher-order q-Euler polynomials related to symmetry group S3 arising from p-adic q-fermionic integral on Z p . Filomat 2016, 30, 1717–1721. [Google Scholar] [CrossRef]
  11. Sharma, A. q-Bernoulli and Euler numbers of higher order. Duke Math. J. 1958, 25, 343–353. [Google Scholar] [CrossRef]
  12. Srivastava, H. Some generalizations and basic (or q-)extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
  13. Zhang, Z.; Yang, H. Some closed formulas for generalized Bernoulli-Euler numbers and polynomials. Proc. Jangjeon Math. Soc. 2008, 11, 191–198. [Google Scholar]
  14. Kim, T.; Kim, D.S. Identities of symmetry for degenerate Euler polynomials and alternating generalized falling factorial sums. Iran. J. Sci. Technol. Trans. A Sci. 2017, 41, 939–949. [Google Scholar] [CrossRef]
  15. Carlitz, L. q-Bernoulli and Eulerian numbers. Trans. Amer. Math. Soc. 1954, 76, 332–350. [Google Scholar]
  16. Kim, D.S.; Kim, T. Symmetric identities of higher-order degenerate q-Euler polynomials. J. Nonlinear Sci. Appl. 2016, 9, 443–451. [Google Scholar] [CrossRef]
  17. Comtet, L. Advanced Combinatorics; Reidel: Dordrecht, The Netherlands, 1974. [Google Scholar]
  18. Dolgy, D.V.; Jang, G.W.; Kwon, H.I.; Kim, T. A note on Carlitzs type q-Changhee numbers and polynomials. Adv. Stud. Contemp. Math. 2017, 27, 451–459. [Google Scholar]
  19. Kim, D.S.; Kim, T.; Seo, J.J. A note on Changhee polynomials and numbers. Adv. Stud. Theor. Phys. 2013, 7, 993–1003. [Google Scholar] [CrossRef]
  20. Kim, T.; Kim, D.S. A note on nonlinear Changhee differential equations. Russ. J. Math. Phys. 2016, 23, 88–92. [Google Scholar] [CrossRef]
  21. Kim, T.; Kim, D.S. Identities for degenerate Bernoulli polynomials and Korobov polynomials of the first kind. Sci. China Math. 2018. [Google Scholar] [CrossRef]
  22. Kim, B.M.; Jang, L.C.; Kim, W.; Kwon, H.I. On Carlitz’s Type Modified Degenerate Changhee Polynomials and Numbers. Discrete Dyn. Nat. Soc. 2018, 2018, 9520269. [Google Scholar] [CrossRef]
  23. Kim, T.; Kim, D.S. Differential equations associated with degenerate Changhee numbers of the second kind. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 2018. [Google Scholar] [CrossRef]
  24. Moon, E.J.; Park, J.W. A note on the generalized q-Changhee numbers of higher order. J. Comput. Anal. Appl. 2016, 20, 470–479. [Google Scholar]
  25. Kwon, J.; Park, J.W. On modified degenerate Changhee polynomials and numbers. J. Nonlinear Sci. Appl. 2015, 18, 295–305. [Google Scholar] [CrossRef]
  26. Kim, T.; Kwon, H.I.; Seo, J.J. Degenerate q-Changhee polynomials. J. Nonlinear Sci. Appl. 2016, 9, 2389–2393. [Google Scholar] [CrossRef]
  27. Kwon, H.I.; Kim, T.; Seo, J.J. A note on degenerate Changhee numbers and polynomials. Proc. Jangjeon Math. Soc. 2015, 18, 295–305. [Google Scholar]
  28. Arici, S.; Ağyüz, E.; Acikgoz, M. On a q-analogue of some numbers and polynomials. J. Ineqal. Appl. 2015, 2015, 19. [Google Scholar] [CrossRef] [Green Version]
  29. Pak, H.K.; Jeong, J.; Kang, D.J.; Rim, S.H. Changhee-Genocchi numbers and their applications. ARS Combin. 2018, 136, 153–159. [Google Scholar]
  30. Kim, B.M.; Jeong, J.; Rim, S.H. Some explicit identities on Changhee-Genocchi polynomials and numbers. Adv. Differ. Equ. 2016, 2016, 202. [Google Scholar] [CrossRef]
  31. Rim, S.H.; Park, J.W.; Pyo, S.S.; Kwon, J. The n-th twisted Changhee polynomials and numbers. Bull. Korean Math. Soc. 2015, 52, 741–749. [Google Scholar] [CrossRef]
  32. Simsek, Y. Identities on the Changhee numbers and Apostol-type Daehee polynomials. Adv. Stud. Contemp. Math. 2017, 27, 199–212. [Google Scholar]
  33. Kim, T.; Kim, D.S. Degenerate Bernstein polynomials. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 2018. [Google Scholar] [CrossRef]
  34. Liu, C.; Bao, W. Application of Probabilistic Method on Daehee Sequences. Eur. J. Pure Appl. Math. 2018, 11, 69–78. [Google Scholar] [CrossRef] [Green Version]
  35. Kim, D.S.; Lee, N.; Na, J.; Park, K.H. Abundant symmetry for higher-order Bernoulli polynomials (I). Adv. Stud. Contemp. Math. 2013, 23, 461–482. [Google Scholar]
  36. Kim, D.S.; Lee, N.; Na, J.; Pak, K.H. Identities of symmetry for higher-order Euler polynomials in three variables (I). Adv. Stud. Contemp. Math. 2012, 22, 51–74. [Google Scholar] [CrossRef]
  37. Kim, D.S.; Lee, N.; Na, J.; Pak, K.H. Identities of symmetry for higher-order Bernoulli polynomials in three variables (II). Proc. Jangjeon Math. Soc. 2013, 16, 359–378. [Google Scholar]
  38. Kim, D.S. Symmetry identities for generalized twisted Euler polynomials twisted by unramified roots of unity. Proc. Jangjeon Math. Soc. 2012, 15, 303–316. [Google Scholar]
  39. Kim, T.; Kim, D.S. An identity of symmetry for the degenerate Frobenius-Euler polynomials. Math. Slovaca 2008, 68, 239–243. [Google Scholar] [CrossRef]
  40. Cesarano, C. Operational methods and new identities for Hermit polynomials. Math. Model. Nat. Phenom. 2017, 12, 44–50. [Google Scholar] [CrossRef]
  41. Marin, M. Weak solutions in elasticity of dipolar porous materials. Math. Probl. Eng. 2008, 2008, 158908. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Kim, Y.; Kim, B.M.; Park, J.-W. Symmetric Properties of Carlitz’s Type q-Changhee Polynomials. Symmetry 2018, 10, 634. https://doi.org/10.3390/sym10110634

AMA Style

Kim Y, Kim BM, Park J-W. Symmetric Properties of Carlitz’s Type q-Changhee Polynomials. Symmetry. 2018; 10(11):634. https://doi.org/10.3390/sym10110634

Chicago/Turabian Style

Kim, Yunjae, Byung Moon Kim, and Jin-Woo Park. 2018. "Symmetric Properties of Carlitz’s Type q-Changhee Polynomials" Symmetry 10, no. 11: 634. https://doi.org/10.3390/sym10110634

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop