Stability of the Non-Hyperbolic Zero Equilibrium of Two Close-to-Symmetric Systems of Difference Equations with Exponential Terms
Abstract
:1. Introduction
2. Stability of Zero Equilibrium of Equation (1)
3. Stability of Zero Equilibrium of Equation (2)
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Clark, D.; Kulenovic, M.R.S.; Selgrade, J.F. Global asymptotic behavior of a two-dimensional difference equation modeling competition. Nonlinear Anal. 2003, 52, 1765–1776. [Google Scholar] [CrossRef]
- Grove, E.A.; Ladas, G.; Prokup, N.R.; Levis, R. On the global behavior of solutions of a biological model. Commun. Appl. Nonlinear Anal. 2003, 7, 33–46. [Google Scholar]
- Kocic, V.L.; Ladas, G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- El-Metwally, E.; Grove, E.A.; Ladas, G.; Levins, R.; Radin, M. On the difference equation, xn+1 = α + βxn−1e−xn. Nonlinear Anal. 2001, 47, 4623–4634. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Stefanidou, G.; Papadopoulos, K.B. On a modification of a discrete epidemic model. Comput. Math. Appl. 2010, 59, 3559–3569. [Google Scholar] [CrossRef]
- Stević, S. Asymptotic behavior of a nonlinear difference equation. Indian J. Pure Appl. Math. 2003, 34, 1681–1687. [Google Scholar]
- Stević, S. A short proof of the Cushing-Henson conjecture. Discret. Dyn. Nat. Soc. 2006, 2006, 37264. [Google Scholar] [CrossRef]
- Stević, S. On a discrete epidemic model. Discret. Dyn. Nat. Soc. 2007, 2007, 87519. [Google Scholar] [CrossRef]
- Carr, J. Applications of Centre Manifold Theory; Springer: Heidelberg/Berlin, Germany, 1982. [Google Scholar]
- Kuznetsov, Y.A. Elements of Applied Bifurcation Theory, 2nd ed.; Applied Mathematical Sciences; Springer: Heidelberg/Berlin, Germany, 1998; Volume 112. [Google Scholar]
- Berg, L.; Stević, S. On some systems of difference equations. Appl. Math. Comput. 2011, 218, 1713–1718. [Google Scholar] [CrossRef]
- Stević, S. On some solvable systems of difference equations. Appl. Math. Comput. 2012, 218, 5010–5018. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Schinas, C.J. Persistence, oscillatory behavior and periodicity of the solutions of a system of two nonlinear difference equations. J. Differ. Equ. Appl. 1998, 4, 315–323. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Schinas, C.J. On a system of two nonlinear difference equations. J. Math. Anal. Appl. 1998, 219, 415–426. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Schinas, C.J. Invariants and oscillation for systems of two nonlinear difference equations. Nonlinear Anal. 2001, 46, 967–978. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Schinas, C.J. Oscillation and asymptotic stability of two systems of difference equations of rational form. J. Differ. Equ. Appl. 2001, 7, 601–617. [Google Scholar] [CrossRef]
- Stević, S.; Iričanin, B.; Šmarda, Z. On a close to symmetric system of difference equations of second order. Adv. Differ. Equ. 2015, 2015, 264. [Google Scholar] [CrossRef]
- Stević, S.; Iričanin, B.; Šmarda, Z. On a product-type system of difference equations of second order solvable in closed form. J. Inequal. Appl. 2015, 2015, 327. [Google Scholar] [CrossRef]
- Stević, S.; Iričanin, B.; Šmarda, Z. Solvability of a close to symmetric system of difference equations. Electron. J. Differ. Equ. 2016, 2016, 1–13. [Google Scholar]
- Papaschinopoulos, G.; Radin, M.; Schinas, C.J. On the system of two difference equations of exponential form: xn+1 = a + bxn−1e−yn, yn+1 = c + dyn−1e−xn. Math. Comput. Model. 2011, 54, 2969–2977. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Radin, M.; Schinas, C.J. Study of the asymptotic behavior of three systems of difference equations of exponential form. Appl. Math. Comput. 2012, 218, 5310–5318. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Ellina, G.; Papadopoulos, K.B. Asymptotic behavior of the positive solutions of an exponential type system of difference equations. Appl. Math. Comput. 2014, 245, 181–190. [Google Scholar] [CrossRef]
- Papaschinopoulos, G.; Fotiades, N.; Schinas, C.J. On a system of difference equations including exponential terms. J. Differ. Equ. Appl. 2014, 20, 717–732. [Google Scholar] [CrossRef]
- Psarros, N.; Papaschinopoulos, G.; Schinas, C.J. Semistability of two systems of difference equations using centre manifold theory. Math. Methods Appl. Sci. 2016, 39, 5216–5222. [Google Scholar] [CrossRef]
- Stević, S. On a system of difference equations. Appl. Math. Comput. 2011, 218, 3372–3378. [Google Scholar] [CrossRef]
- Stević, S. On the system of difference equations xn = cnyn−3/(an + bnyn−1xn−2yn−3), yn = γnxn−3/(αn + βnxn−1yn−2xn−3). Appl. Math. Comput. 2013, 219, 4755–4764. [Google Scholar]
- Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On some solvable difference equations and systems of difference equations. Abstr. Appl. Anal. 2012, 2012, 541761. [Google Scholar] [CrossRef]
- Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On a solvable system of rational difference equations. J. Differ. Equ. Appl. 2014, 20, 811–825. [Google Scholar] [CrossRef]
- Elaydi, S. Discrete Chaos, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Berg, L.; Stević, S. On the asymptotics of the difference equation yn(1 + yn−1⋯yn−k+1) = yn−k. J. Differ. Equ. Appl. 2011, 17, 577–586. [Google Scholar] [CrossRef]
- Iričanin, B.; Stević, S. Eventually constant solutions of a rational difference equation. Appl. Math. Comput. 2009, 215, 854–856. [Google Scholar] [CrossRef]
- Kent, C.M. Convergence of solutions in a non-hyperbolic case. Nonlinear Anal. 2001, 47, 4651–4665. [Google Scholar] [CrossRef]
- Iričanin, B.; Stević, S. Some systems of nonlinear difference equations of higher order with periodic solutions. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 2006, 13, 499–508. [Google Scholar]
- Camouzis, E.; Papaschinopoulos, G. Global asymptotic behavior of positive solutions on the system of rational difference equations xn+1 = 1 + , yn+1 = 1 + . Appl. Math. Lett. 2004, 17, 733–737. [Google Scholar] [CrossRef]
- Psarros, N.; Papaschinopoulos, G.; Schinas, C.J. Study of the stability of a 3 × 3 system of difference equations using Centre Manifold Theory. Appl. Math. Lett. 2016, 64, 185–192. [Google Scholar] [CrossRef]
- Psarros, N.; Papaschinopoulos, G.; Schinas, C.J. On the stability of some systems of exponential difference equations. Opusc. Math. 2018, 38, 95–115. [Google Scholar] [CrossRef]
- Stević, S. On a third-order system of difference equations. Appl. Math. Comput. 2012, 218, 7649–7654. [Google Scholar] [CrossRef]
- Stević, S. On some periodic systems of max-type difference equations. Appl. Math. Comput. 2012, 218, 11483–11487. [Google Scholar] [CrossRef]
- Stević, S. On a solvable system of difference equations of kth order. Appl. Math. Comput. 2013, 219, 7765–7771. [Google Scholar] [CrossRef]
- Stević, S. On a cyclic system of difference equations. J. Differ. Equ. Appl. 2014, 20, 733–743. [Google Scholar] [CrossRef]
- Stević, S. Boundedness and persistence of some cyclic-type systems of difference equations. Appl. Math. Lett. 2016, 56, 78–85. [Google Scholar] [CrossRef]
- Stević, S.; Diblik, J.; Iričanin, B.; Šmarda, Z. On a third-order system of difference equations with variable coefficients. Abstr. Appl. Anal. 2012, 2012, 508523. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mylona, C.; Psarros, N.; Papaschinopoulos, G.; Schinas, C. Stability of the Non-Hyperbolic Zero Equilibrium of Two Close-to-Symmetric Systems of Difference Equations with Exponential Terms. Symmetry 2018, 10, 188. https://doi.org/10.3390/sym10060188
Mylona C, Psarros N, Papaschinopoulos G, Schinas C. Stability of the Non-Hyperbolic Zero Equilibrium of Two Close-to-Symmetric Systems of Difference Equations with Exponential Terms. Symmetry. 2018; 10(6):188. https://doi.org/10.3390/sym10060188
Chicago/Turabian StyleMylona, Chrysoula, Nikolaos Psarros, Garyfalos Papaschinopoulos, and Christos Schinas. 2018. "Stability of the Non-Hyperbolic Zero Equilibrium of Two Close-to-Symmetric Systems of Difference Equations with Exponential Terms" Symmetry 10, no. 6: 188. https://doi.org/10.3390/sym10060188
APA StyleMylona, C., Psarros, N., Papaschinopoulos, G., & Schinas, C. (2018). Stability of the Non-Hyperbolic Zero Equilibrium of Two Close-to-Symmetric Systems of Difference Equations with Exponential Terms. Symmetry, 10(6), 188. https://doi.org/10.3390/sym10060188