Sharp Bounds on the Higher Order Schwarzian Derivatives for Janowski Classes
Abstract
:1. Introduction
2. Main Results
- 1.
- If , then
- 2.
- (a) If either of the set of conditions:(b) If and:
- 3.
- If and:
- 1.
- If , then .
- 2.
- (a) If A and B satisfy either:
- 3.
- If A and B satisfy the conditions , and:
3. Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Polon. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef]
- Nehari, Z. The Schwarzian derivative and schlicht functions. Bull. Am. Math. Soc. 1949, 55, 545–551. [Google Scholar] [CrossRef]
- Kraus, W. Über den Zusammenhang einiger Characteristiken eines einfach zusammenhängenden Bereiches mit der Kreisabbildung. Mitt. Math. Sem. Giessen. 1932, 21, 1–28. [Google Scholar]
- Hille, E. Remarks on a paper by Zeev Nehari. Bull. Amer. Math. Soc. 1949, 55, 552–553. [Google Scholar] [CrossRef]
- Nehari, Z. A property of convex conformal maps. J. Anal. Math. 1976, 30, 390–393. [Google Scholar] [CrossRef]
- Harmelin, R. Aharonov invariants and univalent functions. Israel J. Math. 1982, 43, 244–254. [Google Scholar] [CrossRef]
- Schippers, E. Distortion theorems for higher order Schwarzian derivatives of univalent functions. Proc. Am. Math. Soc. 2000, 128, 3241–3249. [Google Scholar] [CrossRef]
- Dorff, M.; Szynal, J. Higher order Schwarzian derivatives for convex univalent functions. Tr. Petrozavodsk. Gos. Univ. Ser. Mat. 2009, 15, 7–11. [Google Scholar]
- Koepf, W. Close-to-convex functions and linear-invariant families. Ann. Acad. Sci. Fenn. Ser. A I Math. 1983, 8, 349–355. [Google Scholar] [CrossRef]
- Gal, S.G. Higher order derivatives of Schwarz, Sălăgean and Rushcheweyh types in the geometric theory of complex functions. Rev. Roumaine Math. Pures Appl. 2002, 47, 33–42. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second order differential inequalities in the complex plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef]
- Tamanoi, H. Higher Schwarzian operators and combinatorics of the Schwarzian derivative. Math. Ann. 1996, 305, 127–151. [Google Scholar] [CrossRef]
- Kim, S.A.; Sugawa, T. Invariant Schwarzian derivatives of higher order. Complex Anal. Oper. Theory 2011, 5, 659–670. [Google Scholar] [CrossRef]
- Aharonov, D. A necessary and sufficient condition for univalence of a meromorphic function. Duke Math. J. 1969, 36, 599–604. [Google Scholar]
- Kim, S.A.; Sugawa, T. Invariant differential operators associated with a conformal metric. Michigan Math. J. 2007, 55, 459–479. [Google Scholar]
- Schippers, E. The calculus of conformal metrics. Ann. Acad. Sci. Fenn. Math. 2007, 32, 497–521. [Google Scholar]
- Hacibekiroglu, G.; Caglar, M.; Polatoglu, Y. The higher order Schwarzian derivative: Its applications for chaotic behavior and new invariant sufficient condition of chaos. Nonlinear Anal. Real World Appl. 2009, 10, 1270–1275. [Google Scholar] [CrossRef]
- Aguilar, R.M. Higher order Schwarzians for geodesic flows, moment sequences and the radius of adapted complexifications. Q. J. Math. 2013, 64, 1–36. [Google Scholar] [CrossRef]
- Kwon, O.; Sim, Y. Starlikeness and Schwarzian derivatives of higher order of analytic functions. Commun. Korean Math. Soc. 2017, 32, 93–106. [Google Scholar] [CrossRef]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α,β)-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1981, 35, 125–143. [Google Scholar]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Ali, R.M.; Ravichandran, V.; Seenivasagan, V. Coefficient bounds for p-valent functions. Appl. Math. Comput. 2007, 187, 35–46. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain star-like functions. C. R. Math. Acad. Sci. Paris 2015, 353, 505–510. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, N.E.; Kumar, V.; Ravichandran, V. Sharp Bounds on the Higher Order Schwarzian Derivatives for Janowski Classes. Symmetry 2018, 10, 348. https://doi.org/10.3390/sym10080348
Cho NE, Kumar V, Ravichandran V. Sharp Bounds on the Higher Order Schwarzian Derivatives for Janowski Classes. Symmetry. 2018; 10(8):348. https://doi.org/10.3390/sym10080348
Chicago/Turabian StyleCho, Nak Eun, Virendra Kumar, and V. Ravichandran. 2018. "Sharp Bounds on the Higher Order Schwarzian Derivatives for Janowski Classes" Symmetry 10, no. 8: 348. https://doi.org/10.3390/sym10080348
APA StyleCho, N. E., Kumar, V., & Ravichandran, V. (2018). Sharp Bounds on the Higher Order Schwarzian Derivatives for Janowski Classes. Symmetry, 10(8), 348. https://doi.org/10.3390/sym10080348