Next Article in Journal
New Families of Three-Variable Polynomials Coupled with Well-Known Polynomials and Numbers
Previous Article in Journal
k-Hypergeometric Series Solutions to One Type of Non-Homogeneous k-Hypergeometric Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions

by
Pshtiwan Othman Mohammed
* and
Faraidun Kadir Hamasalh
Department of Mathematics, College of Education, University of Sulaimani, Sulaimani 46001, Kurdistan Region, Iraq
*
Author to whom correspondence should be addressed.
Symmetry 2019, 11(2), 263; https://doi.org/10.3390/sym11020263
Submission received: 28 December 2018 / Revised: 1 February 2019 / Accepted: 8 February 2019 / Published: 20 February 2019

Abstract

:
In this work, we established new inequalities of Hermite–Hadamard type for convex functions via conformable fractional integrals. Through the conformable fractional integral inequalities, we found some new inequalities of Hermite–Hadamard type for convex functions in the form of classical integrals.

1. Introduction

A function h : I R R is said to be convex on the interval I , if the inequality
h ( ζ x + ( 1 ζ ) y ) ζ h ( x ) + ( 1 ζ ) h ( y )
holds for all x , y I and ζ [ 0 , 1 ] . We say that h is concave if h is convex.
For convex functions, many equalities or inequalities have been established by many authors; for example the Ostrowski type inequality [1], Hardy type inequality [2], Olsen type inequality [3], and Gagliardo–Nirenberg type inequality [4] but the most common and significant inequality is the Hermite–Hadamard type inequality [5,6], which is defined as:
h u + v 2 1 v u u v h ( x ) d x h ( u ) + h ( v ) 2 ,
where the function h : I R R is assumed to be a convex function with u < v and u , v I .
A number of mathematicians in the field of applied and pure mathematics have dedicated their efforts to extend, generalize, counterpart, and refine the Hermite–Hadamard inequality (2) for different classes of convex functions and mappings. For more recent results obtained on inequality (2), we refer the reader to References [5,7,8,9,10].
Definition 1
([11]). Suppose that h L ( [ u , v ] ) . The left and right Riemann–Liouville fractional integrals J u + α h and J v α h of order α > 0 are defined by
J u + α h ( x ) = 1 Γ ( α ) u x ( x ζ ) α 1 h ( ζ ) d ζ , x > u ,
and
J v α h ( x ) = 1 Γ ( α ) x v ( ζ x ) α 1 h ( ζ ) d ζ , x < v ,
respectively, where Γ ( α ) is the standard gamma function defined by Γ ( α ) = 0 e ζ ζ α 1 d ζ and J u + 0 h ( x ) = J v 0 h ( x ) = h ( x ) .
As for classical integrals, many Hermite–Hadamard type inequalities have been established for the Riemann–Liouville fractional integrals; for more details and interesting applications see References [6,12,13].
Now, we give the definition of the conformable fractional derivative with its important properties which are useful in order to obtain our main results (see References [14,15,16,17,18,19,20,21]). In our study, we use the Katugampola derivative formulation of conformable derivative which is explained in the following definition:
Definition 2
([20]). Given a function h : [ 0 , ) R . Then, the conformable fractional derivative of h of order α of h at ζ is defined by
D α ( h ) ( ζ ) = lim ϵ 0 h ζ + ϵ ζ 1 α h ( ζ ) ϵ , α ( 0 , 1 ) , ζ > 0 .
If h is α -differentiable in some ( 0 , α ) , α > 0 , lim ζ 0 + h ( α ) ( ζ ) exist, then define
h ( α ) ( 0 ) = lim ζ 0 + h ( α ) ( ζ ) .
Additionally, note that if h is differentiable, then
D α ( h ) ( ζ ) = ζ 1 α h ( ζ ) , where h ( ζ ) = lim ϵ 0 h ζ + ϵ h ( ζ ) ϵ .
We can write h ( α ) ( ζ ) for D α ( h ) ( ζ ) or d α d α ζ ( h ( ζ ) ) to denote the conformable fractional derivatives of h of order α at ζ . In addition, if the conformable fractional derivative of h of order α exists, then we simply say h is α -differentiable.
Theorem 1
([20]). Let α ( 0 , 1 ] and h , g be α-differentiable at a point ζ > 0 . Then,
1. 
D α ( u f + v g ) = u D α ( h ) + v D α ( g ) for all u , v R ,
2. 
D α ( h g ) = h D α ( g ) + g D α ( h ) ,
3. 
D α h g = h D α ( g ) g D α ( h ) g 2 ,
4. 
D α ( c ) = 0 for all constant function h ( ζ ) = c ,
5. 
D α 1 = 0 ,
6. 
D α 1 α ζ α = 1 .
Now, we give the definition of conformable fractional integral:
Definition 3
([16]). Let α ( 0 , 1 ] and 0 u v . We say that a function h : [ u , v ] R is α-fractional integrable on [ u , v ] , if the integral
u v h ( ζ ) d α ζ = u v h ( ζ ) ζ α 1 d ζ
exists and is finite.
Remark 1.
(u) All α-fractional integrable functions on [ u , v ] are indicated by L α 1 ( [ u , v ] ) .
(v) For the usual Riemann improper integral and α ( 0 , 1 ] , we have
I α u ( h ) ( ζ ) = I 1 a ζ α 1 h = u ζ x α 1 h ( x ) d x .
The aim of our article is to establish some new inequalities connected with the Hermite–Hadamard inequalities (2) via conformable fractional integral.

2. Main Results

Our main results depend on the following equality:
Lemma 1.
Let h : [ u , v ] R R be an α-fractional differentiable mapping on ( u , v ) with 0 u < v . If D α ( h ) L α 1 ( [ u , v ] ) , then the following identity for conformable fractional integral holds:
Φ α ( u , v ) = i = 1 4 δ i ,
where
δ 1 = v u 4 0 1 u ζ + ( 1 ζ ) 3 u + v 4 2 α 1 3 u + v 4 α u ζ + ( 1 ζ ) 3 u + v 4 α 1 × D α ( h ) u ζ + ( 1 ζ ) 3 u + v 4 d α ζ , δ 2 = v u 4 0 1 3 u + v 4 ζ + ( 1 ζ ) u + v 2 2 α 1 3 u + v 4 α 3 u + v 4 ζ + ( 1 ζ ) u + v 2 α 1 × D α ( h ) 3 u + v 4 ζ + ( 1 ζ ) u + v 2 d α ζ , δ 3 = v u 4 0 1 u + v 2 ζ + ( 1 ζ ) u + 3 v 4 2 α 1 u + 3 v 4 α u + v 2 ζ + ( 1 ζ ) u + 3 v 4 α 1 × D α ( h ) u + v 2 ζ + ( 1 ζ ) u + 3 v 4 d α ζ , δ 4 = v u 4 0 1 u + 3 v 4 ζ + ( 1 ζ ) v 2 α 1 u + 3 v 4 α u + 3 v 4 ζ + ( 1 ζ ) v α 1 × D α ( h ) u + 3 v 4 ζ + ( 1 ζ ) v d α ζ ,
and
Φ α ( u , v ) = 3 u + v 4 α u α h ( u ) + v α u + 3 v 4 α h ( v ) + u + 3 v 4 α 3 u + v 4 α h u + v 2 α u v h x d α x .
Proof. 
By using the definition of the conformable fractional derivative (4), we have
δ 1 = v u 4 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α h u ζ + ( 1 ζ ) 3 u + v 4 d ζ .
On integrating by parts, one can have
δ 1 = 3 u + v 4 α u α h ( u ) α 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 1 h u ζ + ( 1 ζ ) 3 u + v 4 d ζ .
Using the change of the variable x : = u ζ + ( 1 ζ ) 3 u + v 4 , ζ [ 0 , 1 ] and definition of conformable fractional integral (5), we obtain
δ 1 = 3 u + v 4 α u α h ( u ) α u 3 u + v 4 x α 1 h ( x ) d x = 3 u + v 4 α u α h ( u ) α u 3 u + v 4 h ( x ) d α x .
Similarly, we get
δ 2 = u + v 2 α 3 u + v 4 α h u + v 2 α 3 u + v 4 u + v 2 h ( x ) d α x ,
δ 3 = u + 3 v 4 α u + v 2 α h u + v 2 α u + v 2 u + 3 v 4 h ( x ) d α x ,
and
δ 4 = v α u + 3 v 4 α h ( v ) α u + 3 v 4 v h ( x ) d α x .
Adding δ 1 , δ 2 , δ 3 and δ 4 together, we obtain the desired identity (7). This completes the proof of Lemma 1. □
Remark 2.
With the similar assumptions of Lemma 1, if α = 1 , then identity (7) reduces to the following identity:
Φ 1 ( u , v ) = 0 1 ( 1 ζ ) h 3 u + v 4 ζ + ( 1 ζ ) u + v 2 d ζ 0 1 t h u ζ + ( 1 ζ ) 3 u + v 4 d ζ + 0 1 ( 1 ζ ) h u + 3 v 4 ζ + ( 1 ζ ) v d ζ 0 1 t h u + v 2 ζ + ( 1 ζ ) u + 3 v 4 d ζ ,
where
Φ 1 ( u , v ) = 1 2 h ( u ) + h ( v ) 2 + h u + v 2 4 v u u v h ( x ) d x
which is obtained by Shi et al. [12].
Theorem 2.
Let h : [ u , v ] R R be an α-fractional differentiable mapping on ( u , v ) with 0 u < v . If D α ( h ) L α 1 ( [ u , v ] ) and h is convex on [ u , v ] , then the following inequality for conformable fractional integral holds:
Φ α ( u , v ) v u 4 [ d 1 ( α ) | h ( u ) | + d 2 ( α ) | h ( v ) | + d 3 ( α ) h 3 u + v 4 + d 4 ( α ) h u + v 2 + d 5 ( α ) h u + 3 v 4 ] ,
where
d 1 ( α ) = 1 12 4 u α + 3 u + v 4 u α 1 + 3 u + v 4 α 1 u 5 3 u + v 4 α , d 2 ( α ) = 1 12 3 v α + 3 u + v 4 v α 1 + 3 u + v 4 α 1 v 5 3 u + v 4 α , d 3 ( α ) = 1 12 [ u α + 3 u + v 4 u α 1 + 3 u + v 4 α 1 u + u + v 2 3 u + v 4 α 1 + u + v 2 α 1 3 u + v 4 + u + v 2 α 5 3 u + v 4 α ] ,
d 4 ( α ) = 1 12 [ 7 u + v 2 α + u + v 2 3 u + v 4 α 1 + u + v 2 α 1 3 u + v 4 + u + v 2 u + 3 v 4 α 1 + u + v 2 α 1 u + 3 v 4 5 3 u + v 4 α 5 u + 3 v 4 α ] , d 5 ( α ) = 1 12 [ v α + u + v 2 α + u + 3 v 4 u + v 2 α 1 + u + 3 v 4 α 1 u + v 2 + v u + 3 v 4 α 1 + v α 1 u + 3 v 4 5 u + 3 v 4 α ] .
Proof. 
Using Lemma 1 and the property (4), we have
Φ α ( u , v ) = v u 4 { 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α h u ζ + ( 1 ζ ) 3 u + v 4 d ζ + 0 1 3 u + v 4 ζ + ( 1 ζ ) u + v 2 α 3 u + v 4 α h 3 u + v 4 ζ + ( 1 ζ ) u + v 2 d ζ + 0 1 u + v 2 ζ + ( 1 ζ ) u + 3 v 4 α u + 3 v 4 α h u + v 2 ζ + ( 1 ζ ) u + 3 v 4 d α ζ + 0 1 u + 3 v 4 ζ + ( 1 ζ ) v α u + 3 v 4 α h u + 3 v 4 ζ + ( 1 ζ ) v d α ζ } .
By using the convexity of x α 1 for x > 0 , α ( 0 , 1 ] , we have
u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α = u ζ + ( 1 ζ ) 3 u + v 4 α 1 + 1 3 u + v 4 α = u ζ + ( 1 ζ ) 3 u + v 4 α 1 u ζ + ( 1 ζ ) 3 u + v 4 3 u + v 4 α u α 1 ζ + ( 1 ζ ) 3 u + v 4 α 1 u ζ + ( 1 ζ ) 3 u + v 4 3 u + v 4 α ,
3 u + v 4 ζ + ( 1 ζ ) u + v 2 α 3 u + v 4 α t 3 u + v 4 α 1 + ( 1 ζ ) u + v 2 α 1 3 u + v 4 ζ + ( 1 ζ ) u + v 2 3 u + v 4 α ,
u + v 2 ζ + ( 1 ζ ) u + 3 v 2 α u + 3 v 4 α t u + v 2 α 1 + ( 1 ζ ) u + 3 v 4 α 1 u + v 2 ζ + ( 1 ζ ) u + 3 v 4 u + 3 v 4 α ,
and
u + 3 v 4 ζ + ( 1 ζ ) v α u + 3 v 4 α t u + 3 v 4 α 1 + ( 1 ζ ) v α 1 u + 3 v 4 ζ + ( 1 ζ ) v u + 3 v 4 α .
Using (11), (12), (13), and (14) in (10) and using the properties of modulus, we get
| Φ α ( u , v ) | v u 4 { 0 1 u α 1 ζ + ( 1 ζ ) 3 u + v 4 α 1 u ζ + ( 1 ζ ) 3 u + v 4 3 u + v 4 α × h u ζ + ( 1 ζ ) 3 u + v 4 d ζ + 0 1 3 u + v 4 α 1 ζ + ( 1 ζ ) u + v 2 α 1 3 u + v 4 ζ + ( 1 ζ ) u + v 2 3 u + v 4 α × h 3 u + v 4 ζ + ( 1 ζ ) u + v 2 d ζ + 0 1 u + v 2 α 1 ζ + ( 1 ζ ) u + 3 v 4 α 1 u + v 2 ζ + ( 1 ζ ) u + 3 v 4 u + 3 v 4 α × h u + v 2 ζ + ( 1 ζ ) u + 3 v 4 d ζ + 0 1 u + 3 v 4 α 1 ζ + ( 1 ζ ) v α 1 u + 3 v 4 ζ + ( 1 ζ ) v u + 3 v 4 α × h u + 3 v 4 ζ + ( 1 ζ ) v d ζ } .
Since | h | is convex on [ u , v ] for any ζ [ 0 , 1 ] , so (17) becomes
| Φ α ( u , v ) | v u 4 { 0 1 u α 1 ζ + ( 1 ζ ) 3 u + v 4 α 1 u ζ + ( 1 ζ ) 3 u + v 4 3 u + v 4 α × ζ h ( u ) + ( 1 ζ ) h 3 u + v 4 d ζ + 0 1 [ 3 u + v 4 α 1 ζ + ( 1 ζ ) u + v 2 α 1 × 3 u + v 4 ζ + ( 1 ζ ) u + v 2 3 u + v 4 α ] ζ h 3 u + v 4 + ( 1 ζ ) h u + v 2 d ζ + 0 1 u + v 2 α 1 ζ + ( 1 ζ ) u + 3 v 4 α 1 u + v 2 ζ + ( 1 ζ ) u + 3 v 4 u + 3 v 4 α × ζ h u + v 2 + ( 1 ζ ) h u + 3 v 4 d ζ + 0 1 [ u + 3 v 4 α 1 ζ + ( 1 ζ ) v α 1 × u + 3 v 4 ζ + ( 1 ζ ) v u + 3 v 4 α ] ζ h u + 3 v 4 + ( 1 ζ ) h ( v ) d ζ } .
Simple calculation gives
| Φ α ( u , v ) | v u 4 { 1 12 4 u α + 3 u + v 4 u α 1 + 3 u + v 4 α 1 u 5 3 u + v 4 α | h ( u ) | + 1 12 3 v α + 3 u + v 4 v α 1 + 3 u + v 4 α 1 v 5 3 u + v 4 α | h ( v ) | + ( 1 12 [ u α + 3 u + v 4 u α 1 + 3 u + v 4 α 1 u + u + v 2 3 u + v 4 α 1 + u + v 2 α 1 3 u + v 4 + u + v 2 α 5 3 u + v 4 α ] ) h 3 u + v 4 + ( 1 12 [ 7 u + v 2 α + u + v 2 3 u + v 4 α 1 + u + v 2 α 1 3 u + v 4 + u + v 2 u + 3 v 4 α 1 + u + v 2 α 1 u + 3 v 4 5 3 u + v 4 α 5 u + 3 v 4 α ] ) h u + v 2 + ( 1 12 [ v α + u + v 2 α + u + 3 v 4 u + v 2 α 1 + u + 3 v 4 α 1 u + v 2 + v u + 3 v 4 α 1 + v α 1 u + 3 v 4 5 u + 3 v 4 α ] ) h u + 3 v 4 } .
This completes the proof of Theorem 2. □
Corollary 1.
With the similar assumptions of Theorem 2, if α = 1 , then
Φ 1 ( u , v ) v u 4 [ 2 u v 12 | h ( u ) | + v u 12 | h ( v ) | + 3 u + v 48 h 3 u + v 4 + u + v 24 h u + v 2 + u + 3 v 48 h u + 3 v 4 ] .
Theorem 3.
Let h : [ u , v ] R R be an α-fractional differentiable mapping on ( u , v ) with 0 u < v . If D α ( h ) L α 1 ( [ u , v ] ) and h q is convex on [ u , v ] , then the following inequality for conformable fractional integral holds:
Φ α ( u , v ) v u 4 [ ( A 1 ( α ) ) 1 1 q A 2 ( α ) | h ( u ) | q + A 3 ( α ) h 3 u + v 4 q 1 q + ( B 1 ( α ) ) 1 1 q B 2 ( α ) h 3 u + v 4 q + B 3 ( α ) h u + v 2 q 1 q + ( C 1 ( α ) ) 1 1 q C 2 ( α ) h u + v 2 q + C 3 ( α ) h u + 3 v 4 q 1 q + ( D 1 ( α ) ) 1 1 q D 2 ( α ) h u + 3 v 4 q + D 3 ( α ) h ( v ) q 1 q ] ,
where
A 1 ( α ) = 4 u ( 3 u + v ) α ( 4 u ) α + 1 4 α ( v u ) ( α + 1 ) α ( 3 u + v ) α 4 α , A 2 ( α ) = ( 3 u + v ) α + 2 ( 4 u ) α + 1 [ α ( v u ) + ( u + v ) ] 4 α ( v u ) 2 ( α + 1 ) ( α + 2 ) ( 3 u + v ) α 2 2 α + 1 , A 3 ( α ) = ( 4 u ) α + 2 ( 3 u + v ) α + 2 ( 5 u v ) α ( 3 u + v ) α ( 3 u v ) ( u + v ) 4 α ( v u ) 2 ( α + 1 ) ( α + 2 ) ( 3 u + v ) α 2 2 α + 1 ,
B 1 ( α ) = ( 2 ( u + v ) ) α + 2 ( 3 u + v ) α + 1 4 α ( v u ) ( α + 1 ) ( 3 u + v ) α 4 α , B 2 ( α ) = ( 2 ( u + v ) ) α + 2 ( 3 u + v ) α + 1 ( u + 3 v ) α ( 3 u + v ) α + 1 ( v u ) 4 α ( v u ) 2 ( α + 1 ) ( α + 2 ) ( 3 u + v ) α 2 2 α + 1 , B 3 ( α ) = ( 3 u + v ) α + 2 + 4 ( 2 ( u + v ) ) α + 1 + α ( 2 ( u + v ) ) α + 1 ( v u ) 4 α ( v u ) 2 ( α + 1 ) ( α + 2 ) ( 3 u + v ) α 2 2 α + 1 ,
C 1 ( α ) = 4 ( u + 3 v ) α + 1 ( 2 ( u + v ) ) α + 2 4 α ( v u ) ( α + 1 ) ( u + 3 v ) α 4 α , C 2 ( α ) = α 2 ( v u ) 2 ( u + 3 v ) α + 16 b ( u + v ) ( u + 3 v ) α 3 α u 2 + v 2 ( u + 3 v ) α 2 2 α + 1 ( v u ) 2 ( α + 1 ) ( α + 2 ) 8 b ( 2 ( u + v ) ) α + 1 + 2 α ( v u ) ( 2 ( u + v ) ) α + 1 2 2 α + 1 ( v u ) 2 ( α + 1 ) ( α + 2 ) ( u + 3 v ) α 2 2 α + 1 , C 3 ( α ) = ( 2 ( u + v ) ) α + 2 + ( u + 3 v ) α + 2 + α ( u + 3 v ) α + 2 5 ( u + v ) ( u + 3 v ) α + 1 4 α ( v u ) 2 ( α + 1 ) ( α + 2 ) ,
D 1 ( α ) = ( 4 v ) α + 1 ( u + 3 v ) α + 1 4 α ( α + 1 ) ( v u ) ( u + 3 v ) α 2 2 α + 1 , D 2 ( α ) = ( 4 v ) α + 2 + ( u + 3 v ) α + 1 ( a 5 v ) + α ( u + 3 v ) α + 1 ( v u ) 4 α ( v u ) 2 ( α + 1 ) ( α + 2 ) , D 3 ( α ) = α ( 4 v ) α + 2 ( v u ) 2 ( 4 v ) α + 1 ( u + v ) + ( u + 3 v ) α + 2 4 α ( v u ) 2 ( α + 1 ) ( α + 2 ) .
Proof. 
Using Lemma 1 and the property (4), we have
| Φ α ( u , v ) | v u 4 [ 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α h u ζ + ( 1 ζ ) 3 u + v 4 d ζ + 0 1 3 u + v 4 ζ + ( 1 ζ ) u + v 2 α 3 u + v 4 α h 3 u + v 4 ζ + ( 1 ζ ) u + v 2 d ζ + 0 1 u + v 2 ζ + ( 1 ζ ) u + 3 v 4 α u + 3 v 4 α h u + v 2 ζ + ( 1 ζ ) u + 3 v 4 d ζ + 0 1 u + 3 v 4 ζ + ( 1 ζ ) v α u + 3 v 4 α h u + 3 v 4 ζ + ( 1 ζ ) v d ζ : = v u 4 ( J 1 + J 2 + J 3 + J 4 ) .
It follows from the power–mean inequality that
J 1 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α d ζ 1 1 q × 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α h u ζ + ( 1 ζ ) 3 u + v 4 q d ζ 1 q .
Since | h | q is convex on [ u , v ] for any ζ [ 0 , 1 ] , we obtain
J 1 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α d ζ 1 1 q × ( | h ( u ) | q 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α ζ d ζ + h 3 u + v 4 q 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α ( 1 ζ ) d ζ ) 1 q = ( A 1 ( α ) ) 1 1 q A 2 ( α ) | h ( u ) | q + A 3 ( α ) h 3 u + v 4 q 1 q ,
where we have used the facts that
A 1 ( α ) : = 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α d ζ = 4 u ( 3 u + v ) α ( 4 u ) α + 1 4 α ( v u ) ( α + 1 ) α ( 3 u + v ) α 4 α ,
A 2 ( α ) : = 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α ζ d ζ = ( 3 u + v ) α + 2 ( 4 u ) α + 1 [ α ( v u ) + ( u + v ) ] 4 α ( v u ) 2 ( α + 1 ) ( α + 2 ) ( 3 u + v ) α 2 2 α + 1 ,
and
A 3 ( α ) : = 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α ( 1 ζ ) d ζ = ( 4 u ) α + 2 ( 3 u + v ) α + 2 ( 5 u v ) α ( 3 u + v ) α ( 3 u v ) ( u + v ) 4 α ( v u ) 2 ( α + 1 ) ( α + 2 ) ( 3 u + v ) α 2 2 α + 1 .
Analogously
J 2 ( B 1 ( α ) ) 1 1 q B 2 ( α ) h 3 u + v 4 q + B 3 ( α ) h u + v 2 q 1 q , J 3 ( C 1 ( α ) ) 1 1 q C 2 ( α ) h u + v 2 q + C 3 ( α ) h u + 3 v 4 q 1 q ,
and
J 4 ( D 1 ( α ) ) 1 1 q D 2 ( α ) h u + 3 v 4 q + D 3 ( α ) h ( v ) q 1 q .
Using J 1 , J 2 , J 3 , and J 4 in (18), we obtain the desired inequality (17). This completes the proof of Theorem 3. □
Corollary 2.
With the similar assumptions of Theorem 3, if α = 1 , then
Φ 1 ( u , v ) v u 4 [ u v 8 1 1 q 11 u + v 24 | h ( u ) | q + 5 u + v 12 h 3 u + v 4 q 1 q + v u 8 1 1 q 2 u + v 6 h 3 u + v 4 q + 7 u + 5 b 24 h u + v 2 q 1 q + u v 8 1 1 q u v 12 h u + v 2 q + u v 24 h u + 3 v 4 q 1 q + v u 8 1 1 q u + 5 b 12 h u + 3 v 4 q + u + 11 b 24 h ( v ) q 1 q ] .
Theorem 4.
Let h : [ u , v ] R R be an α-fractional differentiable mapping on ( u , v ) with 0 u < v . If D α ( h ) L α 1 ( [ u , v ] ) and h q is concave on [ u , v ] , then the following inequality for conformable fractional integral holds:
Φ α ( u , v ) v u 4 [ A 1 ( α ) h P 1 ( α ) A 1 ( α ) + B 1 ( α ) h P 2 ( α ) B 1 ( α ) + C 1 ( α ) h P 3 ( α ) C 1 ( α ) + D 1 ( α ) h P 4 ( α ) D 1 ( α ) ] ,
where A 1 ( α ) , B 1 ( α ) , C 1 ( α ) , and D 1 ( α ) are given in Theorem 3 and
P 1 ( α ) = 2 1 α ( 3 u + v ) α + 2 2 2 α + 5 2 2 α + 1 ( 7 u + 6 v ) ( v u ) ( 3 u + v ) α α ( 7 u + v ) ( v u ) ( 3 u + v ) α 2 2 α + 3 ( v u ) ( α + 2 ) , P 2 ( α ) = 2 ( 2 ( u + v ) ) α + 2 8 ( u + v ) 2 ( 3 u + v ) α α ( 5 u + 3 v ) ( v u ) ( 3 u + v ) α 2 2 α + 3 ( v u ) ( α + 2 ) , P 3 ( α ) = 8 ( u + v ) 2 ( u + 3 v ) α 4 α ( u + v ) α ( u + 3 v ) α α ( u + 3 v ) α + 2 2 α + 3 ( u + v ) α + 2 2 2 α + 1 ( v u ) ( α + 2 ) , P 4 ( α ) = 2 2 α 1 α ( u + 3 v ) + 4 α ( u + 3 v ) 3 + 4 ( 4 v ) α + 2 4 α + 2 v 2 ( u + 3 v ) 4 ( u + 3 v ) α + 2 2 2 α + 3 α v 2 ( u + 3 v ) 4 α + 2 ( v u ) ( α + 2 ) .
Proof. 
By using the power–mean inequality and the concavity of h q for any ζ [ 0 , 1 ] , we have
h u ζ + ( 1 ζ ) 3 u + v 4 q ζ | h ( u ) | + ( 1 ζ ) 3 u + v 4 q .
This implies that
h u ζ + ( 1 ζ ) 3 u + v 4 ζ | h ( u ) | + ( 1 ζ ) 3 u + v 4 .
This means that | h | is also concave. Using inequality (20) in (18) and then applying the Jensen’s integral inequality, we get
J 1 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α d ζ × h 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α u ζ + ( 1 ζ ) 3 u + v 4 d ζ 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α d ζ = A 1 ( α ) h P 1 ( α ) A 1 ( α ) ,
where we have used the facts that
0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α d ζ = A 1 ( α ) = 4 u ( 3 u + v ) α ( 4 u ) α + 1 4 α ( v u ) ( α + 1 ) α ( 3 u + v ) α 4 α , 0 1 u ζ + ( 1 ζ ) 3 u + v 4 α 3 u + v 4 α u ζ + ( 1 ζ ) 3 u + v 4 d ζ = P 1 ( α ) = 2 1 α ( 3 u + v ) α + 2 2 2 α + 5 2 2 α + 1 ( 7 u + 6 v ) ( v u ) ( 3 u + v ) α α ( 7 u + v ) ( v u ) ( 3 u + v ) α 2 2 α + 3 ( v u ) ( α + 2 ) .
Similarly, we get J 2 B 1 ( α ) h P 2 ( α ) B 1 ( α ) , J 3 C 1 ( α ) h P 3 ( α ) C 1 ( α ) and J 4 D 1 ( α ) h P 4 ( α ) D 1 ( α ) .
Using J 1 , J 2 , J 3 , and J 4 in (18), we obtain the required inequality (19). This completes the proof of Theorem 4. □
Corollary 3.
With the similar assumptions of Theorem 4, if α = 1 , then
Φ 1 ( u , v ) v u 4 A 1 ( α ) h P 1 ( α ) A 1 ( α ) + B 1 ( α ) h P 2 ( α ) B 1 ( α ) + C 1 ( α ) h P 3 ( α ) C 1 ( α ) + D 1 ( α ) h P 4 ( α ) D 1 ( α ) ,
where
A 1 ( 1 ) = u v 8 , B 1 ( 1 ) = v u 8 , D 1 ( 1 ) = u v 8 , D 1 ( 1 ) = v u 8 ,
and
P 1 ( 1 ) = ( u v ) ( 11 u + v ) 96 , P 2 ( 1 ) = ( v u ) ( 7 u + 5 v ) 96 , P 3 ( 1 ) = ( u v ) ( 5 u + 7 v ) 96 , P 4 ( 1 ) = ( v u ) ( u + 11 v ) 96 .

3. Conclusions

In this work, we have established new conformable fractional integral inequalities of Hermite–Hadamard type for convex functions. As a special case, if we substitute α = 1 into the general definition of conformable fractional integrals (Definition 2), we obtain the classical integrals. In view of this, we obtained some new inequalities of Hermite–Hadamard type for convex functions involving classical integrals.

Author Contributions

The authors contributed equally to this work. All authors read and approved the final manuscript.

Funding

This research received no external funding.

Acknowledgments

The authors are thankful to the anonymous referees for their careful corrections to and valuable comments on the original version of this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Gavrea, B.; Gavrea, I. On some Ostrowski type inequalities. Gen. Math. 2010, 18, 33–44. [Google Scholar]
  2. Ciatti, P.; Cowling, M.G.; Ricci, F. Hardy and uncertainty inequalities on stratified Lie groups. Adv. Math. 2015, 277, 365–387. [Google Scholar] [Green Version]
  3. Gunawan, H.; Eridani, E. Fractional integrals and generalized Olsen inequalities. Kyungpook Math. J. 2009, 49, 31–39. [Google Scholar] [CrossRef]
  4. Sawano, Y.; Wadade, H. On the Gagliardo-Nirenberg type inequality in the critical Sobolev-orrey space. J. Fourier Anal. Appl. 2013, 19, 20–47. [Google Scholar] [CrossRef]
  5. Wu, S.-H. On the weighted generalization of the Hermite-Hadamard inequality and its applications. Rocky Mt. J. Math. 2009, 39, 1741–1749. [Google Scholar] [CrossRef]
  6. Mohammed, P.O.; Sarikaya, M.Z. Hermite–Hadamard type inequalities for F-convex function involving fractional integrals. J. Inequalities Appl. 2018, 2018, 359. [Google Scholar] [CrossRef]
  7. Bakula, M.K.; Ozdemir, M.E.; Pečarić, J. Hadamard type inequalities for m-convex and (α,m)-convex functions. J. Inequal. Pure Appl. Math. 2008, 9, 96. [Google Scholar]
  8. Alomari, M.; Darus, M.; Kirmaci, U.S. Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comp. Math. Appl. 2010, 59, 225–232. [Google Scholar] [CrossRef] [Green Version]
  9. Yin, H.-P.; Qi, F. Hermite-Hadamard type inequalities for the product of (α,m)-convex functions. J. Nonlinear Sci. Appl. 2015, 8, 231–236. [Google Scholar] [CrossRef]
  10. Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite-Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
  11. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
  12. Shi, D.-P.; Xi, B.-Y.; Qi, F. Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of (α,m)-convex functions. Fract. Differ. Calc. 2014, 4, 33–45. [Google Scholar] [CrossRef]
  13. Mohammed, P.O. Inequalities of type Hermite-Hadamard for fractional integrals via differentiable convex functions. Turk. J. Anal. Number Theory 2016, 4, 135–139. [Google Scholar]
  14. Hammad, M.A.; Khalil, R. Conformable fractional heat differential equations. Int. J. Pure Appl. Math. 2014, 94, 215–221. [Google Scholar] [CrossRef]
  15. Hammad, M.A.; Khalil, R. Abel’s formula and wronskian for conformable fractional differential equations. Int. J. Differ. Equations Appl. 2014, 13, 177–183. [Google Scholar]
  16. Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
  17. Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
  18. Atangana, A.; Baleanu, D.; Alsaedi, A. New properties of conformable derivative. Open Math. 2015, 13, 889–898. [Google Scholar] [CrossRef]
  19. Iyiola, O.S.; Nwaeze, E.R. Some new results on the new conformable fractional calculus with application using D’Alambert approach. Progr. Fract. Differ. Appl. 2016, 2, 115–122. [Google Scholar] [CrossRef]
  20. Katugampola, U. A new fractional derivative with classical properties. arXiv, 2014; arXiv:1410.6535v2. [Google Scholar]
  21. Zhao, D.; Luo, M. General conformable fractional derivative and its physical interpretation. Calcolo 2017, 54, 903–917. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Mohammed, P.O.; Hamasalh, F.K. New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions. Symmetry 2019, 11, 263. https://doi.org/10.3390/sym11020263

AMA Style

Mohammed PO, Hamasalh FK. New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions. Symmetry. 2019; 11(2):263. https://doi.org/10.3390/sym11020263

Chicago/Turabian Style

Mohammed, Pshtiwan Othman, and Faraidun Kadir Hamasalh. 2019. "New Conformable Fractional Integral Inequalities of Hermite–Hadamard Type for Convex Functions" Symmetry 11, no. 2: 263. https://doi.org/10.3390/sym11020263

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop