Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients: The Case When the Monodromy Matrix Has Simple Eigenvalues
Abstract
:1. Introduction
2. Notations and Definitions
3. Background, Previous Results and the Main Result
- (i)
- for all
- (ii)
- for all
4. Proofs
5. An Example
Author Contributions
Funding
Conflicts of Interest
References
- Perron, O. Ueber eine Matrixtransformation. Math. Z. 1930, 22, 465–473. [Google Scholar] [CrossRef]
- Coppel, W.A. Dichotomies in Stability Theory; Lecture Notes in Math; Springer: Heidelberg, Germany, 1978; Volume 629. [Google Scholar]
- Barbu, D.; Buşe, C.; Tabassum, A. Hyers-Ulam stability and discrete dichotomy. J. Math. Anal. Appl. 2015, 423, 1738–1752. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Piszczek, M. On Stability of the Linear and Polynomial Functional Equations in Single Variable. In Handbook of Functional Equations; Rassias, T., Ed.; Springer Optimization and Its Applications; Springer: New York, NY, USA, 2014; Volume 96. [Google Scholar]
- Brzdȩk, J.; Wojcik, P. On approximate solutions of some difference equations. Bull. Aust. Math. Soc. 2017, 95, 476–481. [Google Scholar] [CrossRef]
- Brzdȩk, J.; Popa, D.; Xu, B. Remarks on stability of linear recurrence of higher order. Appl. Math. Lett. 2010, 23, 1459–1463. [Google Scholar] [CrossRef] [Green Version]
- Brzdȩk, J.; Jung, S.-M. A note on stability of an operator linear equation of the second order. Abstr. Appl. Anal. 2011, 2011, 602713. [Google Scholar] [CrossRef]
- Buşe, C.; Lupulescu, V.; O’Regan, D. Hyers-Ulam stability for equations with differences and differential equations with time dependent and periodic coefficients. Proc. A R. Soc. Edinb. 2019. Accepted. [Google Scholar]
- Buşe, C.; O’Regan, D.; Saierli, O.; Tabassum, A. Hyers-Ulam stability and discrete dichotomy for difference periodic systems. Bull. Sci. Math. 2016, 140, 908–934. [Google Scholar] [CrossRef]
- Chu, H.Y.; Ku, S.H.; Park, J.S. A note on envelops of homotopies. J. Differ. Equ. Appl. 2015, 21, 512–527. [Google Scholar] [CrossRef]
- Popa, D. On the stability of the second order linear recurrence. Gazeta Mat. Ser. A 2012, XXX(CIX), 69–74. [Google Scholar]
- Popa, D. Hyers-Ulam stability of the linear recurrence with constant coefficients. Adv. Differ. Equ. 2005, 2005, 101–107. [Google Scholar] [CrossRef]
- Popa, D. Hyers-Ulam-Rassias stability of a linear recurrence. J. Math. Anal. Appl. 2005, 309, 591–597. [Google Scholar] [CrossRef]
- Xu, B.; Brzdȩk, J. Hyers-Ulam stability of a system of first order linear recurrences with constant coefficients. Discrete Dyn. Nat. Soc. 2015, 2015, 269356. [Google Scholar] [CrossRef]
- Xu, B.; Brzdȩk, J.; Zhang, W. Fixed point results and the Hyers-Ulam stability of linear equations of higher orders. Pac. J. Math. 2015, 273, 483–498. [Google Scholar] [CrossRef]
- Xu, M. Hyers-Ulam-Rassias stability of a system of first order linear recurrences. Bull. Korean Math. Soc. 2007, 44, 841–849. [Google Scholar] [CrossRef]
- Barbu, D.; Buşe, C.; Tabassum, A. Hyers-Ulam stability and exponential dichotomy of linear differential periodic systems are equivalent. Electron. J. Qual. Theory Differ. Equ. 2015, 58, 1–12. [Google Scholar]
- Buşe, C.; Saierli, O.; Tabassum, A. Spectral characterizations for Hyers-Ulam stability. Electron. J. Qual. Theory Differ. Equ. 2014, 30, 1–14. [Google Scholar] [CrossRef]
- Buşe, C.; O’Regan, D.; Saierli, O. A surjectivity problem for 3 by 3 matrices. Oper. Matrices 2019, 13, 111–119. [Google Scholar]
- Huy, N.T.; Minh, N.V. Exponential Dichotomy of Difference Equations and Applications to Evolution Equations on the Half-Line. Comput. Math. Appl. 2001, 42, 300–311. [Google Scholar] [CrossRef]
- Dunford, N.; Schwartz, J.T. Linear Operators, Part I: General Theory; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Ma, W.-X. A Darboux transformation for the Volterra lattice equation. Anal. Math. Phys. 2019, 9. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buşe, C.; O’Regan, D.; Saierli, O. Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients: The Case When the Monodromy Matrix Has Simple Eigenvalues. Symmetry 2019, 11, 339. https://doi.org/10.3390/sym11030339
Buşe C, O’Regan D, Saierli O. Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients: The Case When the Monodromy Matrix Has Simple Eigenvalues. Symmetry. 2019; 11(3):339. https://doi.org/10.3390/sym11030339
Chicago/Turabian StyleBuşe, Constantin, Donal O’Regan, and Olivia Saierli. 2019. "Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients: The Case When the Monodromy Matrix Has Simple Eigenvalues" Symmetry 11, no. 3: 339. https://doi.org/10.3390/sym11030339
APA StyleBuşe, C., O’Regan, D., & Saierli, O. (2019). Hyers-Ulam Stability for Linear Differences with Time Dependent and Periodic Coefficients: The Case When the Monodromy Matrix Has Simple Eigenvalues. Symmetry, 11(3), 339. https://doi.org/10.3390/sym11030339