Next Article in Journal
Study on Lindley Distribution Accelerated Life Tests: Application and Numerical Simulation
Next Article in Special Issue
On the Recurrence Properties of Narayana’s Cows Sequence
Previous Article in Journal
miRID: Multi-Modal Image Registration Using Modality-Independent and Rotation-Invariant Descriptor
Previous Article in Special Issue
A Note on the Degenerate Poly-Cauchy Polynomials and Numbers of the Second Kind
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Mean Value of the General Dedekind Sums over Interval \({[1,\frac{q}{p})}\)

School of Mathematics, Northwest University Xi’an, Xi’an 710069, China
*
Author to whom correspondence should be addressed.
Symmetry 2020, 12(12), 2079; https://doi.org/10.3390/sym12122079
Submission received: 4 November 2020 / Revised: 10 December 2020 / Accepted: 11 December 2020 / Published: 15 December 2020

Abstract

:
Let q > 2 be a prime, p be a given prime with p < q . The main purpose of this paper is using transforms, the hybrid mean value of Dirichlet L-functions with character sums and the related properties of character sums to study the mean value of the general Dedekind sums over interval [ 1 , q p ) , and give some interesting asymptotic formulae.

1. Introduction

For a positive integer k and an arbitrary integer h with ( h , k ) = 1 , the classical Dedekind sum S ( h , k ) is defined by
S ( h , k ) = a = 1 k a k a h k ,
where
( ( x ) ) = x [ x ] 1 2 , if x not be an integer ; 0 , if x be an integer .
It plays a significant role in the transformation theory of the Dedekind η function. In [1,2,3,4,5], many researchers have investigated the various properties of S ( h , k ) . Perhaps the most well-known property of the Dedekind sums is the reciprocity formula
S ( h , k ) + S ( k , h ) = h 2 + k 2 + 1 12 h k 1 4 .
Conrey, J.B. et al. [2] studied the 2 m -th power mean of S ( h , k ) , and proved the following important asymptotic formula
h = 1 k S 2 m ( h , k ) = f m ( k ) k 12 2 m + O ( k 9 / 5 + k 2 m 1 + 1 / ( m + 1 ) ) log 3 k ,
where h denotes summation over all h such that ( h , k ) = 1 and f m ( k ) is defined by the Dirichlet series
k = 1 f m ( k ) k s = 2 ζ 2 ( 2 m ) ζ ( 4 m ) · ζ ( s + 4 m 1 ) ζ 2 ( s + 2 m ) · ζ ( s ) .
For m 2 , Jia, C. [3] reduced the error terms to O ( k 2 m 1 ) . While for m = 1 , Zhang, W. [5] showed
h = 1 k S 2 ( h , k ) = 5 144 k ϕ ( k ) p α k 1 + 1 p + 1 p 2 1 1 + 1 p 2 1 p 3 α + 1 + O k exp 4 log k log log k .
Zhang, W. and Yi, Y. [6] studied the first mean value of S ( h , k ) , and obtained an asymptotic formula
n N S ( n , k ) = 1 12 ϕ ( k ) log N + γ + p | k log p p 1 + O k 2 ω ( k ) N + N k ϵ
for positive integer k and 1 < N 1 2 k .
Zhang, W. [7] defined the general Dedekind sum S ( h , n , k ) as follows:
S ( h , n , k ) = a = 1 k B n ¯ a k B n ¯ a h k ,
where
B n ¯ ( x ) = B n ( x [ x ] ) , if x is not an integer ; 0 , if x is an integer .
called the n-th periodic Bernoulli polynomials defined on 0 < x 1 , and B n ( x ) is the n-th Bernoulli polynomials. Clearly, S ( h , 1 , k ) = S ( h , k ) is the classical Dedekind sum.
Recently, Kim et al. [8,9,10] studied the poly-Dedekind sums given by
S n ( m ) ( h , k ) = a = 1 k a k B ¯ n ( m ) a h k ,
where B ¯ n ( m ) ( x ) = B n ( m ) ( x [ x ] ) are the type 2 poly-Bernoulli functions of index m, and obtained some interesting identities. Obviously, S 1 ( 1 ) = S ( h , k ) is the classical Dedekind sum.
Let q > 2 be a prime, p be a given prime with p < q . Using the similar method of Shparlinski, I.E. [11] and combining with the mean value of L-functions and estimate of character sums, the authors and Wang, N. [12] studied the mean value distribution of the general Dedekind sums over short interval, that is
a N b N a l b k S ( a b ¯ , n , q ) ,
here n and N be two positive integers with q ϵ N q 1 ϵ , l , k be two non-negative integers and b ¯ denote the multiplicative inverse of b modulo q. However, in the final remarks, Shparlinski, I.E. [11] pointed out that “the author sees no reason why an appropriate asymptotic formula cannot hold for even larger values of N, up to q / 2 ”. In this paper we can take N to q / p , then through transform, mean value of Dirichlet L-functions and the properties of character sums to study the mean value of the general Dedekind sums over interval [ 1 , q p ) , and obtain some sharper asymptotic formulae for it.
Now we give the main conclusion.
Theorem 1.
Let q > 2 be a prime, p be a given prime with p < q , n be a positive integer. Then we have
(i) when n be an even number,
a < q p b < q p S ( a b ¯ , n , q ) = ( n ! ) 2 q 2 2 2 n 2 π 2 n 1 2 π 2 C p , n ζ 2 ( n ) p 2 + O ( q 1 + ϵ ) ,
here C p , n = u = 1 γ p 2 ( u , n ) u 2 , γ p ( u , n ) = d 1 d 2 = u sin 2 π d 1 p · d 2 1 n .
(ii) when n be an odd number,
a < q p b < q p S ( a b ¯ , n , q ) = ( n ! ) 2 q 2 2 2 n 2 π 2 n + 2 T p , n + O ( q 1 + ϵ ) ,
here
T p , n = 1 2 u = 1 ν p 2 ( u , n ) u 2 + 1 2 1 + 1 p 2 u = 1 ν 2 ( u , n ) u 2 + 1 p 2 u = 1 ν ( u , n ) ν p ( p u , n ) u 2 1 p 2 u = 1 ν ( u , n ) ν ( p u , n ) u 2 u = 1 ν ( u , n ) ν p ( u , n ) u 2 ,
ν p ( u , n ) = d 1 d 2 = u cos 2 π d 1 p · d 2 1 n , ν ( u , n ) = d | u d 1 n .
It is clear that C p , n and T p , n are constants depending on p and n. From our theorem we may immediately deduce the following corollaries:
Corollary 1.
Let q > 2 be a prime, we have
a < q 2 b < q 2 S ( a b ¯ , 2 , q ) = q 2 144 + O ( q 1 + ϵ ) ,
a < q 2 b < q 2 S 2 ( 1 ) ( a b ¯ , q ) = π 144 i q 2 + O ( q 1 + ϵ ) .
Corollary 2.
Let q > 2 be a prime, we have
a < q 2 b < q 2 S ( a b ¯ , 4 , q ) = q 2 3600 + O ( q 1 + ϵ ) ,
a < q 2 b < q 2 S 4 ( 1 ) ( a b ¯ , q ) = π 3 i 10800 q 2 + O ( q 1 + ϵ ) .
For the general index m, the method of our article does not obtain the expected result. It would be an interesting question to continue to study the mean value of S n ( m ) ( h , k ) .

2. Some Lemmas

To prove the theorem, We need the following lemmas.
Lemma 1.
Let k and r be integers with k 2 and ( r , k ) = 1 , χ be a Dirichlet character modulo k. Then we have
* χ mod k χ ( r ) = d | ( k , r 1 ) μ k d ϕ ( d )
where * χ mod k denotes the summation over all primitive characters modulo k.
Proof. 
See Lemma 4 of reference [13]. □
Lemma 2.
Let k 3 and h be two integers with ( h , k ) = 1 , n be positive integer. Then we have
S ( h , n , k ) = ( n ! ) 2 4 n 1 k 2 n 1 π 2 n d k d 2 n ϕ ( d ) χ mod d χ ( 1 ) = 1 χ ( h ) | L ( n , χ ) | 2
for odd n and
S ( h , n , k ) = ( n ! ) 2 4 n 1 k 2 n 1 π 2 n d k d 2 n ϕ ( d ) χ mod d χ ( 1 ) = 1 χ ( h ) | L ( n , χ ) | 2 ( n ! ) 2 4 n 1 π 2 n ζ 2 ( n )
for even n.
Proof. 
See Theorem of reference [7]. □
Lemma 3.
Let χ be a primitive Dirichlet character modulo k. Then for any real number λ [ 0 , 1 ) with λ r k , we have
a = 1 [ λ k ] χ ( a ) = τ ( χ ) π n = 1 χ ¯ ( n ) sin ( 2 π n λ ) n , i f χ ( 1 ) = 1 ; τ ( χ ) π i n = 1 χ ¯ ( n ) ( 1 cos ( 2 π n λ ) ) n , i f χ ( 1 ) = 1 .
where [ x ] denotes the greatest integer less than or equal to x, τ ( χ ) = a = 1 k χ ( a ) e ( a k ) is the Gauss sum and e ( y ) = e 2 π i y .
Proof. 
See Section 3.1 of [14]. □
Lemma 4.
Let k > 3 be an integer and p be a prime with p k and p < k . Then we have the identity
(i) for even primitive character χ mod k ,
a < k p χ ( a ) = τ ( χ ) π i ϕ ( p ) ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) .
(ii) for odd primitive character χ mod k ,
a < k p χ ( a ) = τ ( χ ) π i 1 χ ¯ ( p ) p L ( 1 , χ ¯ ) + i τ ( χ ) π ϕ ( p ) ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) .
Proof. 
From Lemma 3, (i) when χ ( 1 ) = 1 , we can write
a < k p χ ( a ) = τ ( χ ) π n = 1 χ ¯ ( n ) sin ( 2 π n / p ) n = τ ( χ ) π h = 1 p 1 sin 2 π h p n = 1 n h ( mod p ) χ ¯ ( n ) n .
Now
n = 1 n h ( mod p ) χ ¯ ( n ) n = 1 ϕ ( p ) ξ mod p ξ ¯ ( h ) n = 1 ξ χ ¯ ( n ) n = 1 ϕ ( p ) ξ mod p ξ ¯ ( h ) L ( 1 , ξ χ ¯ ) .
Furthermore,
h = 1 p 1 ξ ¯ ( h ) sin 2 π h p = 1 2 i h = 1 p 1 ξ ¯ ( h ) e h p e h p = 1 2 i ( 1 ξ ( 1 ) ) τ ( ξ ¯ ) ,
where e ( x ) = e 2 π i x .
Thus, we obtain the identity for χ ( 1 ) = 1 ,
a < k p χ ( a ) = τ ( χ ) π i ϕ ( p ) ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) .
(ii) when χ ( 1 ) = 1 , we can write
a < k p χ ( a ) = τ ( χ ) π i n = 1 χ ¯ ( n ) 1 cos ( 2 π n / p ) n = τ ( χ ) π i L ( 1 , χ ¯ ) n = 1 χ ¯ ( n ) cos ( 2 π n / p ) n = τ ( χ ) π i L ( 1 , χ ¯ ) + τ ( χ ) π n = 1 χ ¯ ( n ) i cos ( 2 π n / p ) n .
Now
n = 1 χ ¯ ( n ) i cos ( 2 π n / p ) n = i h = 1 p 1 cos 2 π h p n = 1 n h ( mod p ) χ ¯ ( n ) n = i h = 1 p 1 cos 2 π h p · 1 ϕ ( p ) ξ mod p ξ ¯ ( h ) L ( 1 , ξ χ ¯ ) + i χ ¯ ( p ) p L ( 1 , χ ¯ ) = i ϕ ( p ) ξ mod p h = 1 p 1 ξ ¯ ( h ) cos 2 π h p L ( 1 , ξ χ ¯ ) + i χ ¯ ( p ) p L ( 1 , χ ¯ ) ,
noting that
e h p + e h p = 2 cos 2 π h p ,
we have
h = 1 p 1 ξ ¯ ( h ) cos 2 π h p = 1 2 h = 1 p 1 ξ ¯ ( h ) e h p + e h p = 1 + ξ ¯ ( 1 ) 2 τ ( ξ ¯ ) .
So, we can get
n = 1 χ ¯ ( n ) i cos ( 2 π n / p ) n = i ϕ ( p ) ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) + i χ ¯ ( p ) p L ( 1 , χ ¯ ) .
Thus, we obtain the identity for χ ( 1 ) = 1 ,
a < k p χ ( a ) = τ ( χ ) π i 1 χ ¯ ( p ) p L ( 1 , χ ¯ ) + i τ ( χ ) π ϕ ( p ) ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) .
This proves Lemma 4. □
Lemma 5.
Let q > 2 be a prime, p be a given prime with p < q , n be a positive integer. Then we have
a < q p b < q p χ mod q χ ( 1 ) = 1 χ ( a b ¯ ) L ( n , χ ) 2 = q 2 2 π 2 C p , n + O ( q 1 + ϵ ) ,
here C p , n = u = 1 γ p 2 ( u , n ) u 2 , γ p ( u , n ) = d 1 d 2 = u sin 2 π d 1 p · d 2 1 n . and
a < q p b < q p χ mod q χ ( 1 ) = 1 χ ( a b ¯ ) L ( n , χ ) 2 = q 2 π 2 T p , n + O ( q 1 + ϵ ) ,
here
T p , n = 1 2 u = 1 ν p 2 ( u , n ) u 2 + 1 2 1 + 1 p 2 u = 1 ν 2 ( u , n ) u 2 + 1 p 2 u = 1 ν ( u , n ) ν p ( p u , n ) u 2 1 p 2 u = 1 ν ( u , n ) ν ( p u , n ) u 2 u = 1 ν ( u , n ) ν p ( u , n ) u 2 ,
ν p ( u , n ) = d 1 d 2 = u cos 2 π d 1 p · d 2 1 n , ν ( u , n ) = d | u d 1 n .
Proof. 
From Lemma 4, for χ ( 1 ) = 1 , we have
a < q p b < q p χ mod q χ ( 1 ) = 1 χ ( a b ¯ ) L ( n , χ ) 2 = χ mod q χ ( 1 ) = 1 L ( n , χ ) 2 a < q p χ ( a ) b < q p χ ( b ¯ ) = χ mod q χ ( 1 ) = 1 L ( n , χ ) 2 τ ( χ ) π i ϕ ( p ) ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) τ ( χ ¯ ) π i ϕ ( p ) λ mod p λ ( 1 ) = 1 τ ( λ ) L ( 1 , λ ¯ χ ) = q π 2 ϕ 2 ( p ) χ mod q χ ( 1 ) = 1 L ( n , χ ) 2 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) L ( 1 , λ ¯ χ ) = q π 2 ϕ 2 ( p ) χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) × u = 1 χ ¯ ( u ) d 1 d 2 = u ξ ( d 1 ) d 2 1 n u v = 1 χ ( v ) d 1 d 2 = v λ ¯ ( d 1 ) d 2 1 n v : = q π 2 ϕ 2 ( p ) M .
For convenience, we put
A ( χ ¯ , ξ , y ) = N < u y χ ¯ ( u ) d 1 d 2 = u ξ ( d 1 ) d 2 1 n ,
where N is a parameter with q N < q 5 . Then from Abel’s identity we have
M = χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) × u = 1 χ ¯ ( u ) d 1 d 2 = u ξ ( d 1 ) d 2 1 n u v = 1 χ ( v ) d 1 d 2 = v λ ¯ ( d 1 ) d 2 1 n v = χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) × u N χ ¯ ( u ) d 1 d 2 = u ξ ( d 1 ) d 2 1 n u + N A ( χ ¯ , ξ , y ) y 2 d y × v N χ ( v ) d 1 d 2 = v λ ¯ ( d 1 ) d 2 1 n v + N A ( χ , λ ¯ , y ) y 2 d y = χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) × u N χ ¯ ( u ) d 1 d 2 = u ξ ( d 1 ) d 2 1 n u v N χ ( v ) d 1 d 2 = v λ ¯ ( d 1 ) d 2 1 n v + χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) × u N χ ¯ ( u ) d 1 d 2 = u ξ ( d 1 ) d 2 1 n u N A ( χ , λ ¯ , y ) y 2 d y + χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) × v N χ ( v ) d 1 d 2 = v λ ¯ ( d 1 ) d 2 1 n v N A ( χ ¯ , ξ , y ) y 2 d y + χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) N A ( χ ¯ , ξ , y ) y 2 d y N A ( χ , λ ¯ , y ) y 2 d y : = M 1 + M 2 + M 3 + M 4 ,
we shall calculate each term in the above expression.
(i) From Lemma 1 we have
χ mod q χ ( 1 ) = 1 χ ( u ¯ v ) = 1 2 χ mod q ( 1 + χ ( 1 ) ) χ ( u ¯ v ) = 1 2 χ mod q χ ( u ¯ v ) + 1 2 χ mod q χ ( u ¯ v ) = 1 2 d | ( q , u ¯ v 1 ) μ q d ϕ ( d ) + 1 2 d | ( q , u ¯ v + 1 ) μ q d ϕ ( d ) .
In addition, we have
ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) ξ ( d 1 ) = ξ mod p ξ ( 1 ) = 1 a = 1 p ξ ¯ ( a ) e 2 π i a p ξ ( d 1 ) = ξ mod p ξ ( 1 ) = 1 a = 1 p ξ ¯ ( a ) e 2 π i a d 1 p = ϕ ( p ) 2 e 2 π i d 1 p ϕ ( p ) 2 e 2 π i ( p 1 ) d 1 p = i ϕ ( p ) sin 2 π d 1 p .
Similarly, we can also get
λ mod p λ ( 1 ) = 1 τ ( λ ) λ ¯ ( d 1 ) = i ϕ ( p ) sin 2 π d 1 p .
So, we have
ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) d 1 d 2 = u ξ ( d 1 ) d 2 1 n d 1 d 2 = v λ ¯ ( d 1 ) d 2 1 n = ϕ 2 ( p ) d 1 d 2 = u sin 2 π d 1 p · d 2 1 n d 1 d 2 = v sin 2 π d 1 p · d 2 1 n = ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) .
Hence, we can write
M 1 = χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) × u N χ ¯ ( u ) d 1 d 2 = u ξ ( d 1 ) d 2 1 n u v N χ ( v ) d 1 d 2 = v λ ¯ ( d 1 ) d 2 1 n v = ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) × 1 u N 1 v N d 1 d 2 = u ξ ( d 1 ) d 2 1 n d 1 d 2 = v λ ¯ ( d 1 ) d 2 1 n u v χ mod q χ ( 1 ) = 1 χ ( u ¯ v ) = 1 2 1 u N 1 v N ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v d | ( q , u ¯ v 1 ) μ p d ϕ ( d ) 1 2 1 u N 1 v N ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v d | ( q , u ¯ v + 1 ) μ q d ϕ ( d ) = 1 2 d | q μ q d ϕ ( d ) 1 u N 1 v N u v ( mod d ) ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v 1 2 d | q μ q d ϕ ( d ) 1 u N 1 v N u v ( mod d ) ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v ,
where 1 n N denotes the summation over n from 1 to N such that ( n , q ) = 1 .
For calculation convenience, we divide the sum over u or v into four cases: (i) d u , v N ; (ii) d u N and 1 v d 1 ; (iii) 1 u d 1 and d v N ; (iv) 1 u , v d 1 . So we have
d | q μ q d ϕ ( d ) d u N d v N u v ( mod d ) ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v d | q ϕ ( d ) 1 r 1 N d 1 r 2 N d l 1 = 1 d 1 l 2 = 1 d 1 l 1 l 2 ( mod d ) ϕ 2 ( p ) γ p ( r 1 d + l 1 , n ) γ p ( r 2 d + l 2 , n ) ( r 1 d + l 1 ) ( r 2 d + l 2 ) ϕ 2 ( p ) d | q ϕ ( d ) 1 r 1 N d 1 r 2 N d l 1 = 1 d 1 d 2 | ( r 1 d + l 1 ) d 2 1 n d 2 | ( r 2 d + l 1 ) d 2 1 n ( r 1 d + l 1 ) ( r 2 d + l 1 ) ϕ 2 ( p ) d | q ϕ ( d ) 1 r 1 N d 1 r 2 N d l 1 = 1 d 1 τ 2 ( r 1 d + l 1 ) τ 2 ( r 2 d + l 1 ) ( r 1 d + l 1 ) ( r 2 d + l 1 ) ϕ 2 ( p ) d | q ϕ ( d ) d 1 r 1 N d 1 r 2 N d [ ( r 1 d + 1 ) ( r 2 d + 1 ) ] ϵ r 1 r 2 ϕ 2 ( p ) q ϵ .
d | q μ q d ϕ ( d ) d u N 1 v d 1 u v ( mod d ) ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v d | q ϕ ( d ) 1 r 1 N d 1 v d 1 l 1 = 1 d 1 v l 1 ( mod d ) ϕ 2 ( p ) γ p ( r 1 d + l 1 , n ) γ p ( v , n ) ( r 1 d + l 1 ) v ϕ 2 ( p ) d | q ϕ ( d ) 1 r 1 N d 1 v d 1 τ 2 ( r 1 d + v ) τ 2 ( v ) ( r 1 d + v ) v ϕ 2 ( p ) d | q ϕ ( d ) 1 r 1 N d 1 v d 1 ( r 1 v d ) ϵ 1 ϕ 2 ( p ) q ϵ .
and
d | q μ q d ϕ ( d ) 1 u d 1 d v N u v ( mod d ) ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v ϕ 2 ( p ) d | q ϕ ( d ) 1 u d 1 1 r 2 N d ( u r 2 d ) ϵ 1 ϕ 2 ( p ) q ϵ ,
where we have used the estimate τ 2 ( n ) n ϵ .
For the case 1 u , v d 1 , the solution of the congruence u v ( mod d ) is u = v . Hence,
d | q μ q d ϕ ( d ) 1 u d 1 1 v d 1 u v ( mod d ) ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v = ϕ 2 ( p ) d | q μ q d ϕ ( d ) 1 u d 1 γ p 2 ( u , n ) u 2 = ϕ 2 ( p ) d | q μ q d ϕ ( d ) u = 1 ( u , q ) = 1 γ p 2 ( u , n ) u 2 + O ( ϕ 2 ( p ) q ϵ ) = ( q 2 ) ϕ 2 ( p ) u = 1 ( u , q ) = 1 γ p 2 ( u , n ) u 2 + O ( ϕ 2 ( p ) q ϵ ) = ( q 2 ) ϕ 2 ( p ) u = 1 γ p 2 ( u , n ) u 2 u = 1 q | u γ p 2 ( u , n ) u 2 + O ( ϕ 2 ( p ) q ϵ ) = ( q 2 ) ϕ 2 ( p ) u = 1 γ p 2 ( u , n ) u 2 + O ( ϕ 2 ( p ) q ϵ ) .
Then from (3)–(6), we have
1 2 d | q μ q d ϕ ( d ) 1 u N 1 v N u v ( mod d ) ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v = ϕ 2 ( p ) ( q 2 ) 2 u = 1 γ p 2 ( u , n ) u 2 + O ( ϕ 2 ( p ) q ϵ ) = ϕ 2 ( p ) ( q 2 ) 2 C p , n + O ( ϕ 2 ( p ) q ϵ ) .
Similarly, we can also get the estimate
1 2 d | q μ q d ϕ ( d ) 1 u N 1 v N u v ( mod d ) ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v = 1 2 d | q μ q d ϕ ( d ) 1 u N 1 v N u + v = d ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v 1 2 d | q μ q d ϕ ( d ) 1 u N 1 v N u + v = l d , l 2 ϕ 2 ( p ) γ p ( u , n ) γ p ( v , n ) u v ϕ 2 ( p ) d | q ϕ ( d ) 1 u d 1 γ p ( u , n ) γ p ( d u , n ) u ( d u ) + ϕ 2 ( p ) d | q ϕ ( d ) 1 u N l = u d + 2 N + u d γ p ( u , n ) γ p ( l d u , n ) l d u u 2 ϕ 2 ( p ) d | q ϕ ( d ) d 1 u d 1 u ϵ ( d u ) ϵ u + ϕ 2 ( p ) d | q ϕ ( d ) d 1 u N l = u d + 2 N + u d u ϵ ( l d u ) ϵ l u u 2 d ϕ 2 ( p ) q ϵ + d | q ϕ ( d ) d u = 1 N l = 1 N u ϵ l ϵ u l ϕ 2 ( p ) q ϵ .
Then combining (2), (7) and (8), we have
M 1 = ϕ 2 ( p ) ( q 2 ) 2 C p , n + O ( ϕ 2 ( p ) q ϵ ) .
(ii) From Lemma 4 of [15], we have the estimate
χ χ 0 | A ( y , χ ) | 2 y 1 + ϵ q 2 ,
where χ 0 denotes the principal character modulo q, A ( y , χ ) = N < n y χ ( n ) τ 2 ( n ) . Then from the Cauchy inequality we can easily get
χ ( 1 ) = 1 | A ( y , χ ) | χ χ 0 | A ( y , χ ) | y 1 2 + ϵ q 3 2 .
Using this estimate we have
M 2 = χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) × u N χ ¯ ( u ) d 1 d 2 = u ξ ( d 1 ) d 2 1 n u N A ( χ , λ ¯ , y ) y 2 d y = ϕ 2 ( p ) 1 u N χ ¯ ( u ) γ p ( u , n ) u N 1 y 2 χ mod q χ ( 1 ) = 1 N < v y χ ( v ) γ k ( v , n ) d y ϕ 2 ( p ) 1 u N χ ¯ ( u ) d ( u ) u N 1 y 2 χ mod q χ ( 1 ) = 1 A ( y , χ ) d y ϕ 2 ( p ) 1 u N u ϵ 1 N 1 y 2 χ mod q χ ( 1 ) = 1 | A ( y , χ ) | d y ϕ 2 ( p ) N ϵ N q 3 2 y 1 2 + ϵ 1 y 2 d y ϕ 2 ( p ) q 3 2 N 1 2 ϵ .
(iii) Similar to (ii), we can also get
M 3 ϕ 2 ( p ) q 3 2 N 1 2 ϵ .
(iv) Using the same discussion in (ii), and making use of the absolute convergent properties of the integral, we can calculate
M 4 = χ mod q χ ( 1 ) = 1 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) N A ( χ ¯ , ξ , y ) y 2 d y N A ( χ , λ ¯ , y ) y 2 d y = ϕ 2 ( p ) χ mod q χ ( 1 ) = 1 N 1 y 2 N < u y χ ¯ ( u ) γ p ( u , n ) d y N 1 y 2 N < v y χ ( v ) γ p ( v , n ) d y ϕ 2 ( p ) χ mod p χ ( 1 ) = 1 N A ( y , χ ¯ ) y 2 d y N A ( y , χ ) y 2 d y ϕ 2 ( p ) N N 1 y 2 z 2 χ mod q χ ( 1 ) = 1 | A ( y , χ ¯ ) | | A ( y , χ ) | d y d z ϕ 2 ( p ) N 1 y 2 N 1 z 2 χ χ 0 | A ( y , χ ¯ ) | 2 1 2 χ χ 0 | A ( y , χ ) | 2 1 2 d y d z ϕ 2 ( p ) N 1 y 2 χ χ 0 | A ( y , χ ) | 2 1 2 d y 2 ϕ 2 ( p ) N q y 3 2 ϵ d y 2 ϕ 2 ( p ) q 2 N 1 ϵ .
Now taking N = q 4 and ϵ < 1 2 , combining (1) and (9)–(12), we have
M = ϕ 2 ( p ) ( q 2 ) 2 C p , n + O ( ϕ 2 ( p ) q ϵ ) .
Thus we obtain the asymptotic formula for χ ( 1 ) = 1 ,
a < q p b < q p χ mod q χ ( 1 ) = 1 χ ( a b ¯ ) L ( n , χ ) 2 = q π 2 ϕ 2 ( p ) M = q 2 2 π 2 C p , n + O ( q 1 + ϵ ) .
For χ ( 1 ) = 1 , from Lemma 4, we have
a < q p b < q p χ mod q χ ( 1 ) = 1 χ ( a b ¯ ) L ( n , χ ) 2 = χ mod q χ ( 1 ) = 1 L ( n , χ ) 2 τ ( χ ) π i 1 χ ¯ ( p ) p L ( 1 , χ ¯ ) + i τ ( χ ) π ϕ ( p ) ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) × τ ( χ ¯ ) π i 1 χ ( p ) p L ( 1 , χ ) + i τ ( χ ¯ ) π ϕ ( p ) λ mod p λ ( 1 ) = 1 τ ( λ ) L ( 1 , λ ¯ χ ) = q π 2 χ mod q χ ( 1 ) = 1 1 χ ¯ ( p ) p 1 χ ( p ) p L ( n , χ ) 2 | L ( 1 , χ ) | 2 + q π 2 ϕ ( p ) χ mod q χ ( 1 ) = 1 1 χ ¯ ( p ) p L ( n , χ ) 2 L ( 1 , χ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) L ( 1 , λ ¯ χ ) + q π 2 ϕ ( p ) χ mod q χ ( 1 ) = 1 1 χ ( p ) p L ( n , χ ) 2 L ( 1 , χ ) ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) + q π 2 ϕ 2 ( p ) χ mod q χ ( 1 ) = 1 L ( n , χ ) 2 ξ mod p ξ ( 1 ) = 1 τ ( ξ ¯ ) L ( 1 , ξ χ ¯ ) λ mod p λ ( 1 ) = 1 τ ( λ ) L ( 1 , λ ¯ χ ) : = A + B + C + D .
Using the same method as proving χ ( 1 ) = 1 , we can easily get
A = q 2 2 π 2 1 + 1 p 2 u = 1 ν 2 ( u , n ) u 2 q 2 π 2 p 2 u = 1 ν ( u , n ) ν ( p u , n ) u 2 + O ( q 1 + ϵ ) ,
B = C = q 2 2 π 2 p 2 u = 1 ν ( u , n ) ν p ( p u , n ) u 2 p 2 2 π 2 u = 1 ν ( u , n ) ν p ( u , n ) u 2 + O ( q 1 + ϵ ) ,
D = q 2 2 π 2 u = 1 ν p 2 ( u , n ) u 2 + O ( q 1 + ϵ ) .
Thus we obtain the asymptotic formula for χ ( 1 ) = 1 ,
a < q p b < q p χ mod q χ ( 1 ) = 1 χ ( a b ¯ ) L ( n , χ ) 2 = q 2 π 2 T p , n + O ( q 1 + ϵ ) .
This proves Lemma 5. □

3. Proof of Theorem and Corollaries

In this section we will accomplish the proof of the theorem and corollaries. From Lemmas 2 and 5, we have:
(i) when n be an even number,
a < q p b < q p S ( a b ¯ , n , q ) = ( n ! ) 2 q 4 n 1 π 2 n ϕ ( q ) a < q p b < q p χ mod q χ ( 1 ) = 1 χ ( a b ¯ ) L ( n , χ ) 2 + ( n ! ) 2 ζ 2 ( n ) 4 n 1 π 2 n 1 q 2 n 1 1 a < q p b < q p 1 = ( n ! ) 2 q 2 2 2 n 2 π 2 n 1 2 π 2 C p , n ζ 2 ( n ) p 2 + O ( q 1 + ϵ ) .
(ii) when n be an odd number,
a < q p b < q p S ( a b ¯ , n , q ) = ( n ! ) 2 q 4 n 1 π 2 n ϕ ( q ) a < q p b < q p χ mod q χ ( 1 ) = 1 χ ( a b ¯ ) L ( n , χ ) 2 = ( n ! ) 2 q 4 n 1 π 2 n ϕ ( q ) q 2 π 2 T p , n + O ( q 1 + ϵ ) = ( n ! ) 2 q 2 2 2 n 2 π 2 n + 2 T p , n + O ( q 1 + ϵ ) .
This completes the proof of the Theorem.
Taking p = 2 and n = 2 or 4 in the Theorem, we get C 2 , 2 = C 2 , 4 = 0 . When n be an even number, from reference [7], we can easily calculate
S n ( 1 ) ( h , k ) = ( 2 π ) n 1 i n + 1 · n ! S ( h , n , k ) .
Noting that ζ ( 2 ) = π 2 / 6 and ζ ( 4 ) = π 4 / 90 , we easily get Corollarys 1 and 2.

Author Contributions

Conceptualization, L.L. and Z.X.; methodology, L.L. and Z.X.; software, L.L. and Z.X.; validation, L.L. and Z.X.; formal analysis, L.L. and Z.X.; investigation, L.L. and Z.X.; resources, L.L. and Z.X.; data curation, L.L. and Z.X.; writing—original draft preparation, L.L. and Z.X.; writing—review and editing, L.L. and Z.X.; visualization, L.L. and Z.X.; supervision, L.L. and Z.X.; project administration, L.L. and Z.X.; funding acquisition, L.L. and Z.X. All authors have read and agreed to the published version of the manuscript.

Funding

This work is supported by the Basic Research Program for Nature Science of the Shaanxi Province (2014JM1001, 2015KJXX-27) and N.S.F. (11971381, 11471258, 11701447) of China.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Carlitz, L. The reciprocity theorem of Dedekind sums. Pac. J. Math. 1953, 3, 513–522. [Google Scholar] [CrossRef]
  2. Conrey, J.B.; Fransen, E.; Klein, R.; Scott, C. Mean values of Dedekind sums. J. Number Theory 1996, 41, 214–226. [Google Scholar] [CrossRef] [Green Version]
  3. Jia, C. On the mean values of Dedekind sums. J. Number Theory 2001, 87, 173–188. [Google Scholar] [CrossRef] [Green Version]
  4. Zhang, W. On the mean values of Dedekind sums. J. Theor. Nombres Bordx. 1996, 8, 429–442. [Google Scholar] [CrossRef]
  5. Zhang, W. A note on the mean square value of the Dedekind sums. Acta Math. Hung. 2000, 86, 275–289. [Google Scholar] [CrossRef]
  6. Zhang, W.; Yi, Y. Partial sums of Dedekind sums. Prog. Nat. Sci. 2000, 4, 314–319. [Google Scholar]
  7. Zhang, W. On the general Dedekind sums and one kind identities of Dirichlet L-functions. Acta Math. Sin. 2001, 44, 269–272. [Google Scholar]
  8. Kim, T.; San Kim, D.; Lee, H.; Jang, L.C. Identities on poly-dedekind sums. Adv. Differ. Equ. 2020, 1, 1–13. [Google Scholar]
  9. Ma, Y.; San Kim, D.; Lee, H.; Kim, T. Poly-Dedekind sums associated with poly-Bernoulli functions. J. Inequal. Appl. 2020, 248, 1–10. [Google Scholar]
  10. Kim, T. Note on q-dedekind type sums related to q-euler polynomials. Glasg. Math. J. 2012, 54, 121–125. [Google Scholar] [CrossRef] [Green Version]
  11. Shparlinski, I.E. On some weighted average value of L-functions. Bull. Aust. Math. Soc 2009, 79, 183–186. [Google Scholar] [CrossRef] [Green Version]
  12. Liu, L.; Xu, Z.; Wang, N. Mean values of generalized Dedekind sums over short intervals. Acta Arith. 2020, 193, 95–108. [Google Scholar] [CrossRef]
  13. Zhang, W. On a Cochrane sum and its hybrid mean value formula(II). J. Math. Appl. 2002, 276, 446–457. [Google Scholar] [CrossRef] [Green Version]
  14. Peral, C.J. Character sums and explicit estimates for L-functions. Contemp. Math. 1995, 189, 449–459. [Google Scholar]
  15. Zhang, W.; Yi, Y.; He, X. On the 2k-th power mean of Dirichlet L-functions with the weight of general Kloosterman sums. J. Number Theory 2000, 84, 199–213. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Liu, L.; Xu, Z. Mean Value of the General Dedekind Sums over Interval \({[1,\frac{q}{p})}\). Symmetry 2020, 12, 2079. https://doi.org/10.3390/sym12122079

AMA Style

Liu L, Xu Z. Mean Value of the General Dedekind Sums over Interval \({[1,\frac{q}{p})}\). Symmetry. 2020; 12(12):2079. https://doi.org/10.3390/sym12122079

Chicago/Turabian Style

Liu, Lei, and Zhefeng Xu. 2020. "Mean Value of the General Dedekind Sums over Interval \({[1,\frac{q}{p})}\)" Symmetry 12, no. 12: 2079. https://doi.org/10.3390/sym12122079

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop