Next Article in Journal
Quadratic Stability of Non-Linear Systems Modeled with Norm Bounded Linear Differential Inclusions
Next Article in Special Issue
Efficiency of Cluster Validity Indexes in Fuzzy Clusterwise Generalized Structured Component Analysis
Previous Article in Journal
Omnidirectional Mobile Robot Dynamic Model Identification by NARX Neural Network and Stability Analysis Using the APLF Method
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Note on the Hurwitz–Lerch Zeta Function of Two Variables

1
Department of Mathematics, Dongguk University, Gyeongju 38066, Korea
2
Department of Mathematics, Kırıkkale University, Kırıkkale 71450, Turkey
3
Department of Mathematics, Dongguk University, Seoul 04620, Korea
*
Author to whom correspondence should be addressed.
Symmetry 2020, 12(9), 1431; https://doi.org/10.3390/sym12091431
Submission received: 3 August 2020 / Revised: 20 August 2020 / Accepted: 27 August 2020 / Published: 28 August 2020
(This article belongs to the Special Issue Current Trends in Symmetric Polynomials with Their Applications Ⅲ)

Abstract

:
A number of generalized Hurwitz–Lerch zeta functions have been presented and investigated. In this study, by choosing a known extended Hurwitz–Lerch zeta function of two variables, which has been very recently presented, in a systematic way, we propose to establish certain formulas and representations for this extended Hurwitz–Lerch zeta function such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to yield corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function considered here. For further investigation, among possibly various more generalized Hurwitz–Lerch zeta functions than the one considered here, two more generalized settings are provided.

1. Introduction and Preliminaries

The generalized (or Hurwitz) zeta function ζ ( s , ν ) is defined by (see, e.g., [1], pp. 24–27); see also ([2] Chapter XIII)
ζ ( s , ν ) = n = 0 1 ( n + ν ) s ( s ) > 1 , ν C \ Z 0 ,
which is a generalization of the Riemann zeta function ζ ( s ) : = ζ ( s , 1 ) (see, e.g., [1] Section 1.12). Apostol [3] showed that the following analytic continuation formula (see, e.g., ([1] p. 26, Equation (6)), ([4] Equation (5.1))
ζ ( 1 s , ν ) = 2 Γ ( s ) ( 2 π ) s n = 1 cos ( π s / 2 2 π ν n ) n s ( 0 < ν 1 , ( s ) > 1 ) ,
where Γ ( s ) is the familiar Gamma function whose Euler’s integral (see, e.g., [1] pp. 1–24) is
Γ ( s ) = 0 e u u s 1 d u ( ( s ) > 0 ) ,
and it can be derived from a known transformation formula for the Lerch zeta function
ϕ ( x , ν , s ) = n = 0 e 2 π i n x ( n + ν ) s ( s ) > 1 , ν C \ Z 0 , x R .
Note that It is easy to read that ϕ ( x , ν , s ) = ζ ( s , ν ) when x Z . The Hurwitz–Lerch zeta function Φ z , s , ν is defined by (see, e.g., [1] p. 27)
Φ z , s , ν = n = 0 z n n + ν s ,
where ν C \ Z 0 . The Φ z , s , ν in (5) converges for all s C when | z | < 1 and for ( s ) > 1 when | z | = 1 . Here and elsewhere, let N , Z , R , and C be the sets of positive integers, integers, real numbers, and complex numbers, respectively. Furthermore, let us denote Z 0 : = Z \ N and N 0 : = N { 0 } .
The various special cases of the Hurwitz–Lerch zeta function (5) including the Riemann zeta function ζ ( s ) , the Hurwitz zeta function (1), and the Lerch zeta function (4) have been intensively studied and applied. We choose to take some examples: Adamchik and Srivastava ([5] Propostion 5) evaluated a series involving polygamma functions in terms of the Hurwitz–Lerch zeta function (5). Rassias and Yang [6] studied certain equivalent conditions of a reverse Hilbert-type integral inequality, for which, in an example, the generalized zeta function ζ ( s , a ) is shown to be related to a best possible constant factor (see also [7,8,9]). Recently, a number of generalizations of the Hurwitz–Lerch zeta function (5) have been actively investigated (see, e.g., [10,11,12,13,14,15,16,17,18,19] and the references cited therein). Furthermore, very recently, Choi and Parmar [20] have introduced and investigated the following two-variable extension of the Hurwitz–Lerch zeta function (5)
Φ a , b , b ; c x , y , s , α = k , = 0 ( a ) k + ( b ) k ( b ) ( c ) k + k ! ! x k y ( k + + α ) s ,
where a , b , b C and c , α C \ Z 0 . The function Φ a , b , b ; c x , y , s , α in (6) converges for all s C when | x | < 1 and | y | < 1 , and for ( s + c a b b ) > 1 when | x | = 1 and | y | = 1 . Here ( η ) ν is the Pochhammer symbol given (for η , ν C ) by
( η ) ν : = Γ ( η + ν ) Γ ( η ) ( η + ν C \ Z 0 ) = 1 ( ν = 0 ) , η ( η + 1 ) ( η + n 1 ) ( ν = n N ) .
From (3) and (7), the following integral formula for the Pochhammer symbol
( s ) ν = 1 Γ ( s ) 0 e u u s + ν 1 d u ( ( s + ν ) > 0 )
can be easily obtained.
Here, in a systematic way, we aim to establish certain formulas and representations for the extended Hurwitz–Lerch zeta function of two variables (6) such as integral representations, generating functions, derivative formulas and recurrence relations. We also point out that the results presented here can be reduced to produce corresponding results for several less generalized Hurwitz–Lerch zeta functions than the extended Hurwitz–Lerch zeta function (6). Further, two more generalized settings than (6) are provided.

2. Integral Representations for the Extended Hurwitz–Lerch Zeta Function of Two Variables

We begin by recalling a known integral representation of the extended Hurwitz–Lerch zeta function (6) (see [20] Theorem 1)
Φ a , b , b ; c x , y , s , α = 1 Γ ( s ) 0 u s 1 e α u F 1 a , b , b ; c ; x e u , y e u d u ,
which converges for min ( s ) , ( α ) > 0 when | x | 1 ( x 1 ) and | y | 1 ( y 1 ) , and for ( s ) > 1 when x = 1 and y = 1 . Here F 1 is the Appell hypergeometric function of two variables defined by (see, e.g., ([1] p. 224, Equation (6)); see also ([21] p. 22))
F 1 a , b , b ; c ; x , y = m , n = 0 ( a ) m + n ( b ) m ( b ) n ( c ) m + n x m m ! y n n ! = m = 0 ( a ) m ( b ) m ( c ) m 2 F 1 a + m , b ; y c + m ; x m m ! ,
where a , b , b C , c C \ Z 0 and whose convergence region is max { ( x ) , ( y ) } < 1 . Here p F q ( p , q N 0 ) are the generalized hypergeometric functions (see, e.g., ([1] Chapters II and V); see also ([22] Section 1.5), [21,23,24,25,26]).
The following confluent form of the Appell hypergeometric function F 1 is recalled (see, e.g., [1] p. 225, Equation (21)); see also ([21] p. 22 et seq.)
Φ 2 [ b , b ; c ; x , y ] = m , n = 0 ( b ) m ( b ) n ( c ) m + n x m m ! y n n ! ( | x | < , | y | < ) .
We provide further integral representations of the extended Hurwitz–Lerch zeta function (6), asserted in the following theorem.
Theorem 1.
Each of the following integral representations holds.
Φ a , b , b ; c x , y , s , α = 1 Γ ( s ) Γ ( b ) Γ ( b ) 0 0 0 ( u s 1 v 1 b 1 v 2 b 1 exp ( α u v 1 v 2 ) × 1 F 1 a ; c ; e u x v 1 + y v 2 ) d u d v 1 d v 2 ,
where min ( s ) , ( α ) , ( b ) , ( b ) > 0 ;
Φ a , b , b ; c x , y , s , α = 1 Γ ( s ) Γ ( a ) Γ ( b ) Γ ( b ) 0 0 0 0 ( u s 1 v 1 b 1 v 2 b 1 v 3 a 1 × exp ( α u v 1 v 2 v 3 ) 0 F 1 ; c ; e u x v 1 + y v 2 v 3 ) d u d v 1 d v 2 d v 3 ,
where min ( s ) , ( α ) , ( a ) , ( b ) , ( b ) > 0 ;
Φ a , b , b ; c x , y , s , α = 1 Γ ( s ) Γ ( a ) 0 0 ( u s 1 v a 1 exp ( α u v ) × Φ 2 b , b ; c ; x e u v , y e u v ) d u d v ,
where min { ( s ) , ( α ) , ( a ) } > 0 and max { ( x ) , ( y ) } < 1 ;
Φ a , b , b ; c x , y , s , α = Γ ( c ) Γ ( s ) Γ ( a ) Γ ( b ) Γ ( b ) Γ ( c b b ) × 0 0 0 1 0 1 ( u s 1 v a 1 ξ b 1 η b 1 ( 1 ξ ) c b 1 × ( 1 η ) c b b 1 exp α u v + x e u v ξ + y e u v ( 1 ξ ) η ) d ξ d η d u d v ,
where min { ( s ) , ( α ) , ( a ) , ( b ) } > 0 and ( c b ) > ( b ) > 0 ;
Φ a , b , b ; c x , y , s , α = Γ δ Γ s Γ a Γ b Γ b Γ δ b b 0 0 0 1 0 1 ( u s 1 v a 1 ξ b 1 η b 1 × 1 ξ δ b 1 1 η δ b b 1 exp α u v + x e u v ξ + y e u v 1 ξ η × 1 F 1 c δ ; c ; z e u v ξ y e u v 1 ξ η ) d ξ d η d u d v ,
where min { ( s ) , ( α ) , ( a ) , ( b ) } > 0 and ( δ b ) > ( b ) > 0 ;
Φ a , b , b ; c x , y , s , α = Γ c Γ s Γ a Γ δ Γ b Γ c δ b × 0 0 0 1 0 1 ( u s 1 v a 1 ξ δ 1 η b 1 ( 1 ξ ) c δ 1 ( 1 η ) c δ b 1 × exp α u v + x e u v ξ + y e u v ( 1 ξ ) η 1 F 1 δ b ; δ ; x e u v ξ ) d ξ d η d u d v ,
where min { ( s ) , ( α ) , ( a ) , ( δ ) } > 0 and ( c δ ) > ( b ) > 0 ;
Φ a , b , b ; c x , y , s , α = Γ c Γ s Γ a Γ δ Γ b Γ c δ b 0 0 0 1 0 1 ( u s 1 v a 1 ξ δ 1 η b 1 × ( 1 ξ ) c δ 1 ( 1 η ) c δ b 1 exp α u v + x e u v ξ + y e u v 1 ξ η × 1 F 1 b δ ; c δ b ; x e u v 1 ξ 1 η ) d ξ d η d u d v ,
where min { ( s ) , ( α ) , ( a ) , ( δ ) } > 0 and ( c δ ) > ( b ) > 0 ;
Φ a , b , b ; c x , y , s , α = Γ c Γ s Γ a Γ δ 1 Γ δ 2 Γ c δ 1 δ 2 0 0 0 1 0 1 ( u s 1 v a 1 ξ δ 1 1 η δ 2 1 × ( 1 ξ ) c δ 1 1 ( 1 η ) c δ 1 δ 2 1 exp α u v + x e u v ξ + y e u v ( 1 ξ ) η × 1 F 1 δ 1 b ; δ 1 ; x e u v ξ 1 F 1 δ 2 b ; δ 2 ; y e u v ( 1 ξ ) η ) d ξ d η d u d v ,
where min { ( s ) , ( α ) , ( a ) , ( δ 1 ) } > 0 and ( c δ 1 ) > ( δ 2 ) > 0 ;
Φ a , b , b ; c x , y , s , α = Γ c Γ s Γ a Γ δ 1 Γ δ 2 Γ c δ 1 δ 2 × 0 0 0 1 0 1 ( u s 1 v a 1 ξ δ 1 1 η δ 2 1 1 ξ c δ 1 1 1 η c δ 1 δ 2 1 × exp α u v + x e u v ξ + y e u v 1 ξ η × Φ 2 b δ 1 ; b δ 2 ; c ; x e u v ( 1 ξ ) ( 1 η ) , y e u v ( 1 ξ ) ( 1 η ) ] ) d ξ d η d u d v ,
where min { ( s ) , ( α ) , ( a ) , ( δ 1 ) } > 0 and ( c δ 1 ) > ( δ 2 ) > 0 ;
Φ a , b , b ; c x , y , s , α = Γ c Γ s Γ a Γ b Γ b Γ c b b × 0 0 1 0 1 η ( e α u u s 1 ξ b 1 η b 1 1 ξ η c b b 1 × 1 x ξ e u y η e u a ) d ξ d η d u ,
where min { ( s ) , ( α ) , ( b ) , ( b ) } > 0 and ( c b b ) > 0 ;
Φ a , b , b ; c x , y , s , α = Γ c Γ s Γ a Γ c a × 0 0 1 e α u u s 1 v a 1 1 v c a 1 1 v x e u b 1 v y e u b d v d u ,
where min { ( s ) , ( α ) , ( a ) } > 0 and ( c a ) > 0 ;
Φ a , b , b ; c x , y , s , α = Γ c Γ s Γ b Γ c b 0 0 1 ( e α u u s 1 v c b 1 1 v b 1 × 1 x e u c a b 1 v x e u a c 2 F 1 a , b ; c b ; y e u v ) d v d u ,
where min { ( s ) , ( α ) , ( b ) } > 0 and ( c b ) > 0 .
Proof. 
Using (8) in the series definition of F 1 in (9), we get
F 1 a , b , b ; c ; x e u , y e u = 1 Γ ( b ) Γ ( b ) 0 0 ( e v 1 v 2 v 1 b 1 v 2 b 1 × m , n = 0 ( a ) m + n ( c ) m + n x v 1 e u m m ! y v 2 e u n n ! ) d v 1 d v 2 .
Applying the following identity (see, e.g., [26] p. 52)
m , n = 0 f ( m + n ) x m m ! y n n ! = N = 0 f ( N ) ( x + y ) N N !
to the double series in the right side of (24), we have an integral representation of F 1
F 1 a , b , b ; c ; x e u , y e u = 1 Γ ( b ) Γ ( b ) × 0 0 e v 1 v 2 v 1 b 1 v 2 b 1 1 F 1 a ; c ; x v 1 e u + y v 2 e u d v 1 d v 2 .
Finally, using (26) in (9), we get (12).
Similarly, using (8), we have an integral representation of 1 F 1
1 F 1 [ a ; c ; x ] = 1 Γ ( a ) 0 e u u a 1 0 F 1 [ ; c ; x u ] d u ( ( a ) > 0 ) .
Applying (27) in (12), we get (13).
Using the following known integral formula (see [21] p. 282, Equation (27))
F 1 a , b , b ; c ; x , y = 1 Γ a 0 u a 1 e u Φ 2 b , b ; c ; x u , y u d u ,
where max { ( x ) , ( y ) } < 1 and ( a ) > 0 , in the integrand of (9) yields (14).
From the known integral representation of Φ 2 (see [27] Equation (4.2)) in (14), we obtain (15).
Similarly, applying the known integral representations ([27] Equation (4.10)–Equation (4.14)) of Φ 2 to (14), respectively, yields (16)–(20).
Applying known integral representations for F 1 (see, e.g., ([23] p. 76, Equation (1)); see also ([28] Equation (3.2)) and (see, e.g., ([23] p. 77, Equation (4)); see also ([28] Equation (3.1)) to (9), respectively, we obtain (21) and (22).
Using a known integral representation for F 1 (see [28] Equation (3.3)) in (9), we get (23). □

3. Generating Functions for the Extended Hurwitz–Lerch Zeta Function of Two Variables

Certain generating functions for the extended Hurwitz–Lerch zeta function (6) are given in the following theorem.
Theorem 2.
The following two formulas hold true:
m = 0 λ + m 1 m Φ λ + m , b , b ; c x , y , s , α u m = ( 1 u ) λ Φ λ , b , b ; c x 1 u , y 1 u , s , α
and
m = 0 λ + m 1 m Φ a , b , λ + m ; c x , y , s , α u m = ( 1 u ) λ Φ a , b , λ ; c x , y 1 u , s , α .
Proof. 
We begin by recalling the generalized binomial theorem
( 1 y ) λ = m = 0 ( 1 ) m λ m y m = m = 0 ( λ ) m m ! y m = m = 0 λ + m 1 m y m ,
where λ C and | y | < 1 .
For simplicity’s sake, let us denote the left side of (29) by L . Then, by using (6), we have
L = m = 0 ( λ ) m m ! k , = 0 ( λ + m ) k + ( b ) k ( b ) ( c ) k + k ! ! x k y ( k + + α ) s u m .
In view of ( λ ) m ( λ + m ) k + = ( λ ) m + k + = ( λ ) k + ( λ + k + ) m , changing the order of summations and using (31), we obtain
L = k , = 0 ( λ ) k + ( b ) k ( b ) ( c ) k + k ! ! x k y ( k + + α ) s m = 0 ( λ + k + ) m m ! u m = ( 1 u ) λ k , = 0 ( λ ) k + ( b ) k ( b ) ( c ) k + k ! ! x k y ( k + + α ) s ( 1 u ) k
which, using the definition (6), leads to the right side of (29). Similarly, we can obtain (30).
We can also prove the generating relations here by using some known generating relations for F 1 (see [29] Equation (2.1)) and ([22] Equations (1.2)–(1.3)) in (9). The details of the proof are omitted here. □

4. Derivative Formulas for the Extended Hurwitz–Lerch Zeta Function of Two Variables

Certain derivative formulas for the extended Hurwitz–Lerch zeta function (6) are established in the following theorem.
Theorem 3.
Each of the following derivative formulas holds true for m , n N 0 :
m x m Φ a , b , b ; c x , y , s , α = ( a ) m ( b ) m ( c ) m Φ a + m , b + m , b ; c + m x , y , s , α + m ,
n y n Φ a , b , b ; c x , y , s , α = a n b n c n Φ a + n , b , b + n ; c + n x , y , s , α + n ,
m + n x m y n Φ a , b , b ; c x , y , s , α = a m + n b m b n c m + n Φ a + m + n , b + m , b + n ; c + m + n x , y , s , α + m + n .
Proof. 
Differentiating the series definition (6) with respect to the variable x under the double summations, which is valid under the conditions in (6), we have
x Φ a , b , b ; c x , y , s , α = = 0 k = 1 ( a ) k + ( b ) k ( b ) ( c ) k + ( k 1 ) ! ! x k 1 y ( k + + α ) s .
Putting k 1 = k in (35) and cancelling the prime on k, we obtain
x Φ a , b , b ; c x , y , s , α = = 0 k = 0 ( a ) k + 1 + ( b ) k + 1 ( b ) ( c ) k + 1 + k ! ! x k y ( k + + 1 + α ) s .
Using ( λ ) k + 1 = λ ( λ + 1 ) k ( k N 0 ) in (36), we get
x Φ a , b , b ; c x , y , s , α = a b c Φ a + 1 , b + 1 , b ; c + 1 x , y , s , α + 1 .
Differentiating the right side of (37), successively, m 1 times, with respect to the variable x, we have (32). Similarly, we can obtain (33) and (34). The details are omitted. □

5. Recurrence Relations for the Extended Hurwitz–Lerch Zeta Function of Two Variables

Wang [30] presented a number of recurrence relations for F 1 , which are chosen to give some recurrence relations for the extended Hurwitz–Lerch zeta function (6), asserted in Theorem 4.
Theorem 4.
Let n N 0 . Then the following recurrence relations are satisfied:
Φ a + n , b , b ; c x , y , s , α = Φ a , b , b ; c x , y , s , α + b x c m = 1 n Φ a + m , b + 1 , b + c + 1 x , y , s , α + b y c m = 1 n Φ a + m , b , b + 1 ; c + 1 x , y , s , α ;
Φ a n , b , b ; c x , y , s , α = Φ a , b , b ; c x , y , s , α b x c m = 0 n 1 Φ a m , b + 1 , b ; c + 1 x , y , s , α b y c m = 0 n 1 Φ a m , b , b + 1 ; c + 1 x , y , s , α ;
Φ a , b n , b ; c x , y , s , α = m = 0 n n m ( a ) m ( c ) m ( y ) m Φ a + m , b , b ; c + m x , y , s , α + m .
Here the involved empty sum in each identity is assumed to be nil.
Proof. 
Using the following recursion relation for F 1 ([30] Theorem 1, Equation (1)):
F 1 a + n , b , b ; c ; x , y = F 1 a , b , b ; c ; x , y + b x c m = 1 n F 1 a + m , b + 1 , b ; c + 1 ; x , y + b y c m = 1 n F 1 a + m , b , b + 1 ; c + 1 ; x , y
and ([30] Theorem 1, Equation (2)) in (9), respectively, we obtain (38) and (39).
Using the recurrence relation for F 1 in ([30] Theorem 4, Equation (12)) in (9), we find (40). □
Using six known recurrence relations for 1 F 1 in (12), we establish six recurrence relations for the extended Hurwitz–Lerch zeta function (6), which are asserted in Theorem 5.
Theorem 5.
The following recurrence relations hold true:
a Φ a + 1 , b , b ; c x , y , s , α = ( c a ) Φ a 1 , b , b ; c x , y , s , α + ( 2 a c ) Φ a , b , b ; c x , y , s , α + b z Φ a , b + 1 , b ; c x , y , s , α + 1 + b y Φ a , b , b + 1 ; c x , y , s , α + 1 ;
c ( c 1 ) Φ a , b , b ; c 1 x , y , s , α = c ( c 1 ) Φ a , b , b ; c x , y , s , α + c b z Φ a , b + 1 , b ; c x , y , s , α + 1 + c b y Φ a , b , b + 1 ; c x , y , s , α + 1 + ( a c ) b z Φ a , b + 1 , b ; c + 1 x , y , s , α + 1 + ( a c ) b y Φ a , b , b + 1 ; c x , y , s , α + 1 ;
( 1 + a c ) Φ a , b , b ; c x , y , s , α = a Φ a + 1 , b , b ; c x , y , s , α + ( 1 c ) Φ a , b , b ; c 1 x , y , s , α ;
c Φ a , b , b ; c x , y , s , α = c Φ a 1 , b , b ; c x , y , s , α + b z Φ a , b + 1 , b ; c + 1 x , y , s , α + 1 + b y Φ a , b , b + 1 ; c + 1 x , y , s , α + 1 ;
a c Φ a + 1 , b , b ; c x , y , s , α = a c Φ a , b , b ; c x , y , s , α + c b z Φ a , b + 1 , b ; c x , y , s , α + 1 + c b y Φ a , b , b + 1 ; c x , y , s , α + 1 + ( a c ) b z Φ a , b + 1 , b ; c + 1 x , y , s , α + 1 + ( a c ) b y Φ a , b , b + 1 ; c + 1 x , y , s , α + 1 ;
( c 1 ) Φ a , b , b ; c 1 x , y , s , α = ( a 1 ) Φ a , b , b ; c x , y , s , α + b z Φ a , b + 1 , b ; c x , y , s , α + 1 + b y Φ a , b , b + 1 ; c x , y , s , α + 1 + ( c a ) Φ a 1 , b , b ; c x , y , s , α + 1 .
Proof. 
Using the following known recurrence relation for 1 F 1 (see [25] p. 19, Equation (2.2.1))
( c a ) 1 F 1 [ a 1 ; c ; x ] + ( 2 a c + x ) 1 F 1 [ a ; c ; x ] a 1 F 1 [ a + 1 ; c ; x ] = 0
in (12), we obtain (42). Similarly, using the recurrence relations ([25] p. 19, Equations (2.2.2)–(2.2.6)) for 1 F 1 , respectively, we get (43)–(47). □

6. Symmetries and Conclusions

We can find some interesting identities from symmetries involved in certain definitions and formulas. From (6) and (10), we demonstrate the follow symmetric relations:
Φ a , b , b ; c x , y , s , α = Φ a , b , b ; c y , x , s , α
and
F 1 a , b , b ; c ; x , y = F 1 a , b , b ; c ; y , x .
Further, in view of the symmetric relation (48), each integral representation in Theorem 1 may yield another integral representation. For example, from (14) and (48), we have
Φ a , b , b ; c x , y , s , α = 1 Γ ( s ) Γ ( a ) 0 0 ( u s 1 v a 1 exp ( α u v ) × Φ 2 b , b ; c ; y e u v , x e u v ) d u d v ,
where min { ( s ) , ( α ) , ( a ) } > 0 and max { ( x ) , ( y ) } < 1 .
The extended Hurwitz–Lerch zeta function of two variables in (6) may be further generalized in various ways. Here we introduce two extensions, one of which is due to parametric increase and the other of which is due to variable addition:
Φ : m ; n p : q ; k ( a p ) : ( b q ) ; ( c k ) ; ( α ) : ( β m ) ; ( γ n ) ; x , y , s , α = u , v = 0 j = 1 p ( a j ) u + v j = 1 q ( b j ) u j = 1 k ( c j ) v j = 1 ( α j ) u + v j = 1 m ( β j ) u j = 1 n ( γ j ) v x u y v u ! v ! ( u + v + α ) s
and
Φ ( n ) a , b 1 , , b n ; c ; x 1 , , x n , s , α = m 1 , , m n = 0 ( a ) m 1 + + m n b 1 m 1 b n m n ( c ) m 1 + + m n m 1 ! m n ! x 1 m 1 x n m n m 1 + + m n + α s .
Here, for convergence, the parameters and variables in (51) and (52) would be suitably restricted. Obviously,
Φ 1 : 0 ; 0 1 : 1 ; 1 a : b ; b ; c : ¯ ; ¯ ; x , y , s , α = Φ a , b , b ; c x , y , s , α
and
Φ ( 2 ) a , b , b ; c ; x , y , s , α = Φ a , b , b ; c x , y , s , α .
The extended Hurwitz–Lerch zeta function (6) can be specialized to yield several known generalizations of the Hurwitz–Lerch zeta function (5) (see, e.g., [20]). Thus, the results presented here can yield corresponding identities regarding several reduced cases of the extended Hurwitz–Lerch zeta function (6), which are still generalizations of the Hurwitz–Lerch zeta function (5).

Author Contributions

These authors contributed equally. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the Dongguk University Research Fund of 2020.

Acknowledgments

The authors are grateful to the anonymous referees for the constructive and valuable comments which improved this paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA; Toronto, ON, Canada; London, UK, 1953; Volume I. [Google Scholar]
  2. Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, 4th ed.; Cambridge University Press: Cambridge, UK, 1963. [Google Scholar]
  3. Apostol, T.M. Remark on the Hurwitz zeta function. Proc. Amer. Math. Soc. 1951, 5, 690–693. [Google Scholar] [CrossRef]
  4. Berndt, B.C. On the Hurwitz zeta-function. Rocky Mountain J. Math. 1972, 2, 151–158. [Google Scholar] [CrossRef]
  5. Adamchik, V.S.; Srivastava, H.M. Some series of the zeta and related functions. Analysis 1998, 2, 131–144. [Google Scholar] [CrossRef]
  6. Rassias, M.T.; Yang, B. On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. J. Math. Inequal. 2019, 13, 315–334. [Google Scholar] [CrossRef] [Green Version]
  7. Rassias, M.T.; Yang, B. On a Hilbert-type integral inequality related to the extended Hurwitz zeta function in the whole plane. Acta Appl. Math. 2019, 160, 67–80. [Google Scholar] [CrossRef]
  8. Rassias, M.T.; Yang, B.; Raigorodskii, A. On a half-discrete Hilbert-type inequality in the whole plane with the kernel of hyperbolic secant function related to the Hurwitz zeta function. J. Inequal. Appl. 2020, 2020, 94. [Google Scholar] [CrossRef]
  9. Rassias, M.T.; Yang, B.; Raigorodskii, A. On Hardy-type integral inequalities in the whole plane related to the extended Hurwitz-zeta function. In Trigonometric Sums and their Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 229–259. [Google Scholar]
  10. Choi, J.; Jang, D.S.; Srivastava, H.M. A generalization of the Hurwitz–Lerch Zeta function. Integral Transform. Spec. Funct. 2008, 19, 65–79. [Google Scholar]
  11. Daman, O.; Pathan, M.A. A further generalization of the Hurwitz Zeta function. Math. Sci. Res. J. 2012, 16, 251–259. [Google Scholar]
  12. Garg, M.; Jain, K.; Kalla, S.L. A further study of general Hurwitz–Lerch zeta function. Algebras Groups Geom. 2008, 25, 311–319. [Google Scholar]
  13. Goyal, S.P.; Laddha, R.K. On the generalized Zeta function and the generalized Lambert function. Ganita Sandesh 1997, 11, 99–108. [Google Scholar]
  14. Pathan, M.A.; Daman, O. On generalization of Hurwitz zeta function. Non-Linear World J. 2018. submitted. [Google Scholar]
  15. Lin, S.D.; Srivastava, H.M. Some families of the Hurwitz–Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar] [CrossRef]
  16. Srivastava, H.M. A new family of the generalized Hurwitz–Lerch Zeta functions with applications. Appl. Math. Inf. Sci. 2014, 8, 1485–1500. [Google Scholar] [CrossRef]
  17. Srivastava, H.M.; Jankov, D.; Pogány, T.K.; Saxena, R.K. Two-sided inequalities for the extended Hurwitz–Lerch Zeta function. Comput. Math. Appl. 2011, 62, 516–522. [Google Scholar] [CrossRef] [Green Version]
  18. Srivastava, H.M.; Luo, M.-J.; Raina, R.K. New results involving a class of generalized Hurwitz–Lerch Zeta functions and their applications. Turkish J. Anal. Number Theory 2013, 1, 26–35. [Google Scholar] [CrossRef]
  19. Srivastava, H.M.; Saxena, R.K.; Pogány, T.K.; Saxena, R. Integral and computational representations of the extended Hurwitz–Lerch Zeta function. Integral Transforms Spec. Funct. 2011, 22, 487–506. [Google Scholar] [CrossRef]
  20. Choi, J.; Parmar, R.K. An extension of the generalized Hurwitz–Lerch zeta function of two variables. Filomat 2017, 31, 91–96. [Google Scholar] [CrossRef]
  21. Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Limited: Chichester, UK, 1985. [Google Scholar]
  22. Srivastava, H.M. Certain formulas involving Appell functions. Rikkyo Daigaku Sugaku Zasshi 1972, 21, 73–99. [Google Scholar]
  23. Bailey, W.N. Generalized Hypergeometric Series; Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press: Cambridge, UK, 1935; Volume 32. [Google Scholar]
  24. Milovanović, G.V.; Rassias, M.T. Some properties of a hypergeometric function which appear in an approximation problem. J. Glob. Optim. 2013, 57, 1173–1192. [Google Scholar] [CrossRef]
  25. Slater, L.J. Confluent Hypergeometric Functions; Cambridge University Press: Cambridge, UK; London, UK; New York, NY, USA, 1960. [Google Scholar]
  26. Srivastava, H.M.; Manocha, H.L. A Treatise on Generating Functions; Ellis Horwood Limited: Chichester, UK, 1984. [Google Scholar]
  27. Choi, J.; Hasanov, A. Applications of the operator H(α,β) to the Humbert double hypergeometric functions. Comput. Math. Appl. 2011, 61, 663–671. [Google Scholar] [CrossRef] [Green Version]
  28. Brychkov, Y.A.; Saad, N. Some formulas for the Appell function F1(a,b,b;c;w,z). Integral Transforms Spec. Funct. 23 2012, 11, 793–802. [Google Scholar] [CrossRef]
  29. Choi, J.; Agarwal, P. Certain generating functions involving Appell series. Far East J. Math. Sci. 2014, 84, 25–32. [Google Scholar]
  30. Wang, X. Recursion formulas for Appell functions. Integral Transforms Spec. Funct. 2012, 23, 421–433. [Google Scholar] [CrossRef]

Share and Cite

MDPI and ACS Style

Choi, J.; Şahin, R.; Yağcı, O.; Kim, D. Note on the Hurwitz–Lerch Zeta Function of Two Variables. Symmetry 2020, 12, 1431. https://doi.org/10.3390/sym12091431

AMA Style

Choi J, Şahin R, Yağcı O, Kim D. Note on the Hurwitz–Lerch Zeta Function of Two Variables. Symmetry. 2020; 12(9):1431. https://doi.org/10.3390/sym12091431

Chicago/Turabian Style

Choi, Junesang, Recep Şahin, Oğuz Yağcı, and Dojin Kim. 2020. "Note on the Hurwitz–Lerch Zeta Function of Two Variables" Symmetry 12, no. 9: 1431. https://doi.org/10.3390/sym12091431

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop