Examining Nonlinear Fredholm Equations in Lebesgue Spaces with Variable Exponents
Abstract
:1. Introduction
2. Modular Spaces
- (1)
- if and only if .
- (2)
- , for .
- (3)
- , for any ,
3. Solvability of Nonlinear Fredholm Equations on
- (a)
- ,
- (b)
- ,
- (c)
- .
- (H1)
- is Lebesgue measurable over [0,1];
- (H2)
- is in ;
- (H3)
- and are -strongly continuous with respect to the first variable, i.e.,
- (i)
- The equation has a solution for ,
- (ii)
- The set of all such solutions x of , for some , is unbounded.
- (SC)
- and satisfy , , and ,
- (LC)
- There exist non-negative numbers and such that
- (BC)
- there exist non-negative numbers , , , and such that
4. Application to Variable Exponent Lebesgue Spaces
- (GC)
- There exists a constant and a non-negative function , such that for almost every and all , we have
- (FC)
- There exists a constant and a non-negative function , such that for each and all , we have
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Musielak, J. Orlicz Spaces and Modular Spaces; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1983; Volume 1034. [Google Scholar]
- Harjulehto, P.; Hästö, P. Orlicz Spaces and Generalized Orlicz Spaces; Lecture Notes in Mathematics; Springer: Cham, Switzerland, 2019; Volume 2236. [Google Scholar]
- Musielak, J.; Orlicz, W. On modular spaces. Stud. Math. 1959, 18, 49–65. [Google Scholar] [CrossRef]
- Diening, L.; Harjulehto, P.; Hästö, P.; Ružička, M. Lebesgue and Sobolev Spaces with Variable Exponents; Lecture Note in Mathematics 2017; Springer: Berlin, Germany, 2011. [Google Scholar]
- Fan, X.; Zhao, D. On the Spaces Lp(x)(Ω) and Wm,p(x)(Ω). J. Integr. Equ. Appl. 2001, 263, 424–446. [Google Scholar] [CrossRef]
- Khamsi, M.A.; Kozlowski, W.M. Fixed Point Theory in Modular Function Spaces; Birkhauser: New York, NY, USA, 2015. [Google Scholar]
- Kozlowski, W.M. Modular Function Spaces; Series of Monographs and Textbooks in Pure and Applied Mathematics; Dekker: New York, NY, USA; Basel, Switzerland, 1988; Volume 122. [Google Scholar]
- Bisio, I.; Estatico, C.; Fedeli, A.; Lavagetto, F.; Pastorino, M.; Randazzo, A.; Sciarrone, A. Variable-Exponent Lebesgue-Space Inversion for Brain Stroke Microwave Imaging. IEEE Trans. Microw. Theory Tech. 2020, 68, 1882–1895. [Google Scholar] [CrossRef]
- Costarelli, D.; Vinti, G. Convergence for a family of neural network operators in Orlicz spaces. Math. Nachr. 2017, 290, 226–235. [Google Scholar] [CrossRef]
- Bachar, M. Nonlinear Fredholm equations in modular function spaces. Electron. J. Differ. Equ. 2019, 2019, 1–9. [Google Scholar]
- Castillo, R.E.; Ramos-Fernández, J.; Rojas, E. Volterra integral equations on variable exponent Lebesgue spaces. J. Integr. Equ. Appl. 2016, 28, 1–29. [Google Scholar] [CrossRef]
- Bardaro, C.; Musielak, J.; Vinti, G. Nonlinear Integral Operators and Applications; De Gruyter Series in Nonlinear Analysis and Applications; Walter de Gruyter & Co.: Berlin, Germany, 2003. [Google Scholar]
- Hajji, A.; Hanebaly, E. Perturbed integral equations in modular function spaces. Electron. J. Qual. Theory Differ. Equ. 2003, 7, 1–7. [Google Scholar] [CrossRef]
- Hajji, A.; Hanebaly, E. Fixed point theorem and its application to perturbed integral equations in modular function spaces. Electron. J. Differ. Equ. 2005, 2005, 1–11. [Google Scholar]
- Taleb, A.; Hanebaly, E. A fixed point theorem and its application to integral equations in modular function spaces. Proc. Am. Math. Soc. 1999, 127, 2335–2342. [Google Scholar] [CrossRef]
- Fredholm, I. Sur une classe d’équations fonctionnelles. Acta Math. 1903, 27, 365–390. [Google Scholar] [CrossRef]
- Mesgarani, H.; Parmour, P. Application of numerical solution of linear Fredholm integral equation of the first kind for image restoration. Math. Sci. 2022, 17, 371–378. [Google Scholar] [CrossRef]
- Guan, Y.; Fang, T.; Zhang, D.; Congming, C. Solving Fredholm Integral Equations Using Deep Learning. Int. J. Appl. Comput. Math. 2022, 87, 87. [Google Scholar] [CrossRef] [PubMed]
- Kokilashvili, V.; Meskhi, A.; Rafeiro, H.; Samko, S. Applications to Singular Integral Equations. In Integral Operators in Non-Standard Function Spaces; Operator Theory: Advances and Applications; Birkhäuser: Cham, Switzerland, 2016; Volume 248. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: Berlin, Germany, 1985. [Google Scholar]
- Evans, L.C. Partial Differential Equations; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2010. [Google Scholar]
- Smart, D.R. Fixed Point Theorems; Cambridge Tracts in Mathematics, No. 66; Cambridge University Press: London, UK; New York, NY, USA, 1974. [Google Scholar]
- Schaefer, H. Über die Methode der a priori-Schranken. Math. Ann. 1955, 129, 415–416. [Google Scholar] [CrossRef]
- Orlicz, W. Über konjugierte Exponentenfolgen. Stud. Math. 1931, 3, 200–211. [Google Scholar] [CrossRef]
- Lukeš, J.; Pick, L.; Pokorný, D. On geometric properties of the spaces Lp(x). Rev. Mat. Complut. 2011, 24, 115–130. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachar, M.; Khamsi, M.A.; Méndez, O. Examining Nonlinear Fredholm Equations in Lebesgue Spaces with Variable Exponents. Symmetry 2023, 15, 2014. https://doi.org/10.3390/sym15112014
Bachar M, Khamsi MA, Méndez O. Examining Nonlinear Fredholm Equations in Lebesgue Spaces with Variable Exponents. Symmetry. 2023; 15(11):2014. https://doi.org/10.3390/sym15112014
Chicago/Turabian StyleBachar, Mostafa, Mohamed A. Khamsi, and Osvaldo Méndez. 2023. "Examining Nonlinear Fredholm Equations in Lebesgue Spaces with Variable Exponents" Symmetry 15, no. 11: 2014. https://doi.org/10.3390/sym15112014