Eigenproblem Basics and Algorithms
Abstract
:1. Introduction
2. Basic Concepts
3. Algorithms
Algorithm 1 Faddeev–LeVerrier |
Input: A //square matrix function Faddeev() // Trace, UnitM, MultC, AddM, MultM defined in Appendix A ; ; ; For(; ; ) ; ; ; EndFor // end function // c is the characteristic polynomial of A Output: c // c is the characteristic polynomial of A |
Algorithm 2 Principal eigenvector |
Input: A //diagonalizable matrix procedure Principal() For( ; ; ) ; If( < ) Else EndIf EndFor end procedure ; // ; for // v is the principal eigenvector of A Output: v // v is the principal eigenvector of A |
Algorithm 3 Matrix diagonalization |
Input: A //a square diagonalizable matrix procedure GaussJ() ; For(; ; ) For(; ; ) If() EndIf EndFor If() EndIf If() ; ; For(; ; ) ; ; EndFor For(; ; ) ; ; EndFor EndIf ; For(; ; ) ; EndFor For(; ; ) If() ; For(; ; ) EndFor For(; ; ) EndFor EndIf EndFor end procedure // square matrix A is diagonalized here Output: A // , if exists, if exists |
Algorithm 4 Inverse iteration to eigenspaces |
Input: //a square diagonalizable matrix A and its eigenvalues v procedure InvIt() ; ; // For(; ; ) EndFor ; ; // v is an eigenvector of w end procedure ; For(; ; ) EndFor Output: u // eigenvectors of A |
Algorithm 5 Lanczos–Arnoldi simplification |
Input: A //a square matrix A procedure LancArno(A) ; ; // For(; ; ) For(; ; ) EndFor // // For(; ; ) EndFor // For(; ; ) ; For(; ; ) EndFor For(; ; ) EndFor EndFor If () EndIf EndFor end procedure // B orthonormal basis of A; Output: B // smallest matrix with same eigenvalues as A |
Algorithm 6 Rayleigh–Ritz |
Input: A //a square matrix A procedure RR(A) ; ; ; ; For(; ; ) ; ; EndFor ; end procedure // eigenvectors of A Output: E // E modal matrix of A |
Algorithm 7 Jacobi–Davidson |
Input: A //a square matrix A ; ; ; ; ; ; ; For(;;) For() Solve for x: Orthogonalize x against ; ; Compute column of ; Compute row and column of Compute the largest eigenpair () of ; ; ; //Ritz vector If() //stop if convergence ; ; //restart EndFor EndFor Output: // approximates |
Algorithm 8 Gauss–Seidel |
Input: A, u, v //Solve iteratively For () For (i = 1; ; ) For (j = 1; ; ) If() ; EndIf EndFor EndFor If() EndFor Output: u // Solution of |
4. The QR, QL, RQ, and LQ (or Francis–Kublanovskaya) Decompositions
5. Properties of Eigenvalues
6. Classical Case Studies
- Quantum localization: quantum theory states that the energy levels correspond to the eigenvalues of a Scrödinger operator [88]; when the operator is too complex, it is often replaced by a random Hermitian matrix and its eigenvalues should correspond to the energy levels of the system; the Gaussian orthogonal ensemble and Gaussian unitary ensemble are typical examples of specific instances [89]; quantum mechanics for particle localization [90], quantification of energy [91], magnetic momentum [92], and electronic spin [93], and the complementary problem of geometrical alignment with complex eigenvalues [74];
- Molecular topology [94] utilizes so-called molecular graphs, which use graph theory to operate on molecular structures. Characterizing molecular graphs is a matter of whether a graph has a certain property. The adjacency matrix with entries of 1 if i and j are connected by an edge, otherwise 0. The distance matrix is an extension of it. Another extension is by considering counts of the number of edges for multiple edges and negative integers for directed graphs. In all instances, a characteristic polynomial can be built [15];
- Laplace’s equation (and its generalizations, Poisson and Helmholtz’s equations), or the potential theory of harmonic functions, in problems involving electrostatic fields, heat conduction, shapes of films and membranes, gravitation and hydrodynamics [97];
- Stability analysis of systems characterized by sets of ordinary differential equations [100];
- Electrical circuits emulating eigenproblems [101].
7. Applications
Algorithm 9 First Principal Component |
Input: A //a data matrix with zero mean, A procedure FPC() ; // Random initialization For //For each column of data ; For EndFor ; ; If() EndFor end procedure // B is the first principal component Output: // eigenvalue and its eigenvector |
8. Conclusions and Perspectives
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Algorithms Involved in Eigenproblem Basic Operations
Algorithm A1 Constructing unity (square) matrix |
Input: n //dimension of the expected square matrix function UnitM(n) For(; ; ) For(; ; ) EndFor EndFor For(; ; ) EndFor // end function // Output: I // I is the unity matrix over |
Algorithm A2 Adding two matrices |
Input: //matrices function AddM() ; For(; ; ) For(; ; ) EndFor EndFor // end function // Output: C // |
Algorithm A3 Multiplication with a scalar |
Input: //c scalar, A matrix function MultC() ; For(; ; ) For(; ; ) EndFor EndFor // end function // Output: B // |
Algorithm A4 Multiplication of two matrices |
Input: //A, B square matrices function MultM() ; ; ; If() EndIf For(; ; ) For(; ; ) For(; ; ) EndFor EndFor EndFor // end function // Output: C // |
Algorithm A5 Trace of a (square) matrix |
Input: A //A square matrix function Trace() ; ; For(; ; ) EndFor // end function // Output: c // |
Algorithm A6 Init a vector |
Input: //n - size of the vector; t - type/value of initialization function InitV() If() For(; ; ) EndFor // Else For(; ; ) EndFor // EndIf end function // v is an initialized vector Output: v // v is an initialized vector |
Algorithm A7 Length of a vector stored in a column |
Input: // line vector function LenV() ; For(; ; ) EndFor ; // end function // Output: w // |
Algorithm A8 Direction of a vector |
Input: v //v line vector function UnitV() ; ; // end function // Output: u // |
Algorithm A9 Absolute difference of two vectors |
Input: //v,w line vectors function ADiffV() ; For(; ; ) EndFor // end function // Output: d // |
References
- Euler, L. Du mouvement d’un corps solide quelconque lorsqu’il tourne autour d’un axe mobile. Hist. L’académie R. Des Sci. Belles Lettres Berl. 1767, 1760, 176–227. [Google Scholar]
- Lagrange, J. Nouvelle solution du problème du mouvement de rotation d’un corps de figure quelconque qui n’est animé par aucune force accélératrice. Nouv. Mem. L’académie Sci. Berl. 1775, 1773, 577–616. [Google Scholar]
- Laplace, L. Mémoire sur les solutions particulières des équations différentielles et sur les inégalités séculaires des planètes. Mém. L’académie Sci. Paris 1775, 1775, 325–366. [Google Scholar]
- Fourier, J. Thèorie Analytique de la Chaleur; Firmin Didiot: Paris, France, 1822; pp. 99–427. [Google Scholar]
- Cauchy, A. Sur 1’équation à l’aide de laquelle on determine les inégalités séculaires des mouvements des planètes. Ex. Math. 1829, 4, 174–195. [Google Scholar]
- Sylvester, J. Additions to the articles, “On a new class of theorems”, and “On Pascal’s theorem”. Philos. Mag. 1850, 37, 363–370. [Google Scholar] [CrossRef]
- Hermite, C. Sur l’extension du théorème de M. Sturm a un système d’équations simultanées. C. R. Séances Acad. Sci. 1852, 35, 133. [Google Scholar]
- Sylvester, J. On the theorem connected with Newton’s rule for the discovery of imaginary roots of equations. Messenger Math. 1880, 9, 71–84. [Google Scholar]
- Golub, G.H.; van der Vorst, H.A. Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 2000, 123, 35–65. [Google Scholar] [CrossRef]
- Jäntschi, L. Binomial Distributed Data Confidence Interval Calculation: Formulas, Algorithms and Examples. Symmetry 2022, 14, 1104. [Google Scholar] [CrossRef]
- Kronecker, L. Die Periodensysteme von Functionen reeller Variabein. Monatsberichte Der KöNiglich Prenssischen Akad. Der Wiss. Berl. 1884, 11, 1071–1080. [Google Scholar]
- Carlson, D. On real eigenvalues of complex matrices. Pac. J. Math. 1965, 15, 1119–1129. [Google Scholar] [CrossRef]
- Picinbono, B. On circularity. IEEE Trans. Signal Process. 1994, 42, 3473–3482. [Google Scholar] [CrossRef]
- Massey, S.; Zoellner, R.W. MNDO calculations on borazine derivatives. 2. Substitution of two [HNBH] fragments for two [HCCH] fragments in benzene to form the diazadiborines and the novel open structure of the 1,2,4,5-isomer. Inorg. Chem. 1991, 30, 1063–1066. [Google Scholar] [CrossRef]
- Joiţa, D.M.; Jäntschi, L. Extending the characteristic polynomial for characterization of C20 fullerene congeners. Mathematics 2017, 5, 84. [Google Scholar] [CrossRef]
- Brualdi, R. The Jordan canonical form: An old proof. Am. Math. Mon. 1987, 94, 257–267. [Google Scholar] [CrossRef]
- Le Verrier, U. Sur les variations séculaires des éléments des orbites pour les sept planètes principales: Mercure, Vénus, La Terre, Mars, Jupiter, Saturne et Uranus. J. Math. 1840, 5, 220–254. [Google Scholar]
- Jenkins, M. Algorithm 493: Zeros of a real polynomial [C2]. ACM Trans. Math. Softw. 1975, 1, 178–189. [Google Scholar] [CrossRef]
- Sharma, J.; Kumar, S.; Jäntschi, L. On a class of optimal fourth order multiple root solvers without using derivatives. Symmetry 2019, 11, 1452. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, D.; Sharma, J.; Cesarano, C.; Agarwal, P.; Chu, Y.M. An optimal fourth order derivative-free numerical algorithm for multiple roots. Symmetry 2020, 12, 1038. [Google Scholar] [CrossRef]
- Von Mises, R.; Pollaczek-Geiringer, H. Praktische Verfahren der Gleichungsauflösung. Z. Angew. Math. Mech. 1929, 9, 152–164. [Google Scholar] [CrossRef]
- Clasen, B. Sur une nouvelle méthode de résolution des équations linéaires et sur l’application de cette méthode au calcul des déterminants. Ann. Soc. Sci. Bruxelles 1888, 12, 251–281. [Google Scholar]
- Pohlhausen, E. Berechnung der Eigenschwingungen statisch-bestimmter Fachwerke. Z. Angew. Math. Mech. 1921, 1, 28–42. [Google Scholar] [CrossRef]
- Ritz, W. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. J. Reine Angew. Math. 1909, 135, 1–61. [Google Scholar] [CrossRef]
- Ipsen, I. Computing an eigenvector with inverse iteration. SIAM Rev. 1997, 39, 254–291. [Google Scholar] [CrossRef]
- Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 1950, 45, 255–282. [Google Scholar] [CrossRef]
- Arnoldi, W. The principle of minimized iteration in the solution of the matrix eigenvalue problem. Quart. Appl. Math. 1951, 9, 17–29. [Google Scholar] [CrossRef]
- Paige, C.C.; Saunders, M.A. Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 1975, 12, 617–629. [Google Scholar] [CrossRef]
- Saad, Y. Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp. 1981, 37, 105–126. [Google Scholar] [CrossRef]
- Saad, Y.; Schultz, M.H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- Krylov, A.N. O čislennom rešenii uravnenija, kotorym v tehničeskih voprosah opredeljajutsja častoty malyh kolebanij material’nyh sistem. Izv. Akad. Nauk. SSSR Sci. Math. Natl. 1931, 7, 491–539. [Google Scholar]
- Schmidt, E. Zur Theorie der linearen und nichtlinearen Integralgleichungen I. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann. 1907, 63, 433–476. [Google Scholar] [CrossRef]
- Hessenberg, K. Behandlung linearer Eigenwertaufgaben mit Hilfe der Hamilton-Cayleyschen Gleichung. Num. Verf. Inst. Prakt. Math. Tech. Hochs. Darmstadt 1907, 63, 1–36. [Google Scholar]
- Da Fonseca, C.M. On the eigenvalues of some tridiagonal matrices. J. Comput. Appl. Math. 2007, 200, 283–286. [Google Scholar] [CrossRef]
- Morgan, R.B. Computing interior eigenvalues of large matrices. Linear Algebra Appl. 1991, 154–156, 289–309. [Google Scholar] [CrossRef]
- Terao, T. Computing interior eigenvalues of nonsymmetric matrices: Application to three-dimensional metamaterial composites. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2010, 82, 026702. [Google Scholar] [CrossRef]
- Petrenko, T.; Rauhut, G. A new efficient method for the calculation of interior eigenpairs and its application to vibrational structure problems. J. Chem. Phys. 2017, 146, 124101. [Google Scholar] [CrossRef]
- Jamalian, A.; Aminikhah, H. A novel algorithm for computing interior eigenpairs of large non-symmetric matrices. Soft Comput. 2021, 25, 11865–11876. [Google Scholar] [CrossRef]
- Morgan, R.B.; Zeng, M. Harmonic projection methods for large non-symmetric eigenvalue problems. Numer. Linear Algebra Appl. 1998, 5, 33–55. [Google Scholar] [CrossRef]
- Asakura, J.; Sakurai, T.; Tadano, H.; Ikegami, T.; Kimura, K. A numerical method for polynomial eigenvalue problems using contour integral. Jpn. J. Indust. Appl. Math. 2010, 27, 73–90. [Google Scholar] [CrossRef]
- Stor, N.J.; Slapničar, I.; Barlow, J.L. Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications. Linear Algebra Appl. 2015, 464, 62–89. [Google Scholar] [CrossRef]
- Wang, Q.W.; Wang, X.X. Arnoldi method for large quaternion right eigenvalue problem. J. Sci. Comput. 2020, 82, 58. [Google Scholar] [CrossRef]
- Saibaba, A.; Lee, J.; Kitanidis, P. Randomized algorithms for generalized hermitian eigenvalue problems with application to computing Karhunen-Loéve expansion. Numer. Linear Algebra Appl. 2016, 23, 314–339. [Google Scholar] [CrossRef]
- Sorensen, D.C. Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 1992, 13, 357–385. [Google Scholar] [CrossRef]
- Świrydowicz, K.; Langou, J.; Ananthan, S.; Yang, U.; Thomas, S. Low synchronization Gram–Schmidt and generalized minimal residual algorithms. Numer. Linear Algebra Appl. 2021, 28, e2343. [Google Scholar] [CrossRef]
- Chen, J.; Rong, Y.; Zhu, Q.; Chandra, B.; Zhong, H. A generalized minimal residual based iterative back propagation algorithm for polynomial nonlinear models. Syst. Control Lett. 2021, 153, 104966. [Google Scholar] [CrossRef]
- Jadoui, M.; Blondeau, C.; Martin, E.; Renac, F.; Roux, F.X. Comparative study of inner–outer Krylov solvers for linear systems in structured and high–order unstructured CFD problems. Comput. Fluids 2022, 244, 105575. [Google Scholar] [CrossRef]
- Choi, M.D.; Huang, Z.; Li, C.K.; Sze, N.S. Every invertible matrix is diagonally equivalent to a matrix with distinct eigenvalues. Linear Algebra Appl. 2012, 436, 3773–3776. [Google Scholar] [CrossRef]
- Cayley, A. Sur quelques propriétés des déterminants gauches. J. Reine Angew. Math. 1846, 32, 119–123. [Google Scholar] [CrossRef]
- Meerbergen, K.; Spence, A.; Roose, D. Shift-invert and Cayley transforms for detection of rightmost eigenvalues of nonsymmetric matrices. BIT Numer. Math. 1994, 34, 409–423. [Google Scholar] [CrossRef]
- Benoit, E. Note sur une méthode de résolution des équations normales provenant de l’application de la méthode des moindres carrés à un systéme d’équations linéaires en nombre inférieur à celui des inconnues (Procédé du Commandant Cholesky). Bull. Géodésique 1924, 2, 66–77. [Google Scholar] [CrossRef]
- Schmid, E. An iterative procedure to compute the modal matrix of eigenvectors. J. Geophys. Res. 1971, 76, 1916–1920. [Google Scholar] [CrossRef]
- Saad, Y. Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Math. Comp. 1984, 42, 567–588. [Google Scholar] [CrossRef]
- Saad, Y. Numerical solution of large nonsymmetric eigenvalue problems. Comput. Phys. Commun. 1989, 53, 71–90. [Google Scholar] [CrossRef]
- Duff, I.S.; Scott, J.A. Computing selected eigenvalues of large sparse unsymmetric matrices using subspace iteration. ACM Trans. Math. Softw. 1993, 19, 137–159. [Google Scholar] [CrossRef]
- Chebyshev, P. Théorie des mécanismes connus sous le nom de parallélogrammes. Mém. Savants Étr. Acad. Saint-Pétersbourg 1854, 7, 539–586. [Google Scholar]
- Horning, A.; Nakatsukasa, Y. Twice is enough for dangerous eigenvalues. SIAM J. Matrix Anal. Appl. 2022, 43, 68–93. [Google Scholar] [CrossRef]
- Davidson, E. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comp. Phys. 1975, 17, 87–94. [Google Scholar] [CrossRef]
- Jacobi, C. Über ein leichtes Verfahren die in der Theorie der Säacularstörungen vorkommenden Gleichungen numerisch aufzulöosen. J. Reine Angew. Math. 1846, 30, 51–95. [Google Scholar] [CrossRef]
- Sleijpen, G.; Van Der Vorst, H. A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 1996, 17, 401–425. [Google Scholar] [CrossRef]
- Sleijpen, G.; Van Der Vorst, H. A Jacobi–Davidson iteration method for linear eigenvalue problems. SIAM Rev. Soc. Ind. Appl. Math. 2000, 42, 267–293. [Google Scholar] [CrossRef]
- Hochstenbach, M.; Notay, Y. The Jacobi–Davidson method. GAMM-Mitteilungen 2006, 29, 368–382. [Google Scholar] [CrossRef]
- Seidel, L. Über ein Verfahren, die Gleichungen, auf welche die Methode der kleinsten Quadrate führt, sowie lineäre Gleichungen überhaupt, durch successive Annäherung aufzulösen. Abh. Math.-Phys. Kl. K. Bayer. Akad. Wiss. 1874, 11, 81–108. [Google Scholar]
- Urekew, T.; Rencis, J. The importance of diagonal dominance in the iterative solution of equations generated from the boundary element method. Int. J. Numer. Meth. Engng. 1993, 36, 3509–3527. [Google Scholar] [CrossRef]
- Francis, J.G.F. The QR transformation, I. Comput. J. 1961, 4, 265–271. [Google Scholar] [CrossRef]
- Francis, J.G.F. The QR transformation, II. Comput. J. 1962, 4, 332–345. [Google Scholar] [CrossRef]
- Kublanovskaya, V.N. O nekotorykh algorifmakh dlya resheniya polnoy problemy sobstvennykh znacheniy. Zh. Vychisl. Mat. Mat. Fiz. 1961, 1, 555–570. [Google Scholar]
- Kublanovskaya, V.N. On some algorithms for the solution of the complete eigenvalue problem. USSR Comput. Math. Math. Phys. 1962, 1, 637–657. [Google Scholar] [CrossRef]
- Watkins, D. Francis’s Algorithm. Am. Math. Mon. 2011, 118, 387–403. [Google Scholar] [CrossRef]
- Demmel, J.; Grigori, L.; Hoemmen, M.; Langou, J. Communication-optimal parallel and sequential QR and LU factorizations. arXiv 2008, arXiv:0806.2159. [Google Scholar] [CrossRef]
- Fahey, M. Algorithm 826: A parallel eigenvalue routine for complex Hessenberg matrices. ACM Trans. Math. Softw. 2003, 29, 326–336. [Google Scholar] [CrossRef]
- Schwerdtfeger, H. On the Representation of Rigid Rotations. J. Appl. Phys. 1945, 16, 571–576. [Google Scholar] [CrossRef]
- Drazin, M. A Note on Skew-Symmetric Matrices. Math. Gaz. 1952, 36, 253–255. [Google Scholar] [CrossRef]
- Jäntschi, L. The Eigenproblem Translated for Alignment of Molecules. Symmetry 2019, 11, 1027. [Google Scholar] [CrossRef]
- Weinberger, H. An extension of the classical Sturm-Liouville theory. Duke Math. J. 1955, 22, 1–14. [Google Scholar] [CrossRef]
- Pólya, G.; Schiffer, M. Convexity of functionals by transplantation. J. Anal. Math. 1953, 3, 245–345. [Google Scholar] [CrossRef]
- Schiffer, M. Variation of domain functionals. Bull. Amer. Math. Soc. 1954, 60, 303–328. [Google Scholar] [CrossRef]
- Ni, L.; Shi, Y.; Tam, L. Poisson Equation, Poincaré-Lelong Equation and Curvature Decay on Complete Kähler Manifolds. J. Differential Geom. 2001, 57, 339–388. [Google Scholar] [CrossRef]
- Karlin, S. The existence of eigenvalues for integral operators. Trans. Amer. Math. Soc. 1964, 113, 1–17. [Google Scholar] [CrossRef]
- Montgomery, H. The Pair Correlation of Zeros of the Zeta Function. Proc. Sympos. Pure Math. 1973, 24, 181–193. [Google Scholar] [CrossRef]
- Odlyzko, A. On the distribution of spacings between zeros of zeta functions. Math. Comp. 1987, 48, 273–308. [Google Scholar] [CrossRef]
- Katz, N.; Sarnak, P. Zeroes of zeta functions and symmetry. Bull. Amer. Math. Soc. 1999, 36, 1–26. [Google Scholar] [CrossRef]
- D’Amato, S.; Gimarc, B.; Trinajstić, N. Isospectral and subspectral molecules. Croat. Chem. Acta. 1981, 54, 1–52. [Google Scholar]
- Bolboacă, S.; Jäntschi, L. Characteristic Polynomial in Assessment of Carbon-Nano Structures. In Sustainable Nanosystems Development, Properties, and Applications; Putz, M., Mirică, M., Eds.; IGI Global: Hershey, PA, USA, 2017. [Google Scholar] [CrossRef]
- Jenkins, M.; Traub, J. Algorithm 419: Zeros of a complex polynomial [C2]. Commun. ACM 1972, 15, 97–99. [Google Scholar] [CrossRef]
- Jäntschi, L.; Bolboacă, S. Characteristic polynomial. In New Frontiers in Nanochemistry: Concepts, Theories, and Trends; Putz, M., Ed.; Apple Academic Press: New York, NY, USA, 2020; Volume 2. [Google Scholar] [CrossRef]
- Fan, Y.Z.; Xu, J.; Wang, Y.; Liang, D. The Laplacian spread of a tree. Discret. Math. Theor. Comput. Sci. 2008, 10, 79–86. [Google Scholar] [CrossRef]
- Bálint, D.; Jäntschi, L. Comparison of Molecular Geometry Optimization Methods Based on Molecular Descriptors. Mathematics 2021, 9, 2855. [Google Scholar] [CrossRef]
- Pandey, A.; Mehta, M. Gaussian ensembles of random hermitian matrices intermediate between orthogonal and unitary ones. Commun. Math. Phys. 1983, 87, 449–468. [Google Scholar] [CrossRef]
- Pauli, W. Relativistic Field Theories of Elementary Particles. Rev. Mod. Phys. 1941, 13, 203–232. [Google Scholar] [CrossRef]
- Schrödinger, E. A Method of Determining Quantum-Mechanical Eigenvalues and Eigenfunctions. Proc. R. Irish Acad. A Math. Phys. Sci. 1941, 46, 9–16. [Google Scholar]
- Pryce, M. The Eigenvalues of Electromagnetic Angular Momentum. Math. Proc. Camb. Philos. Soc. 1936, 32, 614–621. [Google Scholar] [CrossRef]
- Landé, A. Eigenvalue Problem of the Dirac Electron. Phys. Rev. 1940, 57, 1183–1184. [Google Scholar] [CrossRef]
- Diudea, M.; Gutman, I.; Jäntschi, L. Molecular Topology; Nova Science: New York, NY, USA, 2001. [Google Scholar]
- Babuška, I.; Osborn, J. Eigenvalue problems. Handb. Numer. Anal. 1991, 2, 641–787. [Google Scholar] [CrossRef]
- MacFarlane, G. A variational method for determining eigenvalues of the wave equation applied to tropospheric refraction. Math. Proc. Camb. Philos. Soc. 1947, 43, 213–219. [Google Scholar] [CrossRef]
- Shortley, G.; Weller, R. The Numerical Solution of Laplace’s Equation. J. Appl. Phys. 1938, 9, 334–344. [Google Scholar] [CrossRef]
- Freilich, G. Note on the eigenvalues of the Sturm-Liouville differential equation. Bull. Am. Math. Soc. 1948, 54, 405–408. [Google Scholar] [CrossRef]
- Peierls, R. Expansions in terms of sets of functions with complex eigenvalues. Math. Proc. Camb. Philos. Soc. 1948, 44, 242–250. [Google Scholar] [CrossRef]
- Flower, J.; Parr, E. Control Systems. In Electrical Engineer’s Reference Book, 16th ed.; Elsevier: Oxford, UK, 2003; p. 13. [Google Scholar] [CrossRef]
- Many, A.; Meiboom, S. An electrical network for determining the eigenvalues and eigenvectors of a real symmetric matrix. Rev. Sci. Instr. 1947, 18, 831–836. [Google Scholar] [CrossRef]
- Zhang, F. Quaternions and matrices of quaternions. Linear Algebra Appl. 1997, 251, 21–57. [Google Scholar] [CrossRef]
- Jiang, T.; Chen, L. An algebraic method for Schrödinger equations in quaternionic quantum mechanics. Comput. Phys. Commun. 2008, 178, 795–799. [Google Scholar] [CrossRef]
- Farenick, D.; Pidkowich, B. The spectral theorem in quaternions. Linear Algebra Appl. 2003, 371, 75–102. [Google Scholar] [CrossRef]
- Jia, Z.; Wei, M.; Zhao, M.; Chen, Y. A new real structure-preserving quaternion QR algorithm. J. Comput. Appl. Math. 2018, 343, 26–48. [Google Scholar] [CrossRef]
- Iskakov, A.; Yadykin, I. On Spectral Decomposition of States and Gramians of Bilinear Dynamical Systems. Mathematics 2021, 9, 3288. [Google Scholar] [CrossRef]
- Wansbeek, T.; Kapteyn, A. A simple way to obtain the spectral decomposition of variance components models for balanced data. Commun. Stat. Theory Methods 1982, 11, 2105–2112. [Google Scholar] [CrossRef]
- Basser, P.; Pajevic, S. Spectral decomposition of a 4th-order covariance tensor: Applications to diffusion tensor MRI. Signal Process. 2007, 87, 220–236. [Google Scholar] [CrossRef]
- Pagneux, V.; Maurel, A. Determination of Lamb mode eigenvalues. J. Acoust. Soc. Am. 2001, 110, 1307–1314. [Google Scholar] [CrossRef] [PubMed]
- Giannakis, D. Data-driven spectral decomposition and forecasting of ergodic dynamical systems. Appl. Comput. Harmon. Anal. 2019, 47, 338–396. [Google Scholar] [CrossRef]
- Paramo, G.; Bretas, A. WAMs based eigenvalue space model for high impedance fault detection. Appl. Sci. 2021, 11, 12148. [Google Scholar] [CrossRef]
- Angelidis, G.; Semlyen, A. Improved methodologies for the calculation of critical eigenvalues in small signal stability analysis. IEEE Trans. Power Syst. 1996, 11, 1209–1217. [Google Scholar] [CrossRef]
- Hansen, M. Aeroelastic stability analysis of wind turbines using an eigenvalue approach. Wind Energ. 2004, 7, 133–143. [Google Scholar] [CrossRef]
- Morzyński, M.; Afanasiev, K.; Thiele, F. Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis. Comput. Methods Appl. Mech. Engrg. 1999, 169, 161–176. [Google Scholar] [CrossRef]
- Fan, L.; Miao, Z. Admittance-Based Stability Analysis: Bode Plots, Nyquist Diagrams or Eigenvalue Analysis? IEEE Trans. Power Syst. 2020, 35, 3312–3315. [Google Scholar] [CrossRef]
- Sharma, R. Ride, eigenvalue and stability analysis of three-wheel vehicle using Lagrangian dynamics. Int. J. Vehicle Noise Vib. 2017, 13, 13–25. [Google Scholar] [CrossRef]
- Chen, J.; Fu, P.; Méndez-Barrios, C.; Niculescu, S.I. Zhang, H. Stability Analysis of Polynomially Dependent Systems by Eigenvalue Perturbation. IEEE Trans. Automat. Contr. 2017, 62, 5915–5922. [Google Scholar] [CrossRef]
- Strydom, H.; Crowther, N. Maximum likelihood estimation of parameter structures for the Wishart distribution using constraints. J. Stat. Plan. Inference 2013, 143, 783–794. [Google Scholar] [CrossRef]
- Letac, G.; Massam, H. All Invariant Moments of the Wishart Distribution. Scand. J. Stat. 2004, 31, 295–318. [Google Scholar] [CrossRef]
- Pearson, K. On Lines and Planes of Closest Fit to Systems of Points in Space. Philos. Mag. 1901, 2, 559–572. [Google Scholar] [CrossRef]
- Randić, M. Search for Optimal Molecular Descriptors. Croat. Chem. Acta 1991, 64, 43–54. [Google Scholar]
- Zhao, W. Discriminant component analysis for face recognition. In Proceedings of the 15th International Conference on Pattern Recognition. ICPR-2000, Barcelona, Spain, 3–7 September 2000; Volume 2, pp. 818–821. [Google Scholar] [CrossRef]
- Stephenson, W. Technique of Factor Analysis. Nature 1935, 136, 297. [Google Scholar] [CrossRef]
- Gauch, H. Noise Reduction By Eigenvector Ordinations. Ecology 1982, 63, 1643–1649. [Google Scholar] [CrossRef]
- Claire, E.; Farber, S.M.; Green, R. Practical Techniques for Transform Data Compression/Image Coding. IEEE Trans. Electromagn. Compat. 1971, EMC-13, 2–6. [Google Scholar] [CrossRef]
- Cawley, P.; Adams, R. The location of defects in structures from measurements of natural frequencies. J. Strain. Anal. Eng. Des 1979, 14, 49–57. [Google Scholar] [CrossRef]
- Kim, D.; Ersoy, O. Image recognition with the discrete rectangular-wave transform II. J. Opt. Soc. Am. A 1989, 6, 835–843. [Google Scholar] [CrossRef]
- Sørensen, M. In vivo prediction of goat body composition by computer tomography. Anim. Prod. 1992, 54, 67–73. [Google Scholar] [CrossRef]
- Hasan, K.; Basser, P.; Parker, D.; Alexander, A. Analytical Computation of the Eigenvalues and Eigenvectors in DT-MRI. J. Magn. Reson. 2001, 152, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Jouk, P.; Usson, Y. The Myosin Myocardial Mesh Interpreted as a Biological Analogous of Nematic Chiral Liquid Crystals. J. Cardiovasc. Dev. Dis. 2021, 8, 179. [Google Scholar] [CrossRef] [PubMed]
- Gersztenkorn, A.; Marfurt, K. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics 1999, 64, 1468–1479. [Google Scholar] [CrossRef]
- Si, S.; Hu, H.; Ding, Y.; Yuan, X.; Jiang, Y.; Jin, Y.; Ge, X.; Zhang, Y.; Chen, J.; Guo, X. Multiscale Feature Fusion for the Multistage Denoising of Airborne Single Photon LiDAR. Remote Sens. 2023, 15, 269. [Google Scholar] [CrossRef]
- Shu, G.; Chang, J.; Lu, J.; Wang, Q.; Li, N. A novel method for SAR ship detection based on eigensubspace projection. Remote Sens. 2022, 14, 3441. [Google Scholar] [CrossRef]
- Hotelling, H. The relations of the newer multivariate statistical methods to factor analysis. Brit. J. Stat. Psychol. 1957, 10, 69–79. [Google Scholar] [CrossRef]
- Xiong, Z.; Chen, Y.; Tan, H.; Cheng, Q.; Zhou, A. Analysis of factors influencing the lake area on the Tibetan plateau using an eigenvector spatial filtering based spatially varying coefficient model. Remote Sens. 2021, 13, 5146. [Google Scholar] [CrossRef]
- Liu, S.; Begum, N.; An, T.; Zhao, T.; Xu, B.; Zhang, S.; Deng, X.; Lam, H.M.; Nguyen, H.; Siddique, K.; et al. Characterization of Root System Architecture Traits in Diverse Soybean Genotypes Using a Semi-Hydroponic System. Plants 2021, 10, 2781. [Google Scholar] [CrossRef]
- Jäntschi, L.; Bolboacă, S. Results from the Use of Molecular Descriptors Family on Structure Property/Activity Relationships. Int. J. Mol. Sci. 2007, 8, 189–203. [Google Scholar] [CrossRef]
- Bolboaca, S.D.; Jäntschi, L.; Diudea, M.V. Molecular Design and QSARs/QSPRs with Molecular Descriptors Family. Curr. Comput. Aided Drug Des. 2013, 9, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Jäntschi, L.; Bolboaca, S.; Diudea, M. Chromatographic Retention Times of Polychlorinated Biphenyls: From Structural Information to Property Characterization. Int. J. Mol. Sci. 2007, 8, 1125–1157. [Google Scholar] [CrossRef]
- Bolboacă, S.; Jäntschi, L. Comparison of quantitative structure-activity relationship model performances on carboquinone derivatives. Sci. World J. 2009, 9, 1148–1166. [Google Scholar] [CrossRef]
- Bolboacă, S.; Jäntschi, L. Predictivity Approach for Quantitative Structure-Property Models. Application for Blood-Brain Barrier Permeation of Diverse Drug-Like Compounds. Int. J. Mol. Sci. 2011, 12, 4348–4364. [Google Scholar] [CrossRef]
- Broyden, C. The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Appl. 1970, 6, 76–90. [Google Scholar] [CrossRef]
- Fletcher, R. A New Approach to Variable Metric Algorithms. Comput. J. 1970, 13, 317–322. [Google Scholar] [CrossRef]
- Goldfarb, D. A Family of Variable Metric Updates Derived by Variational Means. Math. Comput. 1970, 24, 23–26. [Google Scholar] [CrossRef]
- Shanno, D. Conditioning of quasi-Newton methods for function minimization. Math. Comput. 1970, 24, 647–656. [Google Scholar] [CrossRef]
- Davidon, W. Variable Metric Method for Minimization. AEC Research and Development Report ANL-5990; Argonne National Laboratory: Lemont, IL, USA, 1959. [Google Scholar]
- Fletcher, R. Practical Methods of Optimization vol. 1: Unconstrained Optimization; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar] [CrossRef]
- Powell, M. On the convergence of the variable metric algorithm. IMA J. Appl. Math. 1971, 7, 21–36. [Google Scholar] [CrossRef]
- Debye, P. Näherungsformeln für die Zylinderfunktionen für große Werte des Arguments und unbeschränkt veränderliche Werte des Index. Math. Annal. 1909, 67, 535–558. [Google Scholar] [CrossRef]
- Nocedal, J. Theory of algorithms for unconstrained optimization. Acta Numer. 1992, 1, 199–242. [Google Scholar] [CrossRef]
- Neculai, A. A double parameter scaled BFGS method for unconstrained optimization. J. Comput. Appl. Math. 2018, 332, 26–44. [Google Scholar] [CrossRef]
- Liu, Q.; Beller, S.; Lei, W.; Peter, D.; Tromp, J. A double parameter scaled BFGS method for unconstrained optimization. Geophys. J. Int. 2022, 228, 796–815. [Google Scholar] [CrossRef]
- Liang, J.; Shen, S.; Li, M.; Fei, S. Quantum algorithms for the generalized eigenvalue problem. Quantum Inf. Process. 2022, 21, 23. [Google Scholar] [CrossRef]
- Ullah, N.; Shah, A.; Sabi’u, J.; Jiao, X.; Awwal, A.; Pakkaranang, N.; Shah, S.; Panyanak, B. A One-Parameter Memoryless DFP Algorithm for Solving System of Monotone Nonlinear Equations with Application in Image Processing. Mathematics 2023, 11, 1221. [Google Scholar] [CrossRef]
- Han, X.; Tong, X.; Fan, Y. Eigen Selection in Spectral Clustering: A Theory-Guided Practice. J. Am. Stat. Assoc. 2023, 118, 109–121. [Google Scholar] [CrossRef]
- Hicks, C.; Lee, D. Trimmed sampling algorithm for the noisy generalized eigenvalue problem. Phys. Rev. Res. 2023, 5, L022001. [Google Scholar] [CrossRef]
- Weiss, S.; Proudler, I.; Coutts, F.K.; Khattak, F. Eigenvalue Decomposition of a Parahermitian Matrix: Extraction of Analytic Eigenvectors. IEEE Trans. Signal Process. 2023, 71, 1642–1656. [Google Scholar] [CrossRef]
A | 1 | 2 | 3 | 4 |
1 | 1 | i | ||
2 | i | 1 | ||
3 | 1 | i | ||
4 | 1 | i | ||
; eigenvector of : | ||||
B | 1 | 2 | 3 | 4 |
1 | 1 | i | ||
2 | i | 1 | ||
3 | 1 | i | ||
4 | i | 1 | ||
; eigenvector of : ; eigenvector of : |
A | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 0 | 1 | 2 | 3 | 2 | 1 |
2 | 1 | 0 | 1 | 2 | 3 | 2 |
3 | 2 | 1 | 0 | 1 | 2 | 3 |
4 | 3 | 2 | 1 | 0 | 1 | 2 |
5 | 2 | 3 | 2 | 1 | 0 | 1 |
6 | 1 | 2 | 3 | 2 | 1 | 0 |
Eigenvalue | Eigenvector | |||||
−4 | ||||||
−1 | ||||||
0 | ||||||
9 |
Case | Initial Eigenvector | Iterations | Note |
---|---|---|---|
1 | 1 | Iterations is the number of Equation (7) iterations to acquire an residual error less than for each component of the final eigenvector (each is then approximately 1.0000). Final eigenvector: . | |
2 | 12 | ||
3 | 13 | ||
4 | 14 | ||
5 | 14 | ||
6 | 14 |
B | 1 | 2 | 3 | 4 | 5 | 6 | C | 1 | 2 | 3 | 4 | 5 | 6 | |
1 | 9 | −1 | −2 | −3 | −2 | −1 | 1 | 1 | 0 | 0 | 0 | 0 | −1 | |
2 | −1 | 9 | −1 | −2 | −3 | −2 | 2 | 0 | 1 | 0 | 0 | 0 | −1 | |
3 | −2 | −1 | 9 | −1 | −2 | −3 | 3 | 0 | 0 | 1 | 0 | 0 | −1 | |
4 | −3 | −2 | −1 | 9 | −1 | −2 | 4 | 0 | 0 | 0 | 1 | 0 | −1 | |
5 | −2 | −3 | −2 | −1 | 9 | −1 | 5 | 0 | 0 | 0 | 0 | 1 | −1 | |
6 | −1 | −2 | −3 | −2 | −1 | 9 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 1 | 2 | 3 | 4 | 5 | 6 | C | 1 | 2 | 3 | 4 | 5 | 6 | |
1 | −4 | −1 | −2 | −3 | −2 | −1 | 1 | 1 | 0 | 0 | 0 | 1 | −1 | |
2 | −1 | −4 | −1 | −2 | −3 | −2 | 2 | 0 | 1 | 0 | 0 | 1 | 0 | |
3 | −2 | −1 | −4 | −1 | −2 | −3 | 3 | 0 | 0 | 1 | 0 | 0 | 1 | |
4 | −3 | −2 | −1 | −4 | −1 | −2 | 4 | 0 | 0 | 0 | 1 | −1 | 1 | |
5 | −2 | −3 | −2 | −1 | −4 | −1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | |
6 | −1 | −2 | −3 | −2 | −1 | −4 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 1 | 2 | 3 | 4 | 5 | 6 | C | 1 | 2 | 3 | 4 | 5 | 6 | |
1 | −1 | −1 | −2 | −3 | −2 | −1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | |
2 | −1 | −1 | −1 | −2 | −3 | −2 | 2 | 0 | 1 | 0 | 0 | 0 | −1 | |
3 | −2 | −1 | −1 | −1 | −2 | −3 | 3 | 0 | 0 | 1 | 0 | 0 | 1 | |
4 | −3 | −2 | −1 | −1 | −1 | −2 | 4 | 0 | 0 | 0 | 1 | 0 | −1 | |
5 | −2 | −3 | −2 | −1 | −1 | −1 | 5 | 0 | 0 | 0 | 0 | 1 | 1 | |
6 | −1 | −2 | −3 | −2 | −1 | −1 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
B | 1 | 2 | 3 | 4 | 5 | 6 | C | 1 | 2 | 3 | 4 | 5 | 6 | |
1 | 0 | −1 | −2 | −3 | −2 | −1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | |
2 | −1 | 0 | −1 | −2 | −3 | −2 | 2 | 0 | 1 | 0 | 0 | −1 | 0 | |
3 | −2 | −1 | 0 | −1 | −2 | −3 | 3 | 0 | 0 | 1 | 0 | 0 | −1 | |
4 | −3 | −2 | −1 | 0 | −1 | −2 | 4 | 0 | 0 | 0 | 1 | 1 | 1 | |
5 | −2 | −3 | −2 | −1 | 0 | −1 | 5 | 0 | 0 | 0 | 0 | 0 | 0 | |
6 | −1 | −2 | −3 | −2 | −1 | 0 | 6 | 0 | 0 | 0 | 0 | 0 | 0 |
Eigenvalue | Eigenvector | Wrong Eigenvector |
---|---|---|
−4 | ||
−1 | ||
0 | ||
9 | ||
in Algorithm 4 | in Algorithm 4 |
B | 1 | 2 | 3 | 4 | ||
1 | 0.1343 | 0.5233 | 0.2189 | −0.3653 | ||
2 | 0.3728 | 0.0801 | 0.5625 | 0.3963 | ||
3 | 0.6986 | −0.3754 | 0.1871 | −0.4940 | ||
4 | 0.1868 | 0.4351 | 0.2263 | 0.4448 | ||
5 | 0.1259 | 0.6241 | −0.2965 | −0.3543 | ||
6 | 0.5516 | 0.0041 | −0.6794 | 0.3771 | ||
C | 1 | 2 | 3 | 4 | ||
1 | 6.268 | 4.379 | 0 | 0 | ||
2 | 4.379 | 1.637 | 2.017 | 0 | ||
3 | 0 | 2.017 | −2.906 | 0.209 | ||
4 | 0 | 0 | 0.209 | −1 | ||
D | 1 | 2 | 3 | 4 | 5 | 6 |
1 | 0.473 | 0.071 | 0.119 | 0.14 | 0.408 | −0.21 |
2 | 0.071 | 0.619 | 0.14 | 0.408 | −0.21 | −0.027 |
3 | 0.119 | 0.14 | 0.908 | −0.21 | −0.026 | 0.071 |
4 | 0.14 | 0.408 | −0.21 | 0.473 | 0.071 | 0.119 |
5 | 0.408 | −0.21 | −0.026 | 0.071 | 0.618 | 0.14 |
6 | −0.21 | −0.027 | 0.071 | 0.119 | 0.14 | 0.908 |
9 | ||||||
−4 | ||||||
−1 | ||||||
0 | ||||||
9 | ||||||
−4 | ||||||
−1 | ||||||
0 | ||||||
0 | ||||||
0 | ||||||
9 | ||||||
−4 | ||||||
−1 | ||||||
0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jäntschi, L. Eigenproblem Basics and Algorithms. Symmetry 2023, 15, 2046. https://doi.org/10.3390/sym15112046
Jäntschi L. Eigenproblem Basics and Algorithms. Symmetry. 2023; 15(11):2046. https://doi.org/10.3390/sym15112046
Chicago/Turabian StyleJäntschi, Lorentz. 2023. "Eigenproblem Basics and Algorithms" Symmetry 15, no. 11: 2046. https://doi.org/10.3390/sym15112046