CNTs-Supercapacitors: A Review of Electrode Nanocomposites Based on CNTs, Graphene, Metals, and Polymers
Abstract
:1. Introduction
2. CNT/Graphene-Based Supercapacitors
3. CNT/PANI-Based Supercapacitors
4. CNTs/Metal-Based Supercapacitors
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cevik, E.; Asiri, S.M.M.; Qahtan, T.F.; Bozkurt, A. Fabrication of high mechanical stability electrodes and bio-electrolytes for high-performance supercapacitor application. J. Alloys Compd. 2022, 913, 165230. [Google Scholar] [CrossRef]
- Jalalah, M.; Rudra, S.; Aljafari, B.; Irfan, M.; Almasabi, S.S.; Alsuwian, T.; Khazi, M.I.; Nayak, A.K.; Harraz, F.A. Sustainable synthesis of heteroatom-doped porous carbon skeleton from Acacia auriculiformis bark for high-performance symmetric supercapacitor device. Electrochim. Acta 2022, 414, 140205. [Google Scholar] [CrossRef]
- Keum, K.; Park, D.; Park, M.; Lee, Y.; Lee, H.; Jeong, H.; Kim, J.W.; Kim, D.-W.; Ha, J.S. All vanadium-based Li-ion hybrid supercapacitor with enhanced electrochemical performance via prelithiation. J. Alloys Compd. 2022, 914, 165288. [Google Scholar] [CrossRef]
- Mandal, M.; Subudhi, S.; Nayak, A.K.; Alam, I.; Subramanyam, B.V.R.S.; Maheswari, R.P.; Patra, S.; Mahanandia, P. In-situ synthesis of mixed-phase carbon material using simple pyrolysis method for high-performance supercapacitor. Diam. Relat. Mater. 2022, 127, 109209. [Google Scholar] [CrossRef]
- Ahmad, H.; Khan, R.A.; Koo, B.H.; Alsalme, A. Systematic study of physicochemical and electrochemical properties of carbon nanomaterials. RSC Adv. 2022, 12, 15593–15600. [Google Scholar] [CrossRef]
- Ye, T.; Wu, H.; Shao, Y.; Ye, Z.; Li, G.; Wang, J.; Chen, K. A Study on the Effect of Graphene/Carbon Nanotubes on the Enhanced Capacitance of IrO2-ZnO-G(CNT)/TiElectrodes. Energy Fuels 2022, 36, 3259–3271. [Google Scholar] [CrossRef]
- Rehman, Z.U.; Raza, M.A.; Chishti, U.N.; Hussnain, A.; Maqsood, M.F.; Iqbal, M.Z.; Iqbal, M.J.; Latif, U. Role of Carbon Nanomaterials on Enhancing the Supercapacitive Performance of Manganese Oxide-Based Composite Electrodes. Arab. J. Sci. Eng. 2022, 2022, 1–16. [Google Scholar] [CrossRef]
- Aval, L.F.; Ghorannevis, M.; Pour, G.B. High performance supercapacitors based on the carbon nanotubes, grapheme and graphite nanoparticles electrodes. Heliyon 2018, 4, e00862. [Google Scholar] [CrossRef]
- Zhou, L.; Song, F.; Yi, J.; Xu, T.; Chen, Q. Nitrogen-Oxygen Co-Doped Carbon-Coated Porous Silica/Carbon Nanotube Composites: Implications for High-Performance Capacitors. ACS Appl. Nano Mater. 2022, 5, 2175–2186. [Google Scholar] [CrossRef]
- Dang, A.; Sun, Y.; Liu, Y.; Xia, Y.; Liu, X.; Gao, Y.; Wu, S.; Li, T.; Zada, A.; Ye, F. Flexible Ti3C2Tx/Carbon Nanotubes/CuS Film Electrodes Based on a Dual-Structural Design for High-Performance All-Solid-State Supercapacitors. ACS Appl. Energy Mater. 2022, 5, 9158–9172. [Google Scholar] [CrossRef]
- Lyu, W.; Yan, C.; Chen, Z.; Chen, J.; Zuo, H.; Teng, L.; Liu, H.; Wang, L.; Liao, Y. Spirobifluorene-Based Conjugated Microporous Polymer-Grafted Carbon Nanotubes for Efficient Supercapacitive Energy Storage. ACS Appl. Energy Mater. 2022, 5, 3706–3714. [Google Scholar] [CrossRef]
- Filimonenkov, I.S.; Urvanov, S.A.; Kazennov, N.V.; Tarelkin, S.A.; Tsirlina, G.A.; Mordkovich, V.Z. Carbon nanotube cloth as a promising electrode material for flexible aqueous supercapacitors. J. Appl. Electrochem. 2022, 52, 487–498. [Google Scholar] [CrossRef]
- Kazari, H.; Pajootan, E.; Hubert, P.; Coulombe, S. Dry Synthesis of Binder-Free Ruthenium Nitride-Coated Carbon Nanotubes as a Flexible Supercapacitor Electrode. ACS Appl. Mater. Interfaces 2022, 14, 15112–15121. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Ling, H.; Huang, Q.; Yang, Y.; Wang, X. Interface Engineering on Cellulose-Based Flexible Electrode Enables High Mass Loading Wearable Supercapacitor with Ultrahigh Capacitance and Energy Density. Small 2022, 18, 2106356. [Google Scholar] [CrossRef]
- Jiang, L.; Hong, H.; Hu, J.; Yan, X. Development of flexible supercapacitors with coplanar integrated multi-walled carbon nanotubes/textile electrode and current collectors. J. Mater. Sci. Mater. Electron. 2022, 33, 5297–5310. [Google Scholar] [CrossRef]
- Alvarenga, D.F.; Junior, M.G.; Santos, M.C.G.; Pinto, P.S.; da Cunha, T.H.R.; Dias, M.C.; Lavall, R.L.; Ortega, P.F.R. Tuning carbon nanotube-based bucky paper properties by incorporating different cellulose nanofibrils for redox supercapacitor electrodes. J. Energy Storage 2022, 52, 104848. [Google Scholar] [CrossRef]
- Chang, H.; Zhang, L.; Lyu, S.; Wang, S. Flexible and Freestanding MoS2 Nanosheet/Carbon Nanotube/Cellulose Nanofibril Hybrid Aerogel Film for High-Performance All-Solid-State Supercapacitors. ACS Omega 2022, 7, 14390–14399. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-C.; Yu, H.-Y.; Ouyang, Z.; Qi, D.; Zhou, Y.; Ju, A.; Li, Z.; Cao, Y. Chain-ring covalently interconnected cellulose nanofiber/MWCNT aerogel for supercapacitors and sensors. Nanoscale 2022, 14, 5163–5173. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Cao, L.; Li, W.; Du, X.; Lin, Z.; Zhang, P. Carbon Nanotube prepared by catalytic pyrolysis as the electrode for supercapacitors from polypropylene wasted face masks. Ionics 2022, 28, 3489–3500. [Google Scholar] [CrossRef] [PubMed]
- Keshari, A.S.; Dubey, P. Amorphous MnOx Nanostructure/Multiwalled Carbon Nanotube Composites as Electrode Materials for Supercapacitor Applications. ACS Appl. Nano Mater. 2022, 5, 8566–8582. [Google Scholar] [CrossRef]
- Xiao, J.; Tong, H.; Jin, F.; Gong, D.; Chen, X.; Wu, Y.; Zhou, Y.; Shen, L.; Zhang, X. Heterostructure NiS2/NiCo2S4 nanosheets array on carbon nanotubes sponge electrode with high specific capacitance for supercapacitors. J. Power Sources 2022, 518, 230763. [Google Scholar] [CrossRef]
- Liu, J.; Yuan, Y.; Fang, H.; Xu, Y.; Sun, W.; Chen, S.; Wang, Y.; Lv, L.-P. Redox-Active Tetramino-Benzoquinone π-πStacking and H-Bonding onto Multiwalled Carbon Nanotubes toward a High-Performance Asymmetric Supercapacitor. ACS Appl. Energy Mater. 2022, 5, 8112–8122. [Google Scholar] [CrossRef]
- Zeng, M.-J.; Li, X.; Li, W.; Zhao, T.; Wu, J.; Hao, S.-M.; Yu, Z.-Z. Self-supported and hierarchically porous activated carbon nanotube/carbonized wood electrodes for high-performance solid-state supercapacitors. Appl. Surf. Sci. 2022, 598, 153765. [Google Scholar] [CrossRef]
- Yao, M.; Ji, X.; Ou, X.; Wu, P.; Cheng, S. Self-standing ultrathin NiCo2S4@carbon nanotubes and carbon nanotubes hybrid films as battery-type electrodes for advanced flexible supercapacitors. J. Power Sources 2022, 543, 231829. [Google Scholar] [CrossRef]
- Tripathi, H.S.; Dutta, A.; Sinha, T.P. Tailoring structural and electrochemical properties in Sr2+ incorporated nanostructured BiFeO3 for enhanced asymmetric solid-state supercapacitor. Electrochim. Acta 2022, 421, 140505. [Google Scholar] [CrossRef]
- Yang, T.; Cao, Y.; Yu, Y.; Liu, D.; Ma, Y.; Fu, H.; Yang, Z.; Liu, D.; Zhang, Y. Kinetic enhanced bio-derived porous carbon tile laminate paper for ultrahigh-rate supercapacitors. J. Power Sources 2022, 525, 231148. [Google Scholar] [CrossRef]
- Hsieh, C.-E.; Chang, C.; Gupta, S.; Hsiao, C.-H.; Lee, C.-Y.; Tai, N.-H. Binder-free CoMn2O4/carbon nanotubes composite electrodes for high-performance asymmetric supercapacitor. J. Alloys Compd. 2022, 897, 163231. [Google Scholar] [CrossRef]
- Feng, T.; Jiao, H.; Li, H.; Wang, J.; Zhang, S.; Wu, M. High Performance of Electrochemically Deposited NiCo2S4/CNT Composites on Nickel Foam in Flexible Asymmetric Supercapacitors. Energy Fuels 2022, 36, 2189–2201. [Google Scholar] [CrossRef]
- Ahmad, Z.; Kim, W.-B.; Kumar, S.; Yoon, T.-H.; Shim, J.-J.; Lee, J.-S. Redox-active supercapacitor electrode from two-monomer-connected precursor (Pyrrole: Anthraquinonedisulfonicacid: Pyrrole) and sulfonated multi-walled carbon nanotube. Electrochim. Acta 2022, 415, 140243. [Google Scholar] [CrossRef]
- Liu, F.; Chuan, X.; Li, B.; Qi, P. One-step carbonization synthesis of in-situ nitrogen-doped carbon tubes using fibrous brucite as the template for supercapacitors. Mater. Chem. Phys. 2022, 281, 125811. [Google Scholar] [CrossRef]
- Chakraborty, S.; Simon, R.; Vadakkekara, A.; Mary, N.L. Microwave assisted synthesis of poly(ortho-phenylenediamine-co-aniline) and functionalised carbon nanotube nanocomposites for fabric-based supercapacitors. Electrochim. Acta 2022, 403, 139678. [Google Scholar] [CrossRef]
- Lv, K.; Zhang, J.; Zhao, X.; Kong, N.; Tao, J.; Zhou, J. Understanding the Effect of Pore Size on Electrochemical Capacitive Performance of MXene Foams. Small 2022, 18, 2202203. [Google Scholar] [CrossRef]
- Sharma, A.; Rout, C.S. 1T metallic vanadium disulfide hybridized with MXene and functionalized-MWCNT as a remarkable electrode for high power density asymmetric supercapacitor applications. Int. J. Energy Res. 2022, 46, 24537–24553. [Google Scholar] [CrossRef]
- Kariper, İ.A.; Korkmaz, S.; Karaman, C.; Karaman, O. High energy supercapacitors based on functionalized carbon nanotubes: Effect of atomic oxygen doping viavarious radiation sources. Fuel 2022, 324, 124497. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Julistian, A.; Saravanan, L.; Chen, P.-R.; Xu, B.-C.; Xie, P.-J.; Lo, A.-Y. Hydrothermal synthesis of cuo/ruo2/mwcnt nanocomposites with morphological variants for high efficient supercapacitors. Catalysts 2022, 12, 23. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, P.; Zhong, Y.; Zheng, J.; Deng, K.; Lv, X.; Li, H.; Tian, W.; Ji, J. N, S co-doped branched carbon nanotubes with hierarchical porous structure and electron/ion transfer path ways for supercapacitors and lithium-ion batteries. Carbon 2022, 198, 91–100. [Google Scholar] [CrossRef]
- Pour, G.B.; Nazarpour, H.; Aval, L.F. Polyvinylpyridine-based electrodes: Sensors and electrochemical applications. Ionics 2020, 26, 549–563. [Google Scholar] [CrossRef]
- Alkhawaldeh, A.K.; Rheima, A.M.; Kadhim, M.M.; sabri Abbas, Z.; Abed, Z.T.; mohamed dashoor Al-Jaafari, F.; Jaber, A.S.; Hachim, S.K.; Ali, F.K.; Mahmoud, Z.H. Nanomaterials as Transmitters of Non-Viral Gene Vectors: A Review. Case Stud. Chem. Environ. Eng. 2023, 8, 100372. [Google Scholar] [CrossRef]
- Li, K.; Teng, H.; Sun, Q.; Li, Y.; Wu, X.; Dai, X.; Wang, Y.; Wang, S.; Zhang, Y.; Yao, K.; et al. Engineering active sites on nitrogen-doped carbon nanotubes/cobaltosic oxide heterostructure embedded inbiotemplate for high-performance supercapacitors. J. Energy Storage 2022, 53, 105094. [Google Scholar] [CrossRef]
- Zhang, D.; Xiang, Q. Electrophoretic co-deposition of Bi2O3–multiwalled carbon nanotubes coating as supercapacitor electrode. J. Am. Ceram. Soc. 2022, 105, 5638–5648. [Google Scholar] [CrossRef]
- Peng, W.; Su, Z.; Wang, J.; Li, S.; Chen, K.; Song, N.; Luo, S.; Xie, A. MnCoOx-multi-walled carbon nanotubes composite with ultra-high specific capacitance for supercapacitors. J. Energy Storage 2022, 51, 104519. [Google Scholar] [CrossRef]
- Liu, J.; He, X.; Guo, F.; Liu, B.; Sun, Z.; Zhang, L.; Chang, H. Vanadium nitride nanoparticle decorated N-doped carbon nanotube/N-doped carbon nanosheet hybrids via a C3N4 self-sacrificing method for electrochemical capacitors. RSC Adv. 2022, 12, 15354–15360. [Google Scholar] [CrossRef] [PubMed]
- Pajootan, E.; Ye, M.; Zhang, M.; Niroumandrad, S.; Omanovic, S.; Coulombe, S. Plasma-functionalized multi-walled carbon nanotubes directly grown on stainless steel meshes as supercapacitor electrodes. J. Phys. D Appl. Phys. 2022, 55, 194001. [Google Scholar] [CrossRef]
- Li, W.; Huang, Y.-J.; Lin, P.-H.; Chao, L.-C.; Lee, K.-Y. Supercapacitor characteristics of MoS2 and MoOx coated onto honeycomb-shaped carbon nanotubes. J. Vac. Sci. Technol. B 2022, 40, 032401. [Google Scholar] [CrossRef]
- Wenjuan, Y.; Igor, Z. Colloidal Processing of Mn3O4-Carbon Nanotube Nanocomposite Electrodes for Supercapacitors. Nanomaterials 2022, 12, 803. [Google Scholar] [CrossRef]
- Pour, G.B.; Aval, L.F.; Mirzaee, M. Cnts supercapacitor based on the PVDF/PVA gel electrolytes. Recent Pat. Nanotechnol. 2020, 14, 163–170. [Google Scholar] [CrossRef]
- Moustafa, H.; Karmalawi, A.M.; Youssef, A.M. Development of dapsone-capped TiO2 hybrid nanocomposites and their effects on the UV radiation, mechanical, thermal properties and antibacterial activity of PVA bionanocomposites. Environ. Nanotechnol. Monit. Manag. 2021, 16, 100482. [Google Scholar] [CrossRef]
- Moustafa, H.; Isawi, H.; Abd El Wahab, S.M. Utilization of PVA nano-membrane based synthesized magnetic GO-Ni-Fe2O4 nanoparticles for removal of heavymetals from water resources. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100696. [Google Scholar] [CrossRef]
- Moustafa, H.; Darwish, N.A.; Youssef, A.M. Facile coating of carbon nanotubes by different resins for enhancing mechanical, electrical properties andadhesion strength of NR/Nylon 66 systems. J. Adhes. 2021, 97, 801–820. [Google Scholar] [CrossRef]
- Eyssa, H.M.; Afifi, M.; Moustafa, H. Improvement of the acoustic and mechanical properties of sponge ethylene propylene diene rubber/carbonnanotube composites crosslinked by subsequent sulfur and electron beam irradiation. Polym. Int. 2023, 72, 87–98. [Google Scholar] [CrossRef]
- Raya, I.; Kzar, H.H.; Mahmoud, Z.H.; Al Ayub Ahmed, A.; Ibatova, A.Z.; Kianfar, E. A review of gas sensors based on carbon Nanomaterial. Carbon Lett. 2022, 32, 339–364. [Google Scholar] [CrossRef]
- Majdi, H.S.; Latipov, Z.A.; Borisov, V.; Yuryevna, N.O.; Kadhim, M.M.; Suksatan, W.; Khlewee, I.H.; Kianfar, E. Nano and Battery Anode: A Review. Nanoscale Res. Lett. 2021, 16, 177. [Google Scholar] [CrossRef] [PubMed]
- Abdelbasset, W.K.; Jasim, S.A.; Bokov, D.O.; Oleneva, M.S.; Islamov, A.; Hammid, A.T.; Mustafa, Y.F.; Yasin, G.; Alguno, A.C.; Kianfar, E. Comparison and evaluation of the performance of graphene-based biosensors. Carbon Lett. 2022, 32, 927–951. [Google Scholar] [CrossRef]
- Behzadi Pour, G.; Fekri Aval, L.; Esmaili, P. Performance of gas nanosensor in 1–4 per cent hydrogen concentration. Sens. Rev. 2019, 39, 622–628. [Google Scholar] [CrossRef]
- Behzadi, G.; Fekri, L.; Golnabi, H. Effect of the reactance term on the charge/discharge electrical measurements using cylindrical capacitive probes. J. Appl. Sci. 2011, 11, 3293–3300. [Google Scholar] [CrossRef]
- Behzadi Pour, G.; Fekri Aval, L. Influence of oxide film surface morphology and thickness on the properties of gas sensitive nanostructure sensor. Indian J. Pure Appl. Phys. 2019, 57, 743–749. [Google Scholar]
- Smaisim, G.F.; Abed, A.M.; Al-Madhhachi, H.; Hadrawi, S.K.; Al-Khateeb, H.M.M.; Kianfar, E. Graphene-Based Important Carbon Structures and Nanomaterials for Energy Storage Applications as Chemical Capacitors and Supercapacitor Electrodes: A Review. BioNanoScience 2023, 13, 219–248. [Google Scholar] [CrossRef]
- Lu, Z.; Liu, X.; Wang, T.; Huang, X.; Dou, J.; Wu, D.; Yu, J.; Wu, S.; Chen, X. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range. J. Colloid Interface Sci. 2023, 638, 709–718. [Google Scholar] [CrossRef]
- Lonkar, S.P.; Karam, Z.; Alshaya, A.; Ghodhbane, M.; Ashraf, J.M.; Giannini, V.; Busa, C. Synergistic effect of two-dimensional additives on carbon nanotube film electrodes towards high-performance all-solid-state flexible supercapacitors. J. Energy Storage 2023, 57, 106257. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, Z.; Huang, Y.; Xiong, B.; Li, X.; Yang, H. Compositing carbon nanotubes and FeCo metals with multiple electrochemical exfoliation graphene substrate for enhancing supercapacitor electrode performance. Mater. Lett. 2023, 343, 134377. [Google Scholar] [CrossRef]
- Thoravat, S.S.; Patil, V.S.; Kundale, S.S.; Dongale, T.D.; Patil, P.S.; Jadhav, S.A. In situ Fe3O4 loaded sonochemically functionalized multi-walled CNTs and RGO based composites as electrode materials for supercapacitors. Synth. Met. 2023, 294, 117312. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Kang, H.; Yang, B.; Sun, C.; Li, Z. Redox-active 7-aminoindole and carbon nanotubes co-modified reduced graphene oxide for Zn-ion hybridcapacitors with excellent energy density and super-long cycling stability. J. Power Sources 2023, 562, 232789. [Google Scholar] [CrossRef]
- Juang, R.-H.; Guo, J.-S.; Huang, Y.-J.; Chen, I.-W.P. Experimental and theoretical investigations of covalent functionalization of 1D/2D carbon-based buckypaper viaaryl diazonium chemistry for high-performance energy storage. Carbon 2023, 205, 402–410. [Google Scholar] [CrossRef]
- Kong, L.; Hou, L.; Liu, M.; Chen, W.; Xu, X.; Zhou, X.; Liu, Z.; Shao, G. Highly defective N-doped carbon/reduced graphene oxide composite cathode material with rapid electrons/ionsdual transport channels for high energy density lithium-ion capacitor. Electrochim. Acta 2023, 443, 141704. [Google Scholar] [CrossRef]
- Li, M.; Xu, B.; Zheng, L.; Zhou, J.; Luo, Z.; Li, W.; Ma, W.; Mao, Q.; Xiang, H.; Zhu, M. Highly stable polyaniline array@ partially reduced graphene oxide hybrid fiber for high-performance flexible supercapacitors. Carbon 2023, 203, 455–461. [Google Scholar] [CrossRef]
- Prashant, H.D.; Sajan Raj, S.L.; Saraswathi, R.; Kavibharathy, K.; Kumaresan, L.; Chenrayan, S.; Vediappan, K. One-dimensional curved graphene nanoribbons assisted MoS2 nanosheets enhanced electrode material for high-performance supercapacitor. Mater. Lett. 2023, 331, 133507. [Google Scholar] [CrossRef]
- Mendoza-Jiménez, R.; Oliva, J.; Mtz-Enriquez, A.I.; Etafo, N.O.; Rodriguez-Gonzalez, V. Enhancement of capacitance and widening of the operating voltage window of flexible supercapacitors by adding Li2TiO3/BN on their electrodes. Ceram. Int. 2023, 49, 20980–20988. [Google Scholar] [CrossRef]
- Wang, S.; Cao, K.; Xu, L.; Tong, Y. Improving electrochemical properties of carbon nanotubes/reduced graphene oxide composite fibers by chemical modification. Appl. Phys. A Mater. Sci. Process. 2023, 129, 56. [Google Scholar] [CrossRef]
- Fikry, M.; Abbas, M.; Sayed, A.; Nouh, A.; Ibrahim, A.; Mansour, A.S. Using a novel graphene/carbon nanotubes composite for enhancement of the supercapacitor electrode capacitance. J. Mater. Sci. Mater. Electron. 2022, 33, 3914–3924. [Google Scholar] [CrossRef]
- Das, J.K.; Padhy, A.; Parida, S.; Pathi, R.M.; Behera, J.N. Tetra germanium nonaselenide enwrapped with reduced graphene oxide and functionalized carbon nanotubes (Ge4Se9/RGO/FCNTs) hybrids for improved energy storage performances. Dalton Trans. 2022, 51, 11526–11535. [Google Scholar] [CrossRef]
- Nasreen, F.; Anwar, A.W.; Majeed, A.; Ahmad, M.A.; Ilyas, U.; Ahmad, F. High performance and remarkable cyclic stability of a nanostructured RGO-CNT-WO3 supercapacitor electrode. RSC Adv. 2022, 12, 11293–11302. [Google Scholar] [CrossRef]
- Ngo, H.L.; Bui, T.H.; Van Thuan, D.; Pham, H.P.; Cao, X.T.; Sharma, A.K.; Nguyen, T.B.; Le, C.L.; Anh, T.H.; Hoang, S.M.T.; et al. Polydopamine-modified MWCNT/graphene oxide hybrid 3D carbon nano-structure for flexible symmetric supercapacitor electrodes. Appl. Nanosci. 2022, 13, 3853. [Google Scholar] [CrossRef]
- Arkhipova, E.A.; Ivanov, A.S.; Isaikina, O.Y.; Novotortsev, R.Y.; Stolbov, D.N.; Xia, H.; Savilov, S.V. Application of MnO2/MWCNT composite in supercapacitors. Mater. Today Proc. 2022, 60, 1008–1011. [Google Scholar] [CrossRef]
- Li, M.; Zhu, K.; Zhao, H.; Meng, Z.; Wang, C.; Chu, P.K. Construction of α-MnO2 on Carbon Fibers Modified with Carbon Nanotubes for Ultrafast Flexible Supercapacitors in Ionic Liquid Electrolytes with Wide Voltage Windows. Nanomaterials 2022, 12, 2020. [Google Scholar] [CrossRef]
- Yang, W.; Liang, W.; Zhitomirsky, I. Application of Rhamnolipids as Dispersing Agents for the Fabrication of Composite MnO2-Carbon Nanotube Electrodes for Supercapacitors. Molecules 2022, 27, 1659. [Google Scholar] [CrossRef] [PubMed]
- Yesilbag, Y.O.; Tuzluca Yesilbag, F.N.; Huseyin, A.; Salih, A.J.S.; Ertugrul, M. MnO2 nanosheets synthesized on nitrogen-doped vertically aligned carbon nanotubes as a supercapacitor electrode material. J. Alloys Compd. 2022, 925, 166570. [Google Scholar] [CrossRef]
- Ragupathi, H.; Arockiaraj, M.A.; Choe, Y. A novel β-MnO2 and carbon nanotube composite with potent electrochemical properties synthesized using amicrowave-assisted method for use in supercapacitor electrodes. New J. Chem. 2022, 46, 15358–15366. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; Ma, G.; Ding, Y.; Wang, J.; Ye, Z.; Peng, X.; Li, D. Novel Synthesis and Characterization of Flexible MnO2/CNT Composites Co-deposited on Graphite Paper as Supercapacitor Electrodes. J. Electron. Mater. 2022, 51, 2982–2994. [Google Scholar] [CrossRef]
- Satiye, K.; İshak, A.K.; Ceren, K.; Onur, K. MWCNT/Ruthenium hydroxide aerogel supercapacitor production and investigation of electrochemical performances. Sci. Rep. 2022, 12, 12862. [Google Scholar] [CrossRef]
- Yang, X.; Yao, Y.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G.; Cao, D.; Yan, J. 3D Macroporous Oxidation-Resistant Ti3C2Tx MXene Hybrid Hydrogels for Enhanced Supercapacitive Performances with Ultralong Cycle Life. Adv. Funct. Mater. 2022, 32, 2109479. [Google Scholar] [CrossRef]
- Jose, J.; Vigneshwaran, J.; Baby, A.; Viswanathan, R.; Jose, S.P.; Sreeja, P.B. Dimensionally engineered ternary nanocomposite of reduced graphene oxide/multiwalled carbonnanotubes/zirconium oxide for supercapacitors. J. Alloys Compd. 2022, 896, 163067. [Google Scholar] [CrossRef]
- Wang, S.; Cao, K.; Xu, L.; Zhao, D.; Tong, Y. Carbon nanotubes/reduced graphene oxide composites as electrode materials for supercapacitors. Appl. Phys. A Mater. Sci. Process. 2022, 128, 81. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Z.; Chen, X.; Ying, Y.; Shi, W. In-situ generated NiCo2O4/CoP polyhedron with rich oxygen vacancies interpenetrating by P-doped carbonnanotubes for high performance supercapacitors. J. Colloid Interface Sci. 2022, 608, 2246–2256. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.; Lee, C.; Tai, N. High retention supercapacitors using carbon nanomaterials/iron oxide/nickel-iron layered double hydroxides as electrodes. J. Energy Storage 2022, 46, 103805. [Google Scholar] [CrossRef]
- Qiu, H.; Ma, Q.; Sun, X.; Han, X.; Jia, G.; Zhang, Y.; He, W. Construction of orderly self-growing nanosheet arrays on nickel foam by introducing novel carbon composite materials for high-performance supercapacitors. Appl. Surf. Sci. 2022, 578, 152019. [Google Scholar] [CrossRef]
- Chen, X.; Xin, N.; Li, Y.; Sun, C.; Li, L.; Ying, Y.; Shi, W.; Liu, Y. Novel 2D/2D NiCo2O4/ZnCo2O4@rGO/CNTs self-supporting composite electrode with high hydroxyl ion adsorption capacity for asymmetric supercapacitor. J. Mater. Sci. Technol. 2022, 127, 236–244. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, K.; Chen, H.; Liu, H.; Yang, L.; Chen, Y.; Li, H. ZIF-67 derived in-situ grown N–Co3S4-GN/CNT interlinked conductive networks for high-performance especially cycling stable supercapacitors. Carbon 2022, 194, 10–22. [Google Scholar] [CrossRef]
- Gong, D.; Tong, H.; Xiao, J.; Wu, Y.; Chen, X.; Zhou, Y.; Zhang, X. Enhanced Reaction Kinetics of N-MnO2 Nanosheets with Oxygen Vacancies via Mild NH3·H2O Bath Treatment for Advanced Aqueous Supercapacitors. ACS Appl. Energy Mater. 2022, 5, 7490–7502. [Google Scholar] [CrossRef]
- Pathak, M.; Rout, C.S. Hierarchical NiCo2S4 nanostructures anchored on nanocarbons and Ti3C2Tx MXene for high-performance flexible solid-state asymmetric supercapacitors. Adv. Compos. Hybrid Mater. 2022, 5, 1404–1422. [Google Scholar] [CrossRef]
- Zawar, S.; Ali, G.; Mustafa, G.M.; Patil, S.A.; Ramay, S.M.; Atiq, S. Mn0.06Co2.94O4 nano-architectures anchored on reduced graphene oxide as highly efficient hybrid electrodes for supercapacitors. J. Energy Storage 2022, 50, 104298. [Google Scholar] [CrossRef]
- Moreto, J.A.; Silva, P.H.S.; Moraes Moura, G.; da Silva, C.C.; Ferreira, D.C.; da Cunha, T.H.R.; Silva, G.G.; Rouxinol, F.; de Siervo, A.; Gelamo, R.V. The effect of plasma treatment on flexible self-standing supercapacitors composed by carbon nanotubes and multilayer graphene composites. J. Mater. Sci. 2022, 57, 8779–8799. [Google Scholar] [CrossRef]
- Rustamaji, H.; Prakoso, T.; Devianto, H.; Widiatmoko, P.; Nurdin, I. Design, Fabrication, and Testing of Supercapacitor Based on Nanocarbon Composite Material. ASEAN J. Chem. Eng. 2022, 22, 19–32. [Google Scholar] [CrossRef]
- Setyoputra, A.D.; Ruffa, H.; Sutanto, H.; Subagio, A. The Characterisation of MWCNT-rGO-TiO2 Nanocomposite as Potential Electrode Material for Hybrid Supercapacitor. Int. J. Electrochem. Sci. 2022, 17, 22053. [Google Scholar] [CrossRef]
- Hong, X.; Wang, X.; Li, Y.; Deng, C.; Liang, B. Potassium citrate-derived carbon nanosheets/carbon nanotubes/polyaniline ternary composite for supercapacitor electrodes. Electrochim. Acta 2022, 403, 139571. [Google Scholar] [CrossRef]
- Hsiao, Y.-S.; Chang-Jian, C.-W.; Huang, T.-Y.; Chen, Y.-L.; Huang, J.-H.; Wu, N.-J.; Hsu, S.-C.; Chen, C.-P. High-performance supercapacitor based on a ternary nanocomposites of NiO, polyaniline, and Ni/NiO-decorated MWCNTs. J. Taiwan Inst. Chem. Eng. 2022, 134, 104318. [Google Scholar] [CrossRef]
- Mohamed, M.G.; Samy, M.M.; Mansoure, T.H.; Sharma, S.U.; Tsai, M.-S.; Chen, J.-H.; Lee, J.-T.; Kuo, S.-W. Dispersions of 1,3,4-Oxadiazole-Linked Conjugated Microporous Polymers with Carbon Nanotubes as a High-Performance Electrode for Supercapacitors. ACS Appl. Energy Mater. 2022, 5, 3677–3688. [Google Scholar] [CrossRef]
- Panasenko, I.V.; Bulavskiy, M.O.; Iurchenkova, A.A.; Aguilar-Martinez, Y.; Fedorov, F.S.; Fedorovskaya, E.O.; Mikladal, B.; Kallio, T.; Nasibulin, A.G. Flexible supercapacitors based on free-standing polyaniline/single-walled carbon nanotube films. J. Power Sources 2022, 541, 231691. [Google Scholar] [CrossRef]
- Dai, H.; Li, R.; Su, S.; Cui, Y.; Lin, Y.; Zhang, L.; Zhu, X. Preparation and Characterization of PANI/MWCNT/RGO Ternary Composites as Electrode Materials for Supercapacitors. J. Electron. Mater. 2022, 51, 1409–1420. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, Y.; Cao, M. Constructing MXene-PANI@MWCNTs heterojunction with high specific capacitance towards flexible micro-supercapacitor. Nanotechnology 2022, 33, 295401. [Google Scholar] [CrossRef]
- Jiang, Y.; Ou, J.; Luo, Z.; Chen, Y.; Wu, Z.; Wu, H.; Fu, X.; Luo, S.; Huang, Y. High Capacitive Antimonene/CNT/PANI Free-Standing Electrodes for Flexible Supercapacitor Engaged with Self-Healing Function. Small 2022, 18, 2201377. [Google Scholar] [CrossRef]
- Jasna, M.; Muraleedharan Pillai, M.; Abhilash, A.; Midhun, P.S.; Jayalekshmi, S.; Jayaraj, M.K. Polyaniline wrapped carbon nanotube/exfoliated MoS2 nanosheet composite as a promising electrode for high power supercapacitors. Carbon Trends 2022, 7, 100154. [Google Scholar] [CrossRef]
- Wu, X.; Hu, W.; Qiu, J.; Geng, B.; Du, M.; Zheng, Q. Solvent-assisted self-assembly to fabricate a ternary flexible free-standing polyaniline@MXene-CNTs electrode forhigh-performance supercapacitors. J. Alloys Compd. 2022, 921, 166062. [Google Scholar] [CrossRef]
- Balboni, R.D.C.; Maron, G.K.; Masteghin, M.G.; Tas, M.O.; Rodrigues, L.S.; Gehrke, V.; Alano, J.H.; Andreazza, R.; Carreño, N.L.V.; Silva, S.R.P. An easy to assemble PDMS/CNTs/PANI flexible supercapacitor with high energy-to-power density. Nanoscale 2022, 14, 2266–2276. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Feng, T.; Chen, Y.; Liu, G. Lignosulfonate functionalized nanomaterials for enhancement of the electrochemical performance of polyaniline. Appl. Surf. Sci. 2022, 593, 153457. [Google Scholar] [CrossRef]
- Dadashi, R.; Bahram, M.; Faraji, M. Fabrication of a solid-state symmetrical supercapacitor based on polyaniline grafted multiwalled carbon nanotube deposit onto Created Vertically Oriented Graphene Nanosheets on graphite sheet. J. Energy Storage 2022, 52, 104775. [Google Scholar] [CrossRef]
- Xu, H.; Cui, L.; Pan, X.; An, Y.; Jin, X. Carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors. Int. J. Biol. Macromol. 2022, 219, 1135–1145. [Google Scholar] [CrossRef]
- Li, B.; Liu, S.; Xu, X.; Yang, H.; Zhou, Y.; Yang, D.; Zhang, Y.; Li, J. Grape-clustered polyaniline grafted with carbon nanotube woven film as a flexible electrode material for supercapacitors. J. Appl. Polym. Sci. 2022, 139, e52785. [Google Scholar] [CrossRef]
- Kim, T.; Subedi, S.; Dahal, B.; Chhetri, K.; Mukhiya, T.; Muthurasu, A.; Gautam, J.; Lohani, P.C.; Acharya, D.; Pathak, I.; et al. Homogeneous Elongation of N-Doped CNTs over Nano-Fibrillated Hollow-Carbon-Nanofiber: Mass and Charge Balance in Asymmetric Supercapacitors Is No Longer Problematic. Adv. Sci. 2022, 9, 2200650. [Google Scholar] [CrossRef]
- Zhuo, J.-L.; Wang, Y.-L.; Wang, Y.-G.; Xu, M.-Q.; Sha, J.-Q. Surfactant-assisted fabrication and supercapacitor performances of a 12-phosphomolybdate-pillared metal-organic framework containing a helix and its SWNT nanocomposites. CrystEngComm 2022, 24, 579–586. [Google Scholar] [CrossRef]
- Shi, L.; Yang, W.; Zha, X.; Zeng, Q.; Tu, D.; Li, Y.; Yang, Y.; Xu, J.; Chen, F. Metal-organic frameworks-derived porous carbon nanotube for high performance supercapacitor electrode materials. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129862. [Google Scholar] [CrossRef]
- Habibi, R.; Mehrpooya, M.; Ganjali, M. Synthesis of ternary CoZnAl layered double hydroxide and Co-embedded N-doped carbon nanotube hollow polyhedron nanocomposite as a bifunctional material for ORR electrocatalyst and supercapacitor electrode. J. Energy Storage 2022, 54, 105377. [Google Scholar] [CrossRef]
- Isacfranklin, M.; Daphine, S.; Yuvakkumar, R.; Kungumadevi, L.; Ravi, G.; Al-Sehemi, A.G.; Velauthapillai, D. ZnCo2O4/CNT composite for efficient supercapacitor electrodes. Ceram. Int. 2022, 48, 24745–24750. [Google Scholar] [CrossRef]
- Peçenek, H.; Dokan, F.K.; Onses, M.S.; Yılmaz, E.; Sahmetlioglu, E. Highly compressible binder-free sponge supercapacitor electrode based on flower-like NiO/MnO2/CNT. J. Alloys Compd. 2022, 913, 165053. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, R.; Yang, D.; Lu, S.; Wang, J.; Liu, C.; Wang, S. A Supercapacitor Electrode Synthesis Strategy: Proton Acid-Treated Ti3C2Tx Film with Single-walled Carbon Nanotubes as a Reinforcement. ChemistrySelect 2022, 7, e202200690. [Google Scholar] [CrossRef]
- Lv, S.; Ma, L.; Shen, X.; Tong, H. Potassium chloride-catalyzed growth of porous carbon nanotubes for high-performance supercapacitors. J. Alloys Compd. 2022, 906, 164242. [Google Scholar] [CrossRef]
- Zahra, S.A.; Anasori, B.; Iqbal, M.Z.; Ravaux, F.; Al Tarawneh, M.; Rizwan, S. Enhanced electrochemical performance of vanadium carbide MXene composites for supercapacitors. APL Mater. 2022, 10, 060901. [Google Scholar] [CrossRef]
- Gyulasaryan, H.T.; Azizbekyan, G.G.; Sisakyan, N.S.; Chilingaryan, G.N.; Grapov, D.V.; Kukuts, Y.M.; Sharoyan, E.G.; Manukyan, A.S. Electrode Material for Supercapacitors Based on Products of Solid Phase Pyrolysis of Metal-Phthalocyanines. J. Contemp. Phys. 2022, 57, 76–80. [Google Scholar] [CrossRef]
- Tamilselvan, A.; Kundu, M. Ex-situ synthesis of MnS nanoparticles imbedded with carbon nanotubes as a high-performance electrode material for supercapacitors. Mater. Today Proc. 2022, 68, 146–151. [Google Scholar] [CrossRef]
- Teng, S.; Shi, S.; Wang, G.; Xiang, Y.; Wan, G. Ozone-activated CNTs to induce uniform coating of MnO2 as high-performance supercapacitor electrodes. Fuller. Nanotub. Carbon Nanostructures 2022, 30, 1163–1169. [Google Scholar] [CrossRef]
- Tu, Q.; Zhang, J.; Cai, S.; Zhang, K.; Zhan, H.; Huang, S.; Chen, L.; Sun, X. One-Step Preparation of NiV-LDH@CNT Hierarchical Composite for Advanced Asymmetrical Supercapacitor. Adv. Eng. Mater. 2022, 24, 2101174. [Google Scholar] [CrossRef]
- Tourchi Moghadam, M.T.; Seifi, M.; Jamali, F.; Azizi, S.; Askari, M.B. ZnWO4-CNT as a superior electrode material for ultra-high capacitance supercapacitor. Surf. Interfaces 2022, 32, 102134. [Google Scholar] [CrossRef]
- Peçenek, H.; Dokan, F.K.; Onses, M.S.; Yılmaz, E.; Sahmetlioglu, E. Outstanding supercapacitor performance with intertwined flower-like NiO/MnO2/CNT electrodes. Mater. Res. Bull. 2022, 149, 111745. [Google Scholar] [CrossRef]
- Otun, K.O.; Xaba, M.S.; Zong, S.; Liu, X.; Hildebrandt, D.; El-Bahy, S.M.; Alotaibi, M.T.; El-Bahy, Z.M. ZIF-8-derived ZnO/C decorated hydroxyl-functionalized multi-walled carbon nanotubes as a new compositeelectrode for supercapacitor application. Colloids Interface Sci. Commun. 2022, 47, 100589. [Google Scholar] [CrossRef]
- Ramesh, S.; Karuppasamy, K.; Vikraman, D.; Yadav, H.M.; Kim, H.-S.; Sivasamy, A.; Kim, H.S. Fabrication of NiCo2S4 accumulated on metal organic framework nanostructured with multiwalled carbon nanotubes composite material for supercapacitor application. Ceram. Int. 2022, 48, 29102–29110. [Google Scholar] [CrossRef]
- Sakthivel, P.; Anandha babu, G.; Karuppiah, M.; Asaithambi, S.; Balaji, V.; Pandian, M.S.; Ramasamy, P.; Mohammed, M.K.A.; Navaneethan, N.; Ravi, G. Electrochemical energy storage applications of carbon nanotube supported heterogeneous metal sulfide electrodes. Ceram. Int. 2022, 48, 6157–6165. [Google Scholar] [CrossRef]
- Agarwal, A.; Majumder, S.; Sankapal, B.R. Multi-walled carbon nanotubes supported copper phosphate microflowers for flexible solid-state supercapacitor. Int. J. Energy Res. 2022, 46, 6177–6196. [Google Scholar] [CrossRef]
- Li, K.; Zhang, P.; Soomro, R.A.; Xu, B. Alkali-Induced Porous MXene/Carbon Nanotube-Based Film Electrodes for Supercapacitors. ACS Appl. Nano Mater. 2022, 5, 4180–4186. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Chen, L.; Chu, M.; Dong, Y.; Liu, D.; Liu, P.; Qu, D.; Duan, J.; Li, X. MOF(Ni)/CNT composites with layer structure for high capacitive performance. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128802. [Google Scholar] [CrossRef]
- Yang, R.; Bai, X.; Guo, X.; Song, K.; Jia, L.; Chen, X.; Wang, J. Hierarchical NiCo2O4 nanostructured arrays decorated over the porous Ni/C as battery-type electrodes for supercapacitors. Appl. Surf. Sci. 2022, 586, 152574. [Google Scholar] [CrossRef]
- Wang, B.Q.; Gong, S.H.; Sun, Q.S.; Liu, F.; Wang, X.C.; Cheng, J.P. Carbon nanotubes refined mesoporous NiCoO2 nanoparticles for high−performance supercapacitors. Electrochim. Acta 2022, 402, 139575. [Google Scholar] [CrossRef]
- Geioushy, R.A.; Attia, S.Y.; Mohamed, S.G.; Li, H.; Fouad, O.A. High-performance electrode materials for supercapacitor applications using Ni-catalyzed carbon nanostructures derived from biomass waste materials. J. Energy Storage 2022, 48, 104034. [Google Scholar] [CrossRef]
- Sivakumar, M.; Muthukutty, B.; Panomsuwan, G.; Veeramani, V.; Jiang, Z.; Maiyalagan, T. Facile synthesis of NiFe2O4 nanoparticle with carbon nanotube composite electrodes for high-performance asymmetric supercapacitor. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129188. [Google Scholar] [CrossRef]
- Yao, M.; Guo, C.; Zhang, Y.; Zhao, X.; Wang, Y. In situ encapsulation of metal sulfide into hierarchical nanostructured electrospun nanofibers as self-supported electrodes for flexible quasi-solid-state supercapacitors. J. Mater. Chem. C 2022, 10, 542–548. [Google Scholar] [CrossRef]
- Fahimi, Z.; Moradlou, O. High-performance solid-state asymmetric supercapacitor based on Co3V2O8/carbon nanotube nanocomposite and gel polymer electrolyte. J. Energy Storage 2022, 50, 104697. [Google Scholar] [CrossRef]
- Houpt, D.; Ji, J.; Yang, D.; Choi, J.H. High-Performance Supercapacitor Electrodes Based on Composites of MoS2 Nanosheets, Carbon Nanotubes, andZIF-8 Metal–Organic Framework Nanoparticles. ACS Appl. Nano Mater. 2022, 5, 1491–1499. [Google Scholar] [CrossRef]
- Chen, H.-C.; Hou, L.-Y.; He, C.; Laing, P.-J.; Huang, C.-Y.; Kuo, W.-S. Metal-Organic Framework-Assisted Synthesis of Three-Dimensional ZnCoS Effloresced Nanopillars@CNT Paper for High-Performance Flexible All-Solid-State Battery-Type Supercapacitors with Ultrahigh Specific Capacitance. ACS Appl. Energy Mater. 2022, 5, 8262–8272. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, D.; Xu, C.; Li, Z.; Bi, S.; Xu, H.; Dou, H.; Zhang, X. MnO2/carbon nanotube free-standing electrode recycled from spent manganese-oxygen battery as high-performance supercapacitor material. J. Mater. Sci. 2022, 57, 8818–8827. [Google Scholar] [CrossRef]
- Dang, A.; Sun, Y.; Fang, C.; Li, T.; Liu, X.; Xia, Y.; Ye, F.; Zada, A.; Khan, M. Rational design of Ti3C2/carbon nanotubes/MnCo2S4 electrodes for symmetric supercapacitors with high energy storage. Appl. Surf. Sci. 2022, 581, 152432. [Google Scholar] [CrossRef]
- Khalafallah, D.; Zhi, M.; Hong, Z. Bi-Fe chalcogenides anchored carbon matrix and structured core–shell Bi-Fe-P@Ni-P nanoarchitectures with appealing performances for supercapacitors. J. Colloid Interface Sci. 2022, 606, 1352–1363. [Google Scholar] [CrossRef]
- Pandit, B.; Sankapal, B.R. Cerium Selenide Nanopebble/Multiwalled Carbon Nanotube Composite Electrodes for Solid-State Symmetric Supercapacitors. ACS Appl. Nano Mater. 2022, 5, 3007–3017. [Google Scholar] [CrossRef]
- Real, C.G.; Thaines, E.H.N.S.; Pocrifka, L.A.; Freitas, R.G.; Singh, G.; Zanin, H. Freestanding niobium pentoxide-decorated multiwalled carbon nanotube electrode: Charge storage mechanism insodium-ion pseudocapacitor and battery. J. Energy Storage 2022, 52, 104793. [Google Scholar] [CrossRef]
- Ren, X.; Yuan, Z.; Ma, Y.; Zhang, C.; Qin, C.; Jiang, X. Nitrogen-/Boron-Doped Carbon from Poplar Powder and Carbon Nanotube Composite as Electrode Material for Supercapacitors. Energy Fuels 2022, 36, 2841–2850. [Google Scholar] [CrossRef]
- Maity, C.K.; Sahoo, S.; Verma, K.; Nayak, G.C. SnS2@Conducting Energy Level-Induced Functionalized Boron Nitride for an Asymmetric Supercapacitor. Energy Fuels 2022, 36, 2248–2259. [Google Scholar] [CrossRef]
Electrode Materials | CR (%)/Cycles | SC (F/g) | Energy Density (Wh/kg) | Power Density (W/kg) | Reference |
---|---|---|---|---|---|
CNTs/graphene/polyhedron | - | 1918.4 | 68.6 | 800 | [83] |
CNTs/rGO/FeO/NiFe | 102.2/5000 | 411.9 | 41.4 | 5600 | [84] |
CNTs-GONRs@g-C3N4/Ni-Co-LDH/NF | - | 2532.80 | 77.61 | 850 | [85] |
CNTs/graphene/NiCo2O4/ZnCo2O4 | 86.1/6000 | 1128.6 | 68.6 | 800 | [86] |
CNTs/graphene/N-Co3S4 | 97.2/4000 | 1158 | 37.69 | 8000 | [87] |
CNTs/graphene/N-MnO2 | - | 185.1 | 75.3 | 18,100 | [88] |
CNTs/graphene/NiCo2S4/MXene | 80/5000 | 1076 | 0.115 Wh/m2 | 12.4 W/m2 | [89] |
CNTs/graphene/Mn0.06CO2.94O4 | 82/33,000 | 933 | 55 | 9000 | [90] |
CNTs/graphene | - | 603 | 0.24 Wh/m2 | 21.6 W/m2 | [91] |
CNTs/graphene/activated carbon | 94–97/1000 | 32.13 | 6.6 | 69 | [92] |
CNTs/graphene/TiO2 | - | 168 | 15 | 337.5 | [93] |
Electrode Materials | CR (%)/Cycles | SC (F/g) | Energy Density (Wh/kg) | Power Density (W/kg) | Reference |
---|---|---|---|---|---|
CNTs/PANI/MnO2 | 80/4000 | 532 | 11.8 | 3785 | [101] |
CNTs/PANI@MXene | 92/10,000 | 463 | 10 | 2808 | [102] |
CNTs/PANI/PDMS | 76/5000 | 265 | 25.5 | 126.6 | [103] |
CNTs-LS/MoS2-LS/PANI | 86/10,000 | 458.9 | 10.9 | 265.3 | [104] |
CNTs/PANI/graphene/graphite | 80.6/10,000 | 880 | 68.4 | 895.4 | [105] |
CNTs/PANI-Carboxymethylcellulose | 89.2/5000 | 348.8 | 0.999 Wh/m2 | 4 W/m2 | [106] |
CNTs@vinyltrimethoxysilane/PANI | 96.6/2000 | 531.3 | 26.5 | - | [107] |
Electrode Materials | CR (%)/Cycles | SC (F/g) | Energy Density (Wh/kg) | Power Density (W/kg) | Reference |
---|---|---|---|---|---|
CNTs/Ni | 83.2/5000 | 97 | 32.6 | 476.5 | [128] |
CNTs/NiCo2O4/Ni/C | - | 1945.9 | 58.31 | 749.7 | [129] |
CNTs/NiCoO2 | 92/5000 | 1587 | 41.8 | 412 | [130] |
CNTs/NiS2/NiCo2S4 | 83/10,000 | 2905 | 58.1 | - | [131] |
CNTs/NiFe2O4 | 89.16/5000 | 670 | 23.39 | 466.66 | [132] |
CNTs/Co-S@carbon nanofibers | 96.9/10,000 | 416.5 | 10.3 | 320 | [133] |
CNTs/Co3V2O8 | 95.26/3000 | 120.17 | 37.55 | - | [134] |
CNTs/ZIF/MoS2 | -/10,000 | 262 | 52.4 | 3680 | [135] |
CNTs/ZnCoS | 96/10,000 | 2957.6 | 68.8 | 700 | [136] |
CNTs/MnO2 | 78.26/6000 | 253.86 | 32 | 413.70 | [137] |
CNTs/Ti3C2/MnCo2S4 | 94.09/5000 | 823 | 49.5 | 350 | [138] |
CNTs/Bi-Fe-P | 85.6/8000 | 532 | 81.5 | 890.2 | [139] |
CNTs/cerium selenide nanopebbles | 84.1/4000 | 451.4 | 36.3–14.5 | 2800–5600 | [140] |
CNTs/Nb2O5 | 96/10,000 | 192 | 5.4–2.7 | 98.7–24.671 | [141] |
CNTs/Nitrogen–Boron–Carbon | 95.7/3000 | 432.31 | 11.67–7.74 | 300–1485 | [142] |
CNTs/SnS2-BN | 101/- | 87 | 49 | - | [143] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pour, G.B.; Ashourifar, H.; Aval, L.F.; Solaymani, S. CNTs-Supercapacitors: A Review of Electrode Nanocomposites Based on CNTs, Graphene, Metals, and Polymers. Symmetry 2023, 15, 1179. https://doi.org/10.3390/sym15061179
Pour GB, Ashourifar H, Aval LF, Solaymani S. CNTs-Supercapacitors: A Review of Electrode Nanocomposites Based on CNTs, Graphene, Metals, and Polymers. Symmetry. 2023; 15(6):1179. https://doi.org/10.3390/sym15061179
Chicago/Turabian StylePour, Ghobad Behzadi, Hassan Ashourifar, Leila Fekri Aval, and Shahram Solaymani. 2023. "CNTs-Supercapacitors: A Review of Electrode Nanocomposites Based on CNTs, Graphene, Metals, and Polymers" Symmetry 15, no. 6: 1179. https://doi.org/10.3390/sym15061179