Hox Gene Collinearity with Pulling Physical Forces Creates a Hox Gene Clustering in Embryos of Vertebrates and Invertebrates: Complete or Split Clusters
Abstract
:1. Introduction
2. Symmetries
2.1. Symmetry Is the Cornerstone of Science and Several Other Human Intellectual Activities
2.2. Noether’s Theory in Developmental Biology
3. Insertion of a DNA Fragment in a Hosting DNA Sequence
4. Complete vs. Split Hox Clusters
5. Discussion
5.1. Empirical Rule on Complete and Split Hox Clusters
5.2. Development in the Secondary Developmental Axis
5.3. Development in the Mouse Primary Anterior–Posterior Axis
5.4. Quantitative Collinearity
5.5. A Spontaneous Mutation in the Drosophila Case
6. Complex Expression Patterns
7. Recent Findings Caused by BM Physical Forces
7.1. Physical Forces May Cause a Tension in the Hox Clusters
7.2. Proposal for a Test of Section 7.1
7.3. Confirmation That FGF Causes the Necessary (but Not Sufficient) Condition for Limb Growth
8. Conclusions and Predictions
8.1. Transition of External Symmetry to Internal
8.2. According to the Conventional Representation, the DNA Sequence Is Deployed along a Meandering One-Dimensional Line
8.3. Besides Hox Gene Quantitative Collinearity
8.4. Acording to Chick Limb Bud Experiments
Funding
Acknowledgments
Conflicts of Interest
References
- Lewis, E.B. A gene complex controlling segmentation in Drosophila. Nature 1978, 276, 565. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S. A physical force may expose express in a morphogenetic density gradient. Bull. Math. Biol. 2001, 63, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Dolle, P.; Izpisua-Belmonte, J.C.; Brown, J.M.; Tickle, C.; Duboule, D. HOX-4 and the morphogenesis of mammalian genitalia. Genes. Dev. 1991, 5, 1767–1776. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S. Pulling forces acting on Hox gene clusters cause expression collinearity. Int. J. Dev. Biol. 2006, 50, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Tarchini, B.; Duboule, D. Control Hoxd genes collinearity during animal development. Dev. Cell 2006, 10, 93–103. [Google Scholar] [CrossRef]
- Tschopp, P.; Tarchini, B.; Spitz, F.; Zakany, J.; Duboule, D. Uncoupling time and space in the collinear regulation of hox genes. PLoS Genet. 2009, 5, e1000398. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S. A biophysical mechanism may control the collinearity of hoxd genes duting the early phase of limb development. Dev. Growth Differ. 2011, 3, 275–280. [Google Scholar]
- Papageorgiou, S Physical laws shape up Hox gene collinearity. J. Dev. Biol. 2021, 9, 17.
- Duboule, D. The rise and fall of Hox gene clusters. Development 2007, 134, 2549–2560. [Google Scholar] [CrossRef]
- Shimizu, K.; Gurdon, J.B. A quantitative analysis of signal transduction from activin receptor to nucleus. Proc. Nat. Acad. Sci. USA 1999, 96, 6791–6796. [Google Scholar] [CrossRef]
- Afzal, Z.; Krumlauf, R. Transacriptional regulation and implications for controlling Hox gene expression. J. Dev. Biol. 2022, 10, 4. [Google Scholar] [CrossRef]
- Simeoni, I.; Gurdon, J.B. Interpretation of BMP signaling in early Xenopus development. Dev. Biol. 2007, 308, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Bourillot, P.Y.; Garrett, N.; Gurdon, J.B. A changing morphogen gradient is interpreted by continuous transduction flow. Development 2002, 129, 2167–2180. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S. Comparison of models for the collinearity of Hox genes in the developmental axes of vertebrates. Curr. Genom. 2012, 13, 245–251. [Google Scholar] [CrossRef]
- Noordermeer, D.; Leleu, M.; Schorderet, P.; Joye, E.; Chabaud, F.; Duboule, D. Temporal dynamics and development memory of 3D chromatin architecture at hox gene loci. Elife 2014, 3, e0255. [Google Scholar] [CrossRef] [PubMed]
- Fabre, P.J.; Benke, A.; Joye, E.; Nguyen Huynh, T.H.; Manley, S.; Duboule, D. Nanoscale spatial organization of the HoxD gene cluster organization in distinct transcriptional states. Proc. Nat. Acad. Sci. USA 2015, 112, 13964–13969. [Google Scholar] [CrossRef]
- Fabre, P.J.; Benke, A.; Manley, S.; Duboule, D. Visualizing HoxD gene cluster at the nanoscale level. Cold Spring Harb. Symp. Quant. Biol. 2015, 80, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Papantonis, A.; Cook, P.R. Fixing the model for transcription: The DNA moves, not the polymerase. Transcription 2011, 2, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Brackley, C.A.; Gilbert, N.; Michieletto, D.; Papantonis, A.; Pereira, M.C.F.; Cook, P.R.; Marenduzzo, D. Complex small-world regulatory networks emerge from the 3D organization of the human genome. Nat. Commun. 2021, 12, 5756. [Google Scholar] [CrossRef]
- Wilczek, F. A Beautiful Question; Allen Lane Editions; Penguin: London, UK, 2015. [Google Scholar]
- Marinho, R.M. Noether’s theorem in Classical Mechanics revisited. Eur. J. Phys. 2006, 28, 37–43. [Google Scholar] [CrossRef]
- Papageorgiou, S. Hox gene collinearity may be related to Noether Theory on Symmetry and its linked conserved quantity. J. Multidiscipl. Sci. J. 2020, 3, 13. [Google Scholar] [CrossRef]
- Iliopoulos, J. Aux Origines de la Masse: Particules Élémentaires et Symétries Fondamentates; EDP Sciences: Paris, France, 2014. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature; Freeman: New York, NY, USA, 1982. [Google Scholar]
- Almirantis, Y.; Provata, A.; Li, W. Noether’s Theory as a metaphor for Chargaff’s 2nd parity rule in Genomics. J. Mol. Evol. 2022, 90, 231–238. [Google Scholar] [CrossRef]
- Hanscom, T.; McVey, M. Regulation of Error-Prone DNA Double-Strand Break Repair and its impact on genome evolution. Cells 2020, 9, 1657. [Google Scholar] [CrossRef]
- Schiemann, S.M.; Martín-Durán, J.M.; Børve, A.; Vellutini, B.C.; Passamaneck, Y.J.; Hejnol, A. Clustered brachiopod Hox genes are not expressed collinearly and are associated with lophotrochozoan. Proc. Natl. Acad. Sci. USA 2017, 114, E1913–E1922. [Google Scholar] [CrossRef]
- Ferrier, D.; Holland, P. CionaintestinalisParaHox genes: Evolution of Hox/ParaHox cluster integrity, developmental mode, and temporal collinearity. Mol. Phyl. Evol. 2002, 24, 412–417. [Google Scholar] [CrossRef] [PubMed]
- Ferrier, D. HOX Gene Expression; Papageorgiou, S., Ed.; Landes Bioscience and Springer Science: New York, NY, USA, 2007. [Google Scholar]
- Duboule, D. The (unusual) heuristic value of Hox gene clusters: A mater of time? Dev. Biol. 2022, 484, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Kondo, T.; Duboule, D. Breaking collinearity in the mouse HoxD complex. Cell 1999, 97, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Vargesson, N.; Kostakopoulou, K.; Drossopoulou, G.; Papageorgiou, S.; Tickle, C. Characterisation of HoxA gene expression in the chick limb bud in response to FGF. Dev. Dyn. 2001, 220, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S. The multiple roles of Temporal Collinearity in Hox gene clustering. Preprints 2023, 2023111987. [Google Scholar] [CrossRef]
- Papageorgiou, S. Disappearance of Temporal collinearity in Vertebrates and its eventual Reappearance. Biology 2021, 10, 1018. [Google Scholar] [CrossRef]
- Durston, A.J. Global Posterior Prev9alence is unique to Vertebrates: A dance to the music of Time? Dev. Dyn. 2012, 241, 179–1807. [Google Scholar] [CrossRef] [PubMed]
- Durston, A. Some questions and answers about the role of Hox Temporal Collinearity. Front. Cell Dev. Biol. 2019, 7, 257. [Google Scholar] [CrossRef]
- Andrey, G.; Montavon, T.; Mascrez, B.; Gonzalez, F.; Noordermeer, D.; Leleu, M.; Trono, D.; Spitz, F.; Duboule, D. A switch between topological domains underlies HoxD genes colline arity in mouse limbs. Science 2013, 340, 1234167. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, S. Biophysics Precedes Biochemistry in Hox Gene Collinearity. Available online: http://webmedcentralplus.com/article_view/405 (accessed on 26 February 2024 ).
- Sedas Perez, S.; McQueen, C.; Stainton, H.; Pickering, J.; Chinnaiya, K.; Saiz-Lopez, P.; Placzek, M.; Ros, M.A.; Towers, M. Fgfsignalling triggers an intrinsic mesodermal timer that determines the duration of limb patterning. Nat. Com. 2023, 14, 5841. [Google Scholar] [CrossRef] [PubMed]
- Amândio, A.R.; Beccari, L.; Lopez-Delisle, L.; Mascrez, B.; Zakany, J.; Gitto, S.; Duboule, D. Sequential in cis mutagenesis in vivo reveals various functions for CTCF sites at the mouse HoxD cluster. Genes Dev. 2021, 35, 1490–1509. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wu, M.; Lin, Q.; Wang, S.; Chen, T.; Jiang, H. Key genes and integrated modules in hematopoietic differentiation of human embryonic stem cells. Stem Cell Res. Ther. 2018, 9, 301. [Google Scholar] [CrossRef]
- Bertrand, J.Y.; Chi, N.C.; Santoso, B.; Teng, S.; Stainier, D.Y.; Traver, D. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 2010, 464, 108–111. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papageorgiou, S. Hox Gene Collinearity with Pulling Physical Forces Creates a Hox Gene Clustering in Embryos of Vertebrates and Invertebrates: Complete or Split Clusters. Symmetry 2024, 16, 594. https://doi.org/10.3390/sym16050594
Papageorgiou S. Hox Gene Collinearity with Pulling Physical Forces Creates a Hox Gene Clustering in Embryos of Vertebrates and Invertebrates: Complete or Split Clusters. Symmetry. 2024; 16(5):594. https://doi.org/10.3390/sym16050594
Chicago/Turabian StylePapageorgiou, Spyros. 2024. "Hox Gene Collinearity with Pulling Physical Forces Creates a Hox Gene Clustering in Embryos of Vertebrates and Invertebrates: Complete or Split Clusters" Symmetry 16, no. 5: 594. https://doi.org/10.3390/sym16050594