Next Article in Journal
A Peculiarly Cerebroid Convex Zygo-Dodecahedron is an Axiomatically Balanced “House of Blues”: The Circle of Fifths to the Circle of Willis to Cadherin Cadenzas
Previous Article in Journal
N = (4,4) Supersymmetry and T-Duality
Article Menu

Export Article

Open AccessArticle
Symmetry 2012, 4(4), 626-643; doi:10.3390/sym4040626

Dirac Matrices and Feynman’s Rest of the Universe

1
Center for Fundamental Physics, University of Maryland, College Park, MD 20742, USA
2
Department of Radiology, New York University, New York, NY 10016, USA
*
Author to whom correspondence should be addressed.
Received: 25 June 2012 / Revised: 6 October 2012 / Accepted: 23 October 2012 / Published: 30 October 2012
View Full-Text   |   Download PDF [136 KB, uploaded 30 October 2012]   |  

Abstract

There are two sets of four-by-four matrices introduced by Dirac. The first set consists of fifteen Majorana matrices derivable from his four γ matrices. These fifteen matrices can also serve as the generators of the group SL(4, r). The second set consists of ten generators of the Sp(4) group which Dirac derived from two coupled harmonic oscillators. It is shown possible to extend the symmetry of Sp(4) to that of SL(4, r) if the area of the phase space of one of the oscillators is allowed to become smaller without a lower limit. While there are no restrictions on the size of phase space in classical mechanics, Feynman’s rest of the universe makes this Sp(4)-to-SL(4, r) transition possible. The ten generators are for the world where quantum mechanics is valid. The remaining five generators belong to the rest of the universe. It is noted that the groups SL(4, r) and Sp(4) are locally isomorphic to the Lorentz groups O(3, 3) and O(3, 2) respectively. This allows us to interpret Feynman’s rest of the universe in terms of space-time symmetry. View Full-Text
Keywords: Dirac gamma matrices; Feynman’s rest of the universe; two coupled oscilators; Wigner’s phase space; non-canonical transformations; group generators; SL(4, r) isomorphic O(3, 3); quantum mechanics interpretation Dirac gamma matrices; Feynman’s rest of the universe; two coupled oscilators; Wigner’s phase space; non-canonical transformations; group generators; SL(4, r) isomorphic O(3, 3); quantum mechanics interpretation
This is an open access article distributed under the Creative Commons Attribution License (CC BY 3.0).

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Kim, Y.S.; Noz, M.E. Dirac Matrices and Feynman’s Rest of the Universe. Symmetry 2012, 4, 626-643.

Show more citation formats Show less citations formats

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Symmetry EISSN 2073-8994 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top