Comparison of the Application of High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) and Collision/Reaction Cell Technology of Inductively Coupled Plasma Mass Spectrometry (ICP-CCT-MS) in the Determination of Selenium in Coal-Bearing Strata
Abstract
:1. Introduction
2. Methods and Materials
2.1. Instruments
2.2. Reagents and Gasses
2.3. Investigated Samples
2.4. Sample Digestion
2.5. Determination Procedure
2.5.1. HR-ICP-MS
2.5.2. ICP-CCT-MS
3. Results and Discussion
3.1. HR-ICP-MS
3.1.1. Isotope Selection
3.1.2. Mass Spectral Interference and Correction
3.2. Results Comparison
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arbuzov, S.I.; Chekryzhov, I.Y.; Verkhoturov, A.A.; Spears, D.A.; Melkiy, V.A.; Zarubina, N.V.; Blokhin, M.G. Geochemistry and Rare-Metal Potential of Coals of the Sakhalin Coal Basin, Sakhalin Island, Russia. Int. J. Coal Geol. 2023, 268, 104197. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Mezhibor, A.M.; Spears, D.A.; Ilenok, S.S.; Shaldybin, M.V.; Belaya, E.V. Nature of Tonsteins in the Azeisk Deposit of the Irkutsk Coal Basin (Siberia, Russia). Int. J. Coal Geol. 2016, 153, 99–111. [Google Scholar] [CrossRef]
- Chatterjee, S.; Mastalerz, M.; Drobniak, A.; Karacan, C.Ö. Machine Learning and Data Augmentation Approach for Identification of Rare Earth Element Potential in Indiana Coals, USA. Int. J. Coal Geol. 2022, 259, 104054. [Google Scholar] [CrossRef]
- Hou, Y.; Dai, S.; Nechaev, V.P.; Finkelman, R.B.; Wang, H.; Zhang, S.; Di, S. Mineral Matter in the Pennsylvanian Coal from the Yangquan Mining District, Northeastern Qinshui Basin, China: Enrichment of Critical Elements and a Se-Mo-Pb-Hg Assemblage. Int. J. Coal Geol. 2023, 266, 104178. [Google Scholar] [CrossRef]
- Karayigit, A.I.; Yerin, Ü.O.; Oskay, R.G.; Bulut, Y.; Córdoba, P. Enrichment and Distribution of Elements in the Middle Miocene Coal Seams in the Orhaneli Coalfield (NW Turkey). Int. J. Coal Geol. 2021, 247, 103854. [Google Scholar] [CrossRef]
- Liu, J.; Dai, S.; Song, H.; Nechaev, V.P.; French, D.; Spiro, B.F.; Graham, I.T.; Hower, J.C.; Shao, L.; Zhao, J. Geological Factors Controlling Variations in the Mineralogical and Elemental Compositions of Late Permian Coals from the Zhijin-Nayong Coalfield, Western Guizhou, China. Int. J. Coal Geol. 2021, 247, 103855. [Google Scholar] [CrossRef]
- Wang, N.; French, D.; Dai, S.; Graham, I.T.; Zhao, L.; Song, X.; Zheng, J.; Gao, Y.; Wang, Y. Origin of Chamosite and Berthierine: Implications for Volcanic-Ash-Derived Nb-Zr-REY-Ga Mineralization in the Lopingian Sequences from Eastern Yunnan, SW China. J. Asian Earth Sci. 2023, 253, 105703. [Google Scholar] [CrossRef]
- Hamilton, S.J. Review of Selenium Toxicity in the Aquatic Food Chain. Sci. Total Environ. 2004, 326, 1–31. [Google Scholar] [CrossRef]
- Tinggi, U. Essentiality and Toxicity of Selenium and Its Status in Australia: A Review. Toxicol. Lett. 2003, 137, 103–110. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Cui, Z.; Huang, J.; Tran, T.A.; Wang, D.; Yang, W.; Zhou, F.; Wang, M.; Yu, D.; Liang, D. Selenium Distribution in the Chinese Environment and Its Relationship with Human Health: A Review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef]
- Wang, L.; Ju, Y.; Liu, G.; Chou, C.-L.; Zheng, L.; Qi, C. Selenium in Chinese Coals: Distribution, Occurrence, and Health Impact. Environ. Earth Sci. 2009, 60, 1641–1651. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of Trace Elements in Chinese Coals: A Review of Abundances, Genetic Types, Impacts on Human Health, and Industrial Utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Sun, H.-J.; Rathinasabapathi, B.; Wu, B.; Luo, J.; Pu, L.-P.; Ma, L.Q. Arsenic and Selenium Toxicity and Their Interactive Effects in Humans. Environ. Int. 2014, 69, 148–158. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.B.; Reynolds, L.P.; Redmer, D.A.; Caton, J.S. Maternal and Fetal Tissue Selenium Loads in Nulliparous Ewes Fed Supranutritional and Excessive Selenium during Mid- to Late Pregnancy1,2. J. Anim. Sci. 2009, 87, 1828–1834. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yang, G.; Chen, J.; Chen, X.; Wen, Z.; Ge, K. Studies on the Relations of Selenium and Keshan Disease. Biol. Trace Elem. Res. 1980, 2, 91–107. [Google Scholar] [CrossRef]
- Klein, E.A. Selenium: Epidemiology and Basic Science. J. Urol. 2004, 171, S50–S53. [Google Scholar] [CrossRef]
- Lemly, A.D. Selenium Poisoning of Fish by Coal Ash Wastewater in Herrington Lake, Kentucky. Ecotoxicol. Environ. Saf. 2018, 150, 49–53. [Google Scholar] [CrossRef]
- Chua, E.M.; Flint, N.; Wilson, S.P.; Vink, S. Potential for Biomonitoring Metals and Metalloids Using Fish Condition and Tissue Analysis in an Agricultural and Coal Mining Region. Chemosphere 2018, 202, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Xu, F.; Qiu, D.; Fan, S.; Wang, R.; Li, Y.; Chen, X. The Occurrence, Transformation and Control of Selenium in Coal-Fired Power Plants: Status Quo and Development. J. Air Waste Manag. Assoc. 2022, 72, 131–146. [Google Scholar] [CrossRef]
- Niu, C.; Luo, K. Relationship of Selenium, Arsenic and Sulfur in Soil and Plants in Enshi County, China. J. Food Agric. Environ. 2011, 9, 646–651. [Google Scholar]
- Shah, P.; Strezov, V.; Stevanov, C.; Nelson, P.F. Speciation of Arsenic and Selenium in Coal Combustion Products. Energy Fuels 2006, 21, 506–512. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, G.; Yan, Z.; Sun, R. Distribution and Fate of Environmentally Sensitive Elements (Arsenic, Mercury, Stibium and Selenium) in Coal-Fired Power Plants at Huainan, Anhui, China. Fuel 2012, 95, 334–339. [Google Scholar] [CrossRef]
- Xie, J.; Niu, X.-D.; He, K.-Q.; Shi, M.-D.; Yu, S.-J.; Yuan, C.-G.; Liu, J.-F. Arsenic and Selenium Distribution and Speciation in Coal and Coal Combustion By-Products from Coal-Fired Power Plants. Fuel 2021, 292, 120228. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, B.; Wu, J.; Qi, Y.; Chu, W.; Qiao, L.; Zhang, B.; Shen, P.; Tang, T. Study on Arsenic, Selenium, and Lead Produced in Coal Combustion: Bibliometric Method. Environ. Sci. Pollut. Res. 2021, 28, 32190–32199. [Google Scholar] [CrossRef] [PubMed]
- Finkelman, R.B.; Orem, W.; Castranova, V.; Tatu, C.A.; Belkin, H.E.; Zheng, B.; Lerch, H.E.; Maharaj, S.V.; Bates, A.L. Health Impacts of Coal and Coal Use: Possible Solutions. Int. J. Coal Geol. 2002, 50, 425–443. [Google Scholar] [CrossRef]
- Song, G.; Xu, W.; Liu, K.; Song, Q. Transformation of Selenium during Coal Thermal Conversion: Effects of Atmosphere and Inorganic Content. Fuel Process. Technol. 2020, 205, 106446. [Google Scholar] [CrossRef]
- Díaz-Somoano, M.; Antonia López-Antón, M.; Rosa Martínez-Tarazona, M. Determination of Selenium by ICP-MS and HG-ICP-MS in Coal, Fly Ashes and Sorbents Used for Flue Gas Cleaning. Fuel 2004, 83, 231–235. [Google Scholar] [CrossRef]
- Huang, Y.; Gong, H.; Hu, H.; Fu, B.; Yuan, B.; Li, S.; Luo, G.; Yao, H. Migration and Emission Behavior of Arsenic and Selenium in a Circulating Fluidized Bed Power Plant Burning Arsenic/Selenium-Enriched Coal. Chemosphere 2021, 263, 127920. [Google Scholar] [CrossRef] [PubMed]
- Swanson, S.M.; Engle, M.A.; Ruppert, L.F.; Affolter, R.H.; Jones, K.B. Partitioning of Selected Trace Elements in Coal Combustion Products from Two Coal-Burning Power Plants in the United States. Int. J. Coal Geol. 2013, 113, 116–126. [Google Scholar] [CrossRef]
- Itskos, G.; Itskos, S.; Moutsatsou, A.; Vasilatos, C.; Koukouzas, N.; Kakaras, E. The Outcomes of the 2-Decade Monthly Monitoring of Fly Ash-Composition in a Lignite-Fired Power Station. Waste Biomass Valorization 2010, 1, 431–437. [Google Scholar] [CrossRef]
- Itskos, G.; Koukouzas, N.; Vasilatos, C.; Megremi, I.; Moutsatsou, A. Comparative Uptake Study of Toxic Elements from Aqueous Media by the Different Particle-Size-Fractions of Fly Ash. J. Hazard. Mater. 2010, 183, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Helble, J.J. Trace Element Behavior during Coal Combustion: Results of a Laboratory Study. Fuel Process. Technol. 1994, 39, 159–172. [Google Scholar] [CrossRef]
- Germani, M.S.; Zoller, W.H. Vapor-phase Concentrations of Arsenic, Selenium, Bromine, Iodine, and Mercury in the Stack of a Coal-fired Power-plant. Environ. Sci. Technol. 1988, 22, 1079–1085. [Google Scholar] [CrossRef] [PubMed]
- ASTM D 4606-03; Annual Book of ASTM Standards. Standard Test Method for Determination of Arsenic and Selenium in Coal by the Hydride Generation/Atomic Absorption Method. Gaseous Fuels: Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2007; Volume 05.06.
- Coufalík, P.; Zvěřina, O.; Sádovská, K.; Komárek, J. UV-Photochemical Vapor Generation Coupled to Hydride Generation AAS in the Study of Dietary Intake of Se, Hg, Cd, and Pb from Fish. J. Food Compos. Anal. 2023, 124, 105668. [Google Scholar] [CrossRef]
- De Oliveira, R.M.; Antunes, A.C.; Vieira, M.A.; Medina, A.L.; Ribeiro, A.S. Evaluation of Sample Preparation Methods for the Determination of As, Cd, Pb, and Se in Rice Samples by GF AAS. Microchem. J. 2016, 124, 402–409. [Google Scholar] [CrossRef]
- Shaltout, A.A.; Bouslimi, J.; Besbes, H. The Challenges of Se Quantification in Bean Samples Using Line and Continuum Sources Atomic Absorption Spectrometry. Food Chem. 2020, 328, 127124. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodas, D.; Corns, W.T.; Chen, B.; Stockwell, P.B. Atomic Fluorescence Spectrometry: A Suitable Detection Technique in Speciation Studies for Arsenic, Selenium, Antimony and Mercury. J. Anal. At. Spectrom. 2010, 25, 933. [Google Scholar] [CrossRef]
- Xie, X.; Feng, C.; Ye, M.; Wang, C. Speciation Determination of Selenium in Seafood by High-Performance Ion-Exchange Chromatography-Hydride Generation-Atomic Fluorescence Spectrometry. Food Anal. Methods 2014, 8, 1739–1745. [Google Scholar] [CrossRef]
- Iwashita, A.; Nakajima, T.; Takanashi, H.; Ohki, A.; Fujita, Y.; Yamashita, T. Determination of Trace Elements in Coal and Coal Fly Ash by Joint-Use of ICP-AES and Atomic Absorption Spectrometry. Talanta 2007, 71, 251–257. [Google Scholar] [CrossRef]
- Yan, Q.; Yang, L.; Wang, Q.; Ma, X. Determination of Major and Trace Elements in Six Herbal Drugs for Relieving Heat and Toxicity by ICP-AES with Microwave Digestion. J. Saudi Chem. Soc. 2012, 16, 287–290. [Google Scholar]
- Sihlahla, M.; Mpupa, A.; Sojka, M.; Saeid, A.; Nomngongo, P.N. Determination of Selenium in Cereal and Biofortified Samples by ICP-OES Using an Alcohol-Based Deep Eutectic Solvent in Digestion Procedure. Adv. Sample Prep. 2023, 8, 100092. [Google Scholar] [CrossRef]
- Li, X.; Dai, S.; Zhang, W.; Li, T.; Zheng, X.; Chen, W. Determination of As and Se in Coal and Coal Combustion Products Using Closed Vessel Microwave Digestion and Collision/Reaction Cell Technology (CCT) of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Int. J. Coal Geol. 2014, 124, 1–4. [Google Scholar] [CrossRef]
- Kapilna, E.; Shah, M.; Caruso, J.; Fodor, P. Selenium Speciation Studies in Se-Enriched Chives (Allium Schoenoprasum) by HPLC-ICP–MS. Food Chem. 2007, 101, 1398–1406. [Google Scholar] [CrossRef]
- Montesbayon, M.; Molet, M.; Gonzalez, E.; Sanzmedel, A. Evaluation of Different Sample Extraction Strategies for Selenium Determination in Selenium-Enriched Plants (Allium sativum and Brassica juncea) and Se Speciation by HPLC-ICP-MS. Talanta 2006, 68, 1287–1293. [Google Scholar] [CrossRef] [PubMed]
- Tie, M.; Li, B.; Sun, T.; Guan, W.; Liang, Y.; Li, H. HPLC-ICP-MS Speciation of Selenium in Se-Cultivated Flammulina Velutipes. Arab. J. Chem. 2020, 13, 416–422. [Google Scholar] [CrossRef]
- Dufailly, V.; Noël, L.; Guérin, T. Determination of Chromium, Iron and Selenium in Foodstuffs of Animal Origin by Collision Cell Technology, Inductively Coupled Plasma Mass Spectrometry (ICP-MS), after Closed Vessel Microwave Digestion. Anal. Chim. Acta 2006, 565, 214–221. [Google Scholar] [CrossRef]
- Dufailly, V.; Noël, L.; Guérin, T. Optimisation and Critical Evaluation of a Collision Cell Technology ICP-MS System for the Determination of Arsenic in Foodstuffs of Animal Origin. Anal. Chim. Acta 2008, 611, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Rowan, J.T.; Houk, R.S. Attenuation of Polyatomic Ion Interferences in Inductively Coupled Plasma Mass Spectrometry by Gas-Phase Collisions. Appl. Spectrosc. 1989, 43, 976–980. [Google Scholar] [CrossRef]
- Tanner, S.D.; Baranov, V.I.; Bandura, D.R. Reaction Cells and Collision Cells for ICP-MS: A Tutorial Review. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 1361–1452. [Google Scholar] [CrossRef]
- Henn, A.S.; Rondan, F.S.; Mesko, M.F.; Mello, P.A.; Perez, M.; Armstrong, J.; Bullock, L.A.; Parnell, J.; Feldmann, J.; Flores, E.M.M. Determination of Se at Low Concentration in Coal by Collision/Reaction Cell Technology Inductively Coupled Plasma Mass Spectrometry. Spectrochim. Acta Part B At. Spectrosc. 2018, 143, 48–54. [Google Scholar] [CrossRef]
- Sánchez-Rodas, D.; Mellano, F.; Martínez, F.; Palencia, P.; Giráldez, I.; Morales, E. Speciation Analysis of Se-Enriched Strawberries (Fragaria Ananassa Duch) Cultivated on Hydroponics by HPLC-TR-HG-AFS. Microchem. J. 2016, 127, 120–124. [Google Scholar] [CrossRef]
- Wang, M.; Zhong, Y.; Qin, J.; Zhang, Z.; Li, S.; Yang, B. Determination of Total Selenium in Food Samples by D-CPE and HG-AFS. Food Chem. 2017, 227, 329–334. [Google Scholar] [CrossRef] [PubMed]
- García, J.B.; Krachler, M.; Chen, B.; Shotyk, W. Improved Determination of Selenium in Plant and Peat Samples Using Hydride Generation-Atomic Fluorescence Spectrometry (HG-AFS). Anal. Chim. Acta 2005, 534, 255–261. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Shi, K.; Hu, K.; Li, R.; Gao, X.; Wang, Q.; Zhang, W.; Zhou, Y.; Wang, Y.; et al. Stability of Selenium and Its Speciation Analysis in Water Using Automatic System Separation and HR-ICP-MS Measurement. Chin. Chem. Lett. 2022, 33, 3444–3450. [Google Scholar] [CrossRef]
- Balaram, V.; Rahaman, W.; Roy, P. Recent Advances in MC-ICP-MS Applications in Earth and Environmental Sciences: Challenges and Solutions. Geosystems Geoenviron. 2022, 1, 100019. [Google Scholar] [CrossRef]
- Hanousek, O.; Brunner, M.; Pröfrock, D.; Irrgeher, J.; Prohaska, T. The Performance of Single and Multi-Collector ICP-MS Instruments for Fast and Reliable 34S/32S Isotope Ratio Measurements. Anal. Methods 2016, 8, 7661–7672. [Google Scholar] [CrossRef]
- Satyanarayanan, M.; Balaram, V.; Sawant, S.S.; Subramanyam, K.S.V.; Vamsi Krishna, G.; Dasaram, B.; Manikyamba, C. Rapid Determination of REEs, PGEs, and Other Trace Elements in Geological and Environmental Materials by High Resolution Inductively Coupled Plasma Mass Spectrometry. At. Spectrosc. 2018, 39, 1–15. [Google Scholar] [CrossRef]
- Evans, E.H.; Giglio, J.J. Interferences in Inductively Coupled Plasma Mass Spectrometry. A Review. J. Anal. At. Spectrom. 1993, 8, 18. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, J.; Jia, R.; Feng, J.; Teng, K.; Han, Q.; Shang, N. Precise Determination of Eu Concentration in Coal and Sedimentary Rock Samples Using High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS). Minerals 2023, 1, 8. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Selenium in Coal: A Review. Int. J. Coal Geol. 2006, 67, 112–126. [Google Scholar] [CrossRef]
- Gross, J.L.; Claes, J.; Kathawa, J.; Thoennessen, M. Discovery of Zinc, Selenium, Bromine, and Neodymium Isotopes. At. Data Nucl. Data Tables 2012, 98, 75–94. [Google Scholar] [CrossRef]
Sample ID | Lithology | Description |
---|---|---|
SRM 1632e | Bituminous coal | NIST Standard reference material |
SRM 2685c | ||
SRM 1633c | Coal fly ash | |
SRM 2691 | ||
GSR-20 | Carbonaceous-siliceous shale | NIM standard reference material |
QS-9-1 | Bituminous coal | No.9 Coal Seam from Qisheng Mine, Xingtai Coal field, China (this study) |
QS-9-2 | ||
QS-9-3 | ||
QS-9-4 | ||
QS-9-5 | ||
QS-9-R | Roof, silty sandstone | Qisheng Mine, Xingtai Coal field, China (this study) |
QS-9-6M | Carbonaceous mudstone | |
QS-9-7M | ||
QS-9-8M | ||
QS-9-F | Floor, mudstone |
Step | Time (min) | Temp (°C) | Pressure (bar) | Microwave Power (W) |
---|---|---|---|---|
1 | 8 | 60 | 100 | 1500 |
2 | 12 | 125 | 100 | 1500 |
3 | 15 | 160 | 130 | 1500 |
4 | 15 | 240 | 160 | 1500 |
5 | 60 | 240 | 160 | 1500 |
Cooling time | 60 |
Items | Values | Items | Values/Status |
---|---|---|---|
Plasma RF power | 1380 W | Spray chamber temperature | 3 ± 0.1 °C |
Nebulizer gas pressure | 37.8 PSI | Nebulizer | Teflon neb |
Auxiliary gas flow | 0.8 L/min | Peristaltic pump speed | 30 RPM |
Coolant gas flow | 13 L/min | Dwell time | 5 ms |
Number of cycles | 5 times | Testing time for each run | 25 ms |
Items | Values | Items | Values/Status |
---|---|---|---|
Plasma RF power | 1400 W | Nebulizer | Teflon neb |
Nebulizer gas flow | 1.00 L/min | Collision gas flow | 4 mL/min |
Auxiliary gas flow | 0.8 L/min | Peristaltic pump speed | 30 RPM |
Coolant gas flow | 13.0 L/min | Dwell time | 10 ms |
Number of main runs | 3 times | Testing time for each run | 30 ms |
Isotope | Mass | Abundance (%) | Major Interference |
---|---|---|---|
74Se | 73.92248 | 0.87 | 74Ge; 148Sm2+; 148Nd2+; 38Ar36Ar |
76Se | 75.91921 | 9.12 | 76Ge; 152Sm2+; 152Gd2+; 38Ar2; 40Ar36Ar |
77Se | 76.91991 | 7.50 | 154Sm2+; 154Gd2+; 154BaO2+ |
78Se | 77.91773 | 23.61 | 156Gd2+; 156Dy2+; 156CeO2+; 40Ar38Ar |
80Se | 79.91652 | 49.96 | 80Kr; 160Gd2+; 160Dy2+; 40Ar2 |
82Se | 81.91671 | 8.84 | 82Kr; 164Dy2+; 164Er2+ |
Interferent | Mass | Required Resolution (amu) |
---|---|---|
77Se | 76.91991 | |
154Sm2+ | 76.96111 | 1867 |
154Gd2+ | 76.96044 | 1898 |
154BaO2+ | 76.95036 | 2525 |
Detection Mode | 74Se | 76Se | 77Se | 78Se | 80Se | 82Se |
---|---|---|---|---|---|---|
Low Resolution | bdl | 10.59 | 2.18 | bdl | bdl | 3.75 |
Medium Resolution | bdl | 9.89 | 1.94 | bdl | bdl | 3.02 |
High Resolution | bdl | 9.51 | 1.86 | bdl | bdl | 3.01 |
Instrument | Linearity(μg/L) | Correlation Coefficient | MDL(μg/L) |
---|---|---|---|
HR-ICP-MS | 0–100 | 0.999946 | 0.805 |
ICP-CCT-MS | 0–100 | 0.999961 | 0.519 |
Sample ID | HR-ICP-MS | ICP-CCT-MS | |||||||
---|---|---|---|---|---|---|---|---|---|
Cer | Obs | RE | RSD | Rec | Obs | RE | RSD | Rec | |
SRM 1632e | 1.53 | 1.54 | 0.65 | 8.37 | 92.87 | 1.56 | 1.96 | 4.78 | 119.46 |
SRM 2685c | 1.90 | 1.94 | 2.10 | 7.18 | 93.44 | 1.93 | 1.58 | 6.67 | 113.81 |
SRM 1633c | 13.90 | 13.32 | 4.17 | 8.15 | 71.36 | 16.30 | 17.27 | 5.53 | 98.16 |
SRM 2691 | 17.00 | 17.78 | 4.59 | 6.92 | 71.01 | 16.65 | 2.06 | 9.97 | 94.28 |
GSR-20 | 29.7 | 31.58 | 6.33 | 5.82 | 74.04 | 34.24 | 15.29 | 6.80 | 98.33 |
Run 1 | Run 2 | Run 3 | Run 4 | Run 5 | Run 6 | Run 7 | Run 8 | Run 9 | Run 10 | Ave | |
---|---|---|---|---|---|---|---|---|---|---|---|
HR-ICP-MS | |||||||||||
Cycle 1 | 2.15 | 1.86 | 2.17 | 1.99 | 2.00 | 2.18 | 2.10 | 1.75 | 2.14 | 2.15 | |
Cycle 2 | 1.92 | 2.13 | 1.77 | 1.80 | 1.67 | 1.68 | 1.84 | 2.04 | 2.06 | 1.81 | |
Cycle 3 | 1.89 | 1.89 | 1.75 | 2.02 | 2.03 | 2.05 | 1.68 | 1.88 | 1.73 | 1.87 | |
Cycle 4 | 1.75 | 1.88 | 1.97 | 2.11 | 1.97 | 2.14 | 2.14 | 1.96 | 1.93 | 1.90 | |
Cycle 5 | 1.95 | 2.04 | 2.14 | 1.85 | 1.97 | 1.70 | 1.87 | 2.00 | 2.02 | 1.95 | |
Ave | 1.93 | 1.96 | 1.96 | 1.95 | 1.93 | 1.95 | 1.93 | 1.93 | 1.97 | 1.94 | 1.94 |
SD | 0.13 | 0.10 | 0.18 | 0.11 | 0.13 | 0.22 | 0.17 | 0.10 | 0.14 | 0.11 | 0.14 |
ICP-CCT-MS | |||||||||||
Cycle 1 | 2.10 | 2.02 | 1.96 | 2.10 | 2.12 | 1.94 | 1.94 | 1.76 | 1.96 | 1.84 | |
Cycle 2 | 1.94 | 1.90 | 1.76 | 1.86 | 1.84 | 1.80 | 2.06 | 1.98 | 2.16 | 1.88 | |
Cycle 3 | 1.74 | 1.88 | 2.14 | 1.86 | 1.94 | 2.10 | 1.88 | 1.76 | 1.56 | 2.16 | |
Ave | 1.93 | 1.93 | 1.95 | 1.94 | 1.97 | 1.95 | 1.96 | 1.83 | 1.89 | 1.96 | 1.93 |
SD | 0.15 | 0.06 | 0.16 | 0.11 | 0.12 | 0.12 | 0.07 | 0.10 | 0.25 | 0.14 | 0.13 |
Sample ID | HR-ICP-MS | ICP-CCT-MS | ||||
---|---|---|---|---|---|---|
Obs | RSD | Rec | Obs | RSD | Rec | |
QS-9-1 | 1.98 | 4.37 | 75.34 | 2.02 | 17.48 | 105.25 |
QS-9-2 | 3.18 | 5.28 | 82.68 | 3.12 | 23.56 | 107.04 |
QS-9-3 | 9.97 | 2.72 | 80.84 | 10.28 | 8.67 | 108.21 |
QS-9-4 | 6.68 | 3.59 | 77.75 | 6.46 | 8.64 | 105.76 |
QS-9-5 | 5.44 | 2.16 | 79.98 | 5.68 | 5.15 | 107.40 |
QS-9-R | 3.73 | 6.02 | 70.59 | 3.63 | 14.36 | 113.44 |
QS-9-6M | 6.06 | 7.65 | 77.62 | 6.14 | 14.56 | 112.89 |
QS-9-7M | 3.52 | 3.14 | 78.44 | 3.80 | 8.33 | 110.45 |
QS-9-8M | 2.96 | 3.71 | 71.92 | 3.05 | 15.14 | 110.92 |
QS-9-F | 2.16 | 4.39 | 75.64 | 2.28 | 17.71 | 108.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.; Jia, R.; Han, Q.; Shang, N.; Teng, K.; Feng, J. Comparison of the Application of High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) and Collision/Reaction Cell Technology of Inductively Coupled Plasma Mass Spectrometry (ICP-CCT-MS) in the Determination of Selenium in Coal-Bearing Strata. Minerals 2024, 14, 510. https://doi.org/10.3390/min14050510
Zhao S, Jia R, Han Q, Shang N, Teng K, Feng J. Comparison of the Application of High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) and Collision/Reaction Cell Technology of Inductively Coupled Plasma Mass Spectrometry (ICP-CCT-MS) in the Determination of Selenium in Coal-Bearing Strata. Minerals. 2024; 14(5):510. https://doi.org/10.3390/min14050510
Chicago/Turabian StyleZhao, Shumao, Rongkun Jia, Qiuchan Han, Niande Shang, Kaiyan Teng, and Jiawei Feng. 2024. "Comparison of the Application of High-Resolution Inductively Coupled Plasma Mass Spectrometry (HR-ICP-MS) and Collision/Reaction Cell Technology of Inductively Coupled Plasma Mass Spectrometry (ICP-CCT-MS) in the Determination of Selenium in Coal-Bearing Strata" Minerals 14, no. 5: 510. https://doi.org/10.3390/min14050510