Sustainability of Rare Earths—An Overview of the State of Knowledge
Abstract
:1. Introduction
2. Results
2.1. Techno-Scientific
2.2. Environmental
2.3. Social
2.4. Economic
3. Discussion
- In-depth understanding of the long term health and environmental impacts associated with the mining and processing of rare earths;
- Identification of the key barriers and enabler for adopting an industrial ecology or closed cycle approach to use and re-use of rare earths;
- Economic analysis to comprehend the supply and demand for rare earths due to major price fluctuations and appearance of competitive alterative materials;
- Effect of regulatory and policy frameworks on more sustainable production, use and re-use of rare earths.
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Graedel, T.E. On the future availability of the energy metals. Annu. Rev. Mater. Res. 2011, 41, 323–335. [Google Scholar] [CrossRef]
- National Research Council, Minerals, Critical Minerals, and the U.S. Economy; National Academies Press: Washington, DC, USA, 2008.
- Bauer, D.; Diamond, D.; Li, J.; Sandalow, D.; Telleen, P.; Wanner, B. U.S. Department of Energy Critical Materials Strategy; U.S. Department of Energy: Washington, DC, USA, 2010. [Google Scholar]
- American Physical Society; The Materials Research Society. Energy Critical Elements: Securing Materials for Emerging Technologies: A Report by the APS Panel on Public Affairs & the Materials Research Society; American Physical Society: Washington, DC, USA, 2011. [Google Scholar]
- Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J. The potential risks from metals bottlenecks to the deployment of Strategic Energy Technologies. Energy Policy 2013, 55, 556–564. [Google Scholar] [CrossRef]
- European Commission, Critical Raw Materials for the EU. In Report of the Ad-Hoc Working Group on Defining Critical Raw Materials; European Commission: Brussels, Belgium, 2010.
- Japan Oil, Gas and Metals National Corporation Web Page. Rare Metals Stockpiling. Available online: http://www.jogmec.go.jp/english/stockpiling/stockpiling_015.html (accessed on 15 August 2013).
- Cao, Z.G.; Li, Z.X.; Li, C.P.; Zhao, Y.Q.; Liu, Y. Current Issues and Policies on Energy Critical Element Sectors in China—A Global Perspective. In Proceedings of 2011 International Conference on Electrical and Control Engineering (ICECE); IEEE: New York, NY, USA, 2011. [Google Scholar]
- Hurd, A.J.; Kelley, R.L.; Eggert, R.G.; Lee, M.-H. Energy-critical elements for sustainable development. MRS Bull. 2012, 37, 405–410. [Google Scholar] [CrossRef]
- Corder, G.D.; McLellan, B.C.; Bangerter, P.J.; van Beers, D.; Green, S.R. Engineering-in sustainability through the application of SUSOP®. Chem. Eng. Res. Des. 2012, 90, 98–109. [Google Scholar] [CrossRef]
- McLellan, B.; Zhang, Q.; Farzaneh, H.; Utama, N.A.; Ishihara, K.N. Resilience, sustainability and risk management: A focus on energy. Challenges 2012, 3, 153–182. [Google Scholar] [CrossRef]
- Borzone, G.; Raggio, R.; Ferro, R. Thermochemistry and reactivity of rare earth metals. Phys. Chem. Chem. Phys. 1999, 1, 1487–1500. [Google Scholar] [CrossRef]
- Gupta, C.K.; Krishnamurthy, N. Extractive Metallurgy of Rare Earths; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Liao, C.S.; Wu, S.; Cheng, F.X.; Wang, S.L.; Liu, Y.; Zhang, B.; Yan, C.H. Clean separation technologies of rare earth resources in China. J. Rare Earths 2013, 31, 331–336. [Google Scholar] [CrossRef]
- Jordens, A.; Cheng, Y.P.; Waters, K.E. A review of the beneficiation of rare earth element bearing minerals. Miner. Eng. 2013, 41, 97–114. [Google Scholar] [CrossRef]
- Hirai, T.; Komasawa, I. Separation of rare metals by solvent extraction employing reductive stripping technique. Miner. Process. Extr. Met. Rev. 1997, 17, 81–107. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Li, J.N.; Huang, X.W.; Wang, C.M.; Zhu, Z.W.; Zhang, G.C. Synergistic extraction of rare earths by mixture of HDEHP and HEH/EHP in sulfuric acid medium. J. Rare Earths 2008, 26, 688–692. [Google Scholar] [CrossRef]
- Thakur, N.V. Separation of rare earths by solvent extraction. Miner. Process. Extr. Met. Rev. 2000, 21, 277–306. [Google Scholar] [CrossRef]
- Zhu, L.Y.; Duan, W.H.; Xu, J.M.; Zhu, Y.J. Extraction of actinides and lanthanides by supercritical fluid. J. Eng. Gas Turbines Power 2011, 133, 052903:1–052903:8. [Google Scholar] [CrossRef]
- Duan, W.H.; Cao, P.J.; Zhu, Y.J. Extraction of rare earth elements from their oxides using organophosphorus reagent complexes with HNO3 and H2O in supercritical CO2. J. Rare Earths 2010, 28, 221–226. [Google Scholar] [CrossRef]
- Takahashi, Y.; Châtellier, X.; Hattori, K.H.; Kato, K.; Fortin, D. Adsorption of rare earth elements onto bacterial cell walls and its implication for REE sorption onto natural microbial mats. Chem. Geol. 2005, 219, 53–67. [Google Scholar]
- Binnemans, K.; Jones, P.T.; Blanpain, B.; Gerven, T.V.; Yang, Y.X.; Walton, A.; Buchert, M. Recycling of rare earths: A critical review. J. Clean. Prod. 2013, 51, 1–22. [Google Scholar] [CrossRef]
- Schüler, D.; Buchert, M.; Liu, D.-I.R.; Dittrich, D.-G.S.; Merz, D.-I.C. Study on Rare Earths and Their Recycling. In Final Report for The Greens/EFA Group in the European Parliament; Öko-Institut e.V.: Freiburg, Germany, 2011. [Google Scholar]
- Tanaka, M.; Oki, T.; Koyama, K.; Narita, H.; Oishi, T. Recycling of Rare Earths from Scrap. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J.-C.G., Pecharsky, V.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Chapter 255; pp. 159–211. [Google Scholar]
- Xu, T.; Peng, H.Q. Formation cause, composition analysis and comprehensive utilization of rare earth solid wastes. J. Rare Earths 2009, 27, 1096–1102. [Google Scholar] [CrossRef]
- Gasser, M.S.; Aly, M.I. Separation and recovery of rare earth elements from spent nickel–metal-hydride batteries using synthetic adsorbent. Int. J. Miner. Process. 2013, 121, 31–38. [Google Scholar]
- Resende, L.V.; Morais, C.A. Study of the recovery of rare earth elements from computer monitor scraps—Leaching experiments. Miner. Eng. 2010, 23, 277–280. [Google Scholar] [CrossRef]
- Ishii, M.; Matsumiya, M.; Kawakami, S. Development of recycling process for rare earth magnets by electrodeposition using ionic liquids media. ECS Trans. 2013, 50, 549–560. [Google Scholar]
- Xu, T.; Zhang, X.D.; Lin, Z.; LÜ, B.Y.; Ma, C.M.; Gao, X.L. Recovery of rare earth and cobalt from Co-based magnetic scraps. J. Rare Earths 2010, 28, 485–488. [Google Scholar] [CrossRef]
- Vander Hoogerstraete, T.; Wellens, S.; Verachtert, K.; Binnemans, K. Removal of transition metals from rare earths by solvent extraction with an undiluted phosphonium ionic liquid: Separations relevant to rare-earth magnet recycling. Green Chem. 2013, 15, 919–927. [Google Scholar]
- Yang, F.; Kubota, F.; Baba, Y.; Kamiya, N.; Goto, M. Selective extraction and recovery of rare earth metals from phosphor powders in waste fluorescent lamps using an ionic liquid system. J. Hazard. Mater. 2013, 254–255, 79–88. [Google Scholar]
- Eliseeva, S.V.; Bunzli, J.-C.G. Rare earths: Jewels for functional materials of the future. New J. Chem. 2011, 35, 1165–1176. [Google Scholar] [CrossRef]
- Leonard, R.L.; Gray, S.K.; Albritton, S.D.; Brothers, L.N.; Cross, R.M.; Eastes, A.N.; Hah, H.Y.; James, H.S.; King, J.E.; Mishra, S.R.; et al. Rare earth doped downshifting glass ceramics for photovoltaic applications. J. Non Cryst. Solids 2013, 366, 1–5. [Google Scholar] [CrossRef]
- Atyaoui, M.; Dimassi, W.; Atyaoui, A.; Elyagoubi, J.; Ouertani, R.; Ezzaouia, H. Improvement in photovoltaic properties of silicon solar cells with a doped porous silicon layer with rare earth (Ce, La) as antireflection coatings. J. Lumin. 2013, 141, 1–5. [Google Scholar] [CrossRef]
- Hoenderdaal, S.; Espinoza, L.T.; Marscheider-Weidemann, F.; Graus, W. Can a dysprosium shortage threaten green energy technologies? Energy 2013, 49, 344–355. [Google Scholar] [CrossRef]
- Bradshaw, A.M.; Hamacher, T. Nonregenerative natural resources in a sustainable system of energy supply. ChemSusChem 2012, 5, 550–562. [Google Scholar] [CrossRef]
- Antolini, E.; Perez, J. The use of rare earth-based materials in low-temperature fuel cells. Int. J. Hydrog. Energy 2011, 36, 15752–15765. [Google Scholar] [CrossRef]
- Rahman, M.A. History of interior permanent magnet motors [History]. IEEE Ind. Appl. Mag. 2013, 19, 10–15. [Google Scholar] [CrossRef]
- Kiyota, K.; Sugimoto, H.; Chiba, A. Comparison of Energy Consumption of SRM and IPMSM in Automotive Driving Schedules. In Proceedings of the Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 853–860.
- United States Geological Survey (USGS), Mineral Commodity Summaries 2013; USGS: Washington, DC, USA, 2013.
- Khadijeh, R.E.S.; Elias, S.B.; Wood, A.K.; Reza, A.M. Rare earth elements distribution in marine sediments of Malaysia coasts. J. Rare Earths 2009, 27, 1066–1071. [Google Scholar] [CrossRef]
- Kato, Y.; Fujinaga, K.; Nakamura, K.; Takaya, Y.; Kitamura, K.; Ohta, J.; Toda, R.; Nakashima, T.; Iwamori, H. Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nat. Geosci. 2011, 4, 535–539. [Google Scholar] [CrossRef]
- Xue, P.Z.; Lin, J.F. Discussion on the Rare Earth Resources and Its Development Potential of Inner Mongolia of China. In Proceedings of 2011 International Conference on Materials for Renewable Energy & Environment (ICMREE), Shanghai, China, 20–22 May 2011.
- Arafura Resources Limited, Nolans Project Update; Arafura Resources Limited: Perth, Australia, 2012.
- Hurst, C. Chinaʼs Rare Earth Elements Industry: What Can the West Learn? DTIC Document; Institute for the Analysis of Global Security: Washington, DC, USA, 2010. [Google Scholar]
- Yang, X.J.; Lin, A.J.; Li, X.-L.; Wu, Y.D.; Zhou, W.B.; Chen, Z.H. China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev. 2013. [Google Scholar] [CrossRef]
- Tharumarajah, R.; Koltun, P. Cradle to Gate Assessment of Environmental Impact of Rare Earth Metals. In Proceedings of the 7th Australian Conference on Life Cycle Assessment, Melbourne, Australia, 9–10 March 2011; Australian Life Cycle Assessment Society: Melbourne, Australia, 2011. [Google Scholar]
- Morf, L.S.; Gloor, R.; Haag, O.; Haupt, M.; Skutan, S.; Lorenzo, F.D.; Böni, D. Precious metals and rare earth elements in municipal solid waste—Sources and fate in a Swiss incineration plant. Waste Manag. 2013, 33, 634–644. [Google Scholar]
- Mayfield, D.B.; Lewis, A.S. Environmental Review of Coal Ash as a Resource for Rare Earth and Strategic Elements. In Proceedings of the 2013 World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 22–25 April 2013; The University of Kentucky: Lexington, KY, USA, 2013. [Google Scholar]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Kamei, T. Recent research of thorium molten-salt reactor from a sustainability viewpoint. Sustainability 2012, 4, 2399–2418. [Google Scholar] [CrossRef]
- Forum for the Future Web Page. The Five Capitals. Available online: http://www.forumforthefuture.org/project/five-capitals/overview (accessed on 12 September 2011).
- Ichihara, M.; Harding, A. Human rights, the environment and radioactive waste: A study of the Asian rare earth case in Malaysia. Rev. Eur. Community Int. Environ. Law 1995, 4, 1–14. [Google Scholar] [CrossRef]
- Akademi Sains Malaysia; Majlis Profesor Negara. Rare Earth Industries: Moving Malaysia’s Green Economy Forward; Akademi Sains Malaysia, Academy of Sciences, Malaysia: Kuala Lumpur, Malaysia, 2011. [Google Scholar]
- Malaysian Academy of Science, Revitalizing the Rare Earths Mineral Programme in Peninsular Malaysia as a Strategic Industry; Akademi Sains Malaysia: Kuala Lumpur, Malaysia, 2013.
- Gschneidner, K.A., Jr. The rare earth crisis—The supply/demand situation for 2010–2015. Mater. Matters 2012, 6. Article 2. [Google Scholar]
- Gu, B. Mineral export restraints and sustainable development—Are rare earths testing the WTO’s loopholes? J. Int. Econ. Law 2011, 14, 765–805. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.F.; Sun, Y.Z.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Cui, Y.C.; Liu, J.H.; Ren, X.W.; Shi, X.F. Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M seamount. J. Rare Earths 2009, 27, 169–176. [Google Scholar] [CrossRef]
- Government of Japan, Basic Plan on Ocean Policy; Headquarters for Ocean Policy, Government of Japan: Tokyo, Japan, 2013.
- Joshi, P.B.; Preda, D. A Low-Cost Rare Earth Elements Recovery Technology. In Proceedings of the 2013 World of Coal Ash (WOCA) Conference, Lexington, KY, USA, 22–25 April 2013.
- Frosch, R.A.; Gallopoulos, N.E. Strategies for manufacturing. Sci. Am. 1989, 261, 144–152. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
McLellan, B.C.; Corder, G.D.; Ali, S.H. Sustainability of Rare Earths—An Overview of the State of Knowledge. Minerals 2013, 3, 304-317. https://doi.org/10.3390/min3030304
McLellan BC, Corder GD, Ali SH. Sustainability of Rare Earths—An Overview of the State of Knowledge. Minerals. 2013; 3(3):304-317. https://doi.org/10.3390/min3030304
Chicago/Turabian StyleMcLellan, Benjamin C., Glen D. Corder, and Saleem H. Ali. 2013. "Sustainability of Rare Earths—An Overview of the State of Knowledge" Minerals 3, no. 3: 304-317. https://doi.org/10.3390/min3030304
APA StyleMcLellan, B. C., Corder, G. D., & Ali, S. H. (2013). Sustainability of Rare Earths—An Overview of the State of Knowledge. Minerals, 3(3), 304-317. https://doi.org/10.3390/min3030304