Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment
Abstract
:1. Introduction
2. Site Description
3. Methods
4. Results and Discussion
4.1. Waste Rock Characteristics
4.2. Leachate Characteristics
Constituent | Units | Type I 1 | Type II 1 | Type III 1 |
---|---|---|---|---|
D50 | μm | 2400 | 2800 | 2750 |
D10 | µm | 150 | 150 | 130 |
Mean surface area 2 | m2·g−1 | 1.21 | 0.73 | 1.62 |
Slake durability 3 | % | 35.3 | 34.2 | 33.5 |
S | wt % | 0.02 | 0.02 | 0.18 |
Sulfide | wt % | 0.03 | 0.03 | 0.16 |
SO4 | wt % | <0.4 | 0.01 | 0.02 |
C | wt % | 0.05 | 0.03 | 0.03 |
Carbonate | wt % | 0.06 | 0.03 | 0.04 |
SiO2 | wt % | 67.6 | 67.8 | 66.5 |
Al2O3 | wt % | 15.8 | 15.6 | 16.3 |
Fe2O3 | wt % | 3.9 | 4.0 | 4.2 |
MgO | wt % | 1.3 | 1.6 | 1.6 |
CaO | wt % | 0.7 | 0.8 | 0.9 |
K2O | wt % | 5.5 | 5.2 | 4.7 |
MnO | wt % | 0.06 | 0.04 | 0.04 |
Paste pH | 8.36 | 8.26 | 7.8 | |
NP | kg CaCO3 t−1 | 9.32 | 9.17 | 9.34 |
AP | kg CaCO3 t−1 | 0.41 | 0.65 | 4.91 |
Net NP | kg CaCO3 t−1 | 8.9 | 8.53 | 4.42 |
NP/AP | ratio | 22.7 | 14.1 | 2.1 |
NAG | kg H2SO4 t−1 | 0.08 | 0.49 | 4.50 |
4.3. Sulfide Oxidation and Acid Neutralization by Carbonate Minerals
4.4. Sulfide Reaction Activation Energy
4.5. Sulfide Oxidation and Acid Consumption by Al-Bearing Minerals
4.6. Sulfide Availability, Acid Neutralization Sequences, and the Temperature Effect
5. Summary and Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Nordstrom, D.K.; Southam, G. Geomicrobiology of sulfide mineral oxidation. Rev. Mineral. Geochem. 1997, 35, 361–390. [Google Scholar]
- Nordstrom, D.K.; Alpers, C.N. Geochemistry of Acid Mine Waters. In the Environmental Geochemistry of Mineral Deposits; Plumlee, G.S., Logsdon, M.J., Eds.; Society of Economic Geologists: Littleton, CO, USA, 1999; pp. 133–160. [Google Scholar]
- Blowes, D.W.; Ptacek, C.J.; Jambor, J.L.; Weisener, C.G. The Geochemistry of Acid Mine Drainage. In Environmental Geochemistry; Lollar, B.S., Ed.; Elsevier-Pergamon: Oxford, UK, 2003; pp. 149–204. [Google Scholar]
- Blowes, D.W.; Jambor, J.L.; Appleyard, E.C.; Reardon, E.J.; Cherry, J.A. Temporal observations of the geochemistry and mineralogy of a sulfide-rich mine-tailings impoundment, Heath Steele Mines, New Brunswick. Explor. Min. Geol. 1992, 1, 251–264. [Google Scholar]
- Pyatt, F.B.; Grattan, J.P. Some consequences of ancient mining activities on the health of ancient and modern human populations. J. Public Health 2001, 23, 235–236. [Google Scholar] [CrossRef]
- Moncur, M.C.; Ptacek, C.J.; Blowes, D.W.; Jambor, J.L. Release, transport and attenuation of metals from an old tailings impoundment. Appl. Geochem. 2005, 20, 639–659. [Google Scholar] [CrossRef]
- Sapsford, D.J. Humidity cell tests for the prediction of acid rock drainage. Miner. Eng. 2009, 22, 25–36. [Google Scholar] [CrossRef]
- Bowell, R.J.; Williams, K.P.; Connelly, R.J.; Sadler, P.J.K.; Dodds, J.E. Chemical Containment of Mine Waste. In Chemical Containment of Waste in the Geosphere; Geological Society Special Publication; Metcalfe, R, Rochelle, C.A., Eds.; Geological Society of London: London, UK, 1999; Volume 157, pp. 213–240. [Google Scholar]
- Malmström, M.E.; Destouni, G.; Banwart, S.A.; Strömberg, B.H.E. Resolving the scale-dependence of mineral weathering rates. Environ. Sci. Technol. 2000, 34, 1375–1378. [Google Scholar] [CrossRef]
- Lefebvre, R.; Hockley, D.; Smolensky, J.; Gélinas, P. Multiphase transfer processes in waste rock piles producing acid mine drainage 1: Conceptual model and system characterization. J. Contam. Hydrol. 2001, 52, 137–164. [Google Scholar] [CrossRef]
- Bowell, R.J. The Hydrogeochemical Dynamics of Mine Pit Lakes. In Mine Water Hydrogeology and Geochemistry; Geological Society Special Publication; Younger, P.L., Ed.; Geological Society of London: London, UK, 2002; Volume 198, pp. 159–185. [Google Scholar]
- Strömberg, B.; Banwart, S.A. Experimental study of acidity-consuming processes in mining waste rock: Some influences of mineralogy and particle size. Appl. Geochem. 1999, 14, 1–16. [Google Scholar] [CrossRef]
- Stockwell, J.; Smith, L.; Jambor, J.L.; Beckie, R. The relationship between fluid flow and mineral weathering in heterogeneous unsaturated porous media: A physical and geochemical characterization of a waste-rock pile. Appl. Geochem. 2006, 21, 1347–1361. [Google Scholar] [CrossRef]
- Morgan, B.; Lahav, O. The effect of pH on the kinetics of spontaneous Fe(II) oxidation by O2 in aqueous solution—Basic principles and a simple heuristic description. Chemosphere 2007, 68, 2080–2084. [Google Scholar]
- Jurjovec, J.; Ptacek, C.J.; Blowes, D.W. Acid neutralization mechanisms and metal release in mine tailings: A laboratory column experiment. Geochim. Cosmochim. Acta 2002, 66, 1511–1523. [Google Scholar] [CrossRef]
- Gunsinger, M.R.; Ptacek, C.J.; Blowes, D.W.; Jambor, J.L.; Moncur, M.C. Mechanisms controlling acid neutralization and metal mobility within a Ni-rich tailings impoundment. Appl. Geochem. 2006, 21, 1301–1321. [Google Scholar] [CrossRef]
- Arvidson, R.S.; Ertan, I.E.; Amonette, J.E.; Luttge, A. Variation in calcite dissolution rates: A fundamental problem? Geochim. Cosmochim. Acta 2003, 67, 1623–1634. [Google Scholar] [CrossRef]
- Janzen, M.P.; Nicholson, R.V.; Scharer, J.M. Pyrrhotite reaction kinetics: Reaction rates for oxidation by oxygen, ferric iron, and for nonoxidative dissolution. Geochim. Cosmochim. Acta 2000, 64, 1511–1522. [Google Scholar] [CrossRef]
- Environment Canada. Climate: Historical Climate Data. Available online: http://climate.weather.gc.ca/index_e.html (accessed on 23 June 2013).
- Blowes, D.W.; Logsdon, M.J. Diavik Geochemistry Baseline Report; Canadian Environmental Assessment Agency: Ottawa, ON, Canada, 1998. [Google Scholar]
- Jambor, J.L. Mineralogy of the Diavik Lac de Gras Kimberlites and Host Rocks; Canadian Environmental Assessment Agency: Ottawa, ON, Canada, 1997. [Google Scholar]
- American Society for Testing and Materials. Standard Practice for Sampling Aggregates; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- American Society for Testing and Materials. Standard Practice for Reducing Samples of Aggregate to Testing Size; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2003. [Google Scholar]
- American Society for Testing and Materials. Standard Practice for Probability Sampling of Materials; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 1996. [Google Scholar]
- American Society for Testing and Materials. Standard Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Smith, R.M.; Grube, W.E.; Arkle, T.; Sobek, A. Mine Spoil Potentials for Soil and Water Quality; U.S. Environmental Protection Agency: Washington, DC, USA, 1974. [Google Scholar]
- Sobek, A.A.; Schuller, W.A.; Freeman, J.R.; Smith, R.M. Field and Laboratory Methods Applicable to Overburdens and Mine Soils; U.S. Environmental Protection Agency: Washington, DC, USA, 1978. [Google Scholar]
- Lawrence, R.W.; Wang, Y. Determination of Neutralization Potential in the Prediction of Acid Rock Drainage. In Proceedings of the 4th International Conference on Acid Rock Drainage, Vancouver, BC, Canada, 30 May–6 June 1997.
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Test Method for Slake Durability of Shales and Similar Weak Rocks; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 2004. [Google Scholar]
- Cochran, W.G. Estimation of bacterial densities by means of the “most probable number”. Biometrics 1950, 6, 105–116. [Google Scholar]
- Benner, S.G.; Gould, W.D.; Blowes, D.W. Microbial populations associated with the generation and treatment of acid mine drainage. Chem. Geol. 2000, 169, 435–448. [Google Scholar] [CrossRef]
- Scharer, J.M.; Bolduc, L.; Phillips, H.A.; Pettit, C.M.; Kwong, E.C.M. Review of Measurement Techniques to Support the Application of Biotechnology for the Abatement of Acid Mine Drainage; Mining and the Environment II; Laurentian University, Centre in Mining and Mineral Exploration Research: Sudbury, ON, USA, 1999; pp. 1163–1172. [Google Scholar]
- American Society for Testing and Materials. Test Method for Laboratory Weathering of Solid Materials Using a Humidity Cell; American Society for Testing and Materials (ASTM) International: West Conshohocken, PA, USA, 1996. [Google Scholar]
- Jambor, J.L.; Dutrizac, J.E.; Chen, T.T. Contribution of Specific Minerals to the Neutralization Potential in Static Tests. In Proceedings of Fifth International Conference on Acid Rock Drainage; Society for Minining, Metallurgy, and Exploration: Littleton, CO, USA, 2000; pp. 551–565. [Google Scholar]
- Jambor, J.L.; Dutrizac, J.E.; Groat, L.A.; Raudsepp, M. Static tests of neutralization potentials of silicate and aluminosilicate minerals. Environ. Geol. 2002, 43, 1–17. [Google Scholar] [CrossRef]
- Jambor, J.L.; Dutrizac, J.E.; Raudsepp, M. Measured and computed neutralization potentials from static tests of diverse rock types. Environ. Geol. 2007, 52, 1019–1031. [Google Scholar] [CrossRef]
- Price, W.A. Prediction Manual for Drainage Chemistry from Sulphidic Geological Materials; CANMET-Mining and Mineral Sciences Laboratories: Smithers, BC, Canada, 2009. [Google Scholar]
- Furrer, G.; Stumm, W. The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al2O3 and BeO. Geochim. Cosmochim. Acta 1986, 50, 1847–1860. [Google Scholar] [CrossRef]
- Schott, J.; Berner, R.A.; Sjöberg, E.L. Mechanism of pyroxene and amphibole weathering—I. Experimental studies of iron-free minerals. Geochim. Cosmochim. Acta 1981, 45, 2123–2135. [Google Scholar] [CrossRef]
- Wehrli, B. Monte Carlo simulations of surface morphologies during mineral dissolution. J. Colloid Interface Sci. 1989, 132, 230–242. [Google Scholar] [CrossRef]
- Lapakko, K.A.; White, W.W. Modification of the ASTM 5744-96 Kinetic Test. In Proceedings of Fifth International Conference on Acid Rock Drainage; Society for Minining, Metallurgy, and Exploration: Littleton, CO, USA, 2000; pp. 631–639. [Google Scholar]
- Merkel, B.J.; Planer-Friedrich, B. Theoretical background. In Groundwater Geochemistry; Nordstrom, D.K., Ed.; Springer: Berlin, Germany, 2008; pp. 1–68. [Google Scholar]
- Nicholson, R.V.; Gillham, R.W.; Reardon, E.J. Pyrite oxidation in carbonate-buffered solution: 1. Experimental kinetics. Geochim. Cosmochim. Acta 1988, 52, 1077–1085. [Google Scholar] [CrossRef]
- Ahonen, L.; Tuovinen, O.H. Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures. Appl. Environ. Microbiol. 1992, 58, 600–606. [Google Scholar]
- Dawson, R.F.; Morin, K.A. Acid Mine Drainage in Permafrost Regions Issues, Control Strategies and Research Requirements; CANMET, Mine Environment Neutral Drainage, and Department of Indian and Northern Affairs: Ottawa, ON, Canada, 1996. [Google Scholar]
- Benzaazoua, M.; Bussière, B.; Dagenais, A.M.; Archambault, M. Kinetic tests comparison and interpretation for prediction of the Joutel tailings acid generation potential. Environ. Geol. 2004, 46, 1086–1101. [Google Scholar] [CrossRef]
- Nicholson, R.V.; Scharer, J.M. Laboratory Studies of Pyrrhotite Oxidation Kinetics. In Environmental Geochemistry of Sulfide Oxidation; ACS Symposium Series; Alpers, C.N., Blowers, D.W., Eds.; American Chemical Society: Washington, DC, USA, 1994; Volume 550, pp. 14–30. [Google Scholar]
- Blowes, D.W.; Al, T.; Lortie, L.; Gould, W.D.; Jambor, J.L. Microbiological, chemical, and mineralogical characterization of the Kidd Creek mine tailings impoundment, Timmins area, Ontario. Geomicrobiol. J. 1995, 13, 13–31. [Google Scholar] [CrossRef]
- Malmström, M.; Banwart, S. Biotite dissolution at 25 °C: The pH dependence of dissolution rate and stoichiometry. Geochim. Cosmochim. Acta 1997, 61, 2779–2799. [Google Scholar] [CrossRef]
- Banfield, J.F.; Eggleton, R.A. Transmission electron microscope study of biotite weathering. Clays Clay Miner. 1988, 36, 47–60. [Google Scholar]
- Kalinowski, B.E.; Schweda, P. Kinetics of muscovite, phlogopite, and biotite dissolution and alteration at pH 1–4, room temperature. Geochim. Cosmochim. Acta 1996, 60, 367–385. [Google Scholar] [CrossRef]
- Malmström, M.; Banwart, S.; Lewenhagen, J.; Duro, L.; Bruno, J. The dissolution of biotite and chlorite at 25 °C in the near-neutral pH region. J. Contam. Hydrol. 1996, 21, 201–213. [Google Scholar] [CrossRef]
- Barker, W.W.; Welch, S.A.; Chu, S.; Banfield, J.F. Experimental observations of the effects of bacteria on aluminosilicate weathering. Am. Mineral. 1998, 83, 1551–1563. [Google Scholar]
- Murakami, T.; Utsunomiya, S.; Yokoyama, T.; Kasama, T. Biotite dissolution processes and mechanisms in the laboratory and in nature: Early stage weathering environment and vermiculitization. Am. Mineral. 2003, 88, 377–386. [Google Scholar]
- Taylor, A.S.; Blum, J.D.; Lasaga, A.C.; MacInnis, I.N. Kinetics of dissolution and Sr release during biotite and phlogopite weathering. Geochim. Cosmochim. Acta 2000, 64, 1191–1208. [Google Scholar] [CrossRef]
- Mycroft, J.R.; Nesbitt, H.W.; Pratt, A.R. X-ray photoelectron and Auger electron spectroscopy of air-oxidized pyrrhotite: Distribution of oxidized species with depth. Geochim. Cosmochim. Acta 1995, 59, 721–733. [Google Scholar] [CrossRef]
- Mikhlin, Y.L.; Kuklinskiy, A.V.; Pavlenko, N.I.; Varnek, V.A.; Asanov, I.P.; Okotrub, A.V.; Selyutin, G.E.; Solovyev, L.A. Spectroscopic and XRD studies of the air degradation of acid-reacted pyrrhotites. Geochim. Cosmochim. Acta 2002, 66, 4057–4067. [Google Scholar] [CrossRef]
- Wunderly, M.D.; Blowes, D.W.; Frind, E.O.; Ptacek, C.J. Sulfide mineral oxidation and subsequent reactive transport of oxidation products in mine tailings impoundments: A numerical model. Water Resour. Res. 1996, 32, 3173–3187. [Google Scholar] [CrossRef]
- Brookfield, A.E.; Blowes, D.W.; Mayer, K.U. Integration of field measurements and reactive transport modelling to evaluate contaminant transport at a sulfide mine tailings impoundment. J. Contam. Hydrol. 2006, 88, 1–22. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Langman, J.B.; Moore, M.L.; Ptacek, C.J.; Smith, L.; Sego, D.; Blowes, D.W. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment. Minerals 2014, 4, 257-278. https://doi.org/10.3390/min4020257
Langman JB, Moore ML, Ptacek CJ, Smith L, Sego D, Blowes DW. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment. Minerals. 2014; 4(2):257-278. https://doi.org/10.3390/min4020257
Chicago/Turabian StyleLangman, Jeff B., Mandy L. Moore, Carol J. Ptacek, Leslie Smith, David Sego, and David W. Blowes. 2014. "Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment" Minerals 4, no. 2: 257-278. https://doi.org/10.3390/min4020257
APA StyleLangman, J. B., Moore, M. L., Ptacek, C. J., Smith, L., Sego, D., & Blowes, D. W. (2014). Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment. Minerals, 4(2), 257-278. https://doi.org/10.3390/min4020257