Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction
Abstract
:1. Introduction
2. Experimental
2.1. Experimental Methods
- ηN, sodium leaching ratio, %;
- cN, sodium concentration of lixivium, g/L;
- Vol, volume of lixivium, L;
- M, mass of raw material mixture adopted in each unit experiment, g;
- ωN, mass fraction of sodium carbonate in raw material mixture, %.
2.2. Ore Characteristics
3. Results and Discussion
3.1. Leaching Rules
3.2. Quantitative Analysis of Leaching Model
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cheng, G.; Gao, G.M.; Chen, S.L. Geological characteristics and mineralization regularity of bauxite in Boloven Plateau Laos. J. Cent. South Univ. Nat. Sci. Ed. 2008, 39, 380–386. [Google Scholar]
- Deng, J.; Wang, Q.F.; Yang, S.J.; Liu, X.F.; Zhang, Q.Z.; Yang, L.Q.; Yang, Y.H. Genetic relationship between the Emeishan plume and the bauxite deposits in Western Guangxi, China: Constraints from U-Pb and Lu-Hf isotopes of the detrital zircons in bauxite ores. J. Asian Earth Sci. 2010, 37, 412–424. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Zhou, L.J.; Li, Y.J.; Wu, C.Q.; Zheng, C.F. The “coal-bauxite-iron” structure in the ore-bearing rock series as a prospecting indicator for southeastern Guizhou bauxite mines. Ore Geol. Rev. 2013, 53, 145–158. [Google Scholar] [CrossRef]
- Zwingmann, N.; Jone, A.J.; Dye, S.; Swash, P.M.; Gilkes, R.J. A method to concentrate boehmite in bauxite by dissolution of gibbsite and iron oxides. Hydrometallurgy 2009, 97, 80–85. [Google Scholar] [CrossRef]
- Jiang, T.; Li, G.H.; Fan, X.H. Desilication from diasporic bauxite by roasting-alkali leaching process. Chin. J. Nonf. Met. 2000, 10, 534–538. [Google Scholar]
- Zhu, Z.P.; Jiang, T.; Li, G.H.; Huang, Z.C. Thermodynamics of reaction of alumina during sintering process of high-iron gibbsite-type bauxite. Chin. J. Nonferr. Metals 2009, 19, 2243–2250. [Google Scholar]
- Shi, G.S.; Fang, J.; Yang, G.Y.; Xin, H.Y.; Gao, Y.J. Feasibility Study of Guangxi High-Fe Bauxite Sintering. J. Hebei Polytecj. Univ. Nat. Sci. Ed. 2013, 33, 11–13. [Google Scholar]
- Kahn, H.; Tassinari, M.M.L.; Ratti, G. Characterization of bauxite fines aiming to minimize their iron content. Miner. Eng. 2003, 16, 1313–1315. [Google Scholar] [CrossRef]
- Papassiopi, N.; Vaxevanidou, K.; Paspaliaris, I. Effectiveness of iron reducing bacteria for the removal of iron from bauxite ores. Miner. Eng. 2010, 23, 25–31. [Google Scholar] [CrossRef]
- Natayauan, K.A. Some microbiological aspects of bauxite mineralization and beneficiation. Miner. Metall. Process. 1997, 14, 47–50. [Google Scholar]
- Yeh, C.H.; Zhang, G.Q. Stepwise carbothermal reduction of bauxite ores. Int. J. Miner. Process. 2013, 124, 1–7. [Google Scholar] [CrossRef]
- Hu, W.T.; Wang, H.J.; Liu, X.W.; Sun, C.Y. Effect of nonmetallic additives on iron grain grindability. Int. J. Miner. Process. 2014, 130, 108–113. [Google Scholar] [CrossRef]
- Hu, W.T.; Wang, H.J.; Liu, X.W.; Sun, C.Y. Correlation between aggregation structure and tailing mineral crystallinity. Int. J. Miner. Metall. Mater. 2014, 21, 845–850. [Google Scholar] [CrossRef]
- Hu, W.T.; Wang, H.J.; Liu, X.W.; Sun, C.Y.; Duan, X.Q. Restraining sodium volatilization in the ferric bauxite direct reduction system. Minerals 2016, 6, 31. [Google Scholar] [CrossRef]
- Cai, Z.L.; Feng, Y.L.; Li, H.R.; Du, Z.W.; Liu, X.W. Co-recovery of manganese from low-grade pyrolusite and vanadium from stone coal using fluidized roasting coupling technology. Hydrometallurgy 2013, 131–132, 40–45. [Google Scholar] [CrossRef]
- Hu, W.T.; Wang, H.J.; Sun, C.Y.; Tong, G.K.; Ji, C.L. Direct reduction-leaching process for high ferric bauxite. J. Univ. Sci. Tech. Beijing 2012, 34, 506–511. [Google Scholar]
Compositions | Fe2O3 | Al2O3 | SiO2 | TiO2 | MgO | CaO | Na2O | K2O | P2O5 | LOI |
---|---|---|---|---|---|---|---|---|---|---|
Content/% | 41.13 | 33.02 | 12.22 | 1.49 | 0.68 | 0.63 | 0.32 | 0.06 | 0.04 | 8.97 |
Compositions | Total Moisture (Mt) | Volatiles (Vad) | Ash (Aad) | Fixed Carbon (FCad) |
---|---|---|---|---|
Content/% | 9.16 | 39.42 | 5.07 | 46.35 |
Component | SiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | TiO2 | P2O5 |
---|---|---|---|---|---|---|---|---|---|
Content/% | 38.0 | 21.37 | 36.19 | 1.9 | 7.15 | 0.43 | 1.38 | 0.84 | 0.41 |
No. | Experimental Factors | ηN (%) | ||
---|---|---|---|---|
Heating Temperature (°C) | Heating Time (min) | Sodium Carbonate Dosage (%) | ||
1 | 1035 | 49.5 | 85 | 66.05 |
2 | 1035 | 40.5 | 85 | 67.04 |
3 | 1035 | 45 | 93.5 | 66.49 |
4 | 1035 | 45 | 76.5 | 67.56 |
5 | 1150 | 49.5 | 76.5 | 63.75 |
6 | 1150 | 49.5 | 93.5 | 60.68 |
7 | 1150 | 40.5 | 76.5 | 64.04 |
8 | 1150 | 40.5 | 93.5 | 59.70 |
9 | 1150 | 45 | 85 | 59.23 |
10 | 1150 | 45 | 85 | 59.31 |
11 | 1150 | 45 | 85 | 59.55 |
12 | 1150 | 45 | 85 | 59.12 |
13 | 1150 | 45 | 85 | 59.47 |
14 | 1265 | 45 | 76.5 | 50.81 |
15 | 1265 | 45 | 93.5 | 51.52 |
16 | 1265 | 40.5 | 85 | 46.63 |
17 | 1265 | 49.5 | 85 | 45.30 |
Source | Sum of Squares | Df | Mean Squares | F | P-Value Prob > F | Result |
---|---|---|---|---|---|---|
Model | 740.12 | 9 | 82.24 | 30.95 | <0.0001 | Significant |
A | 663.85 | 1 | 663.85 | 249.85 | <0.0001 | Significant |
B | 0.03 | 1 | 0.03 | 0.13 | 0.7736 | - |
C | 7.54 | 1 | 7.54 | 2.84 | 0.1359 | - |
AB | 0.028 | 1 | 0.028 | 0.01 | 0.9213 | - |
AC | 0.79 | 1 | 0.79 | 0.3 | 0.6033 | - |
BC | 0.41 | 1 | 0.41 | 0.15 | 0.7077 | - |
A2 | 38.27 | 1 | 38.27 | 14.4 | 0.0068 | - |
B2 | 0.017 | 1 | 0.017 | 6.4378 × 10−3 | 0.9383 | - |
C2 | 32.41 | 1 | 32.41 | 12.2 | 0.01 | - |
Residual | 18.6 | 7 | 2.66 | - | - | - |
Lack of Fit | 18.48 | 3 | 6.16 | 203.26 | <0.0001 | - |
Pure Error | 0.12 | 4 | 0.03 | - | - | - |
Cor Total | 758.72 | 16 | - | - | - | - |
Factor | Coefficient Estimate | Df | Standard Error | 95% Cl Low | 95% Cl High | VIF |
---|---|---|---|---|---|---|
Intercept | 59.33 | 1 | 0.73 | 57.61 | 61.06 | - |
A-Temperature | −9.11 | 1 | 0.58 | −10.47 | −7.75 | 1.00 |
B-Time | −0.2 | 1 | 0.58 | −1.57 | 1.16 | 1.00 |
C-sodium carbonate | −0.97 | 1 | 0.58 | −2.33 | 0.39 | 1.00 |
AB | −0.083 | 1 | 0.82 | −2.01 | 1.84 | 1.00 |
AC | 0.44 | 1 | 0.82 | −1.48 | 2.37 | 1.00 |
BC | 0.32 | 1 | 0.82 | −1.61 | 2.25 | 1.00 |
A2 | −0.31 | 1 | 0.79 | −4.89 | −1.14 | 1.01 |
B2 | −0.064 | 1 | 0.79 | −1.94 | 1.81 | 1.01 |
C2 | 0.27 | 1 | 0.79 | 0.9 | 4.65 | 1.01 |
© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Liu, X.; Wang, H.; Dai, X.; Pan, D.; Li, J.; Sun, C.; Xia, H.; Wang, B. Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction. Minerals 2017, 7, 10. https://doi.org/10.3390/min7010010
Hu W, Liu X, Wang H, Dai X, Pan D, Li J, Sun C, Xia H, Wang B. Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction. Minerals. 2017; 7(1):10. https://doi.org/10.3390/min7010010
Chicago/Turabian StyleHu, Wentao, Xinwei Liu, Huajun Wang, Xiaojie Dai, Dongling Pan, Jia Li, Chuanyao Sun, Hanwen Xia, and Bo Wang. 2017. "Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction" Minerals 7, no. 1: 10. https://doi.org/10.3390/min7010010
APA StyleHu, W., Liu, X., Wang, H., Dai, X., Pan, D., Li, J., Sun, C., Xia, H., & Wang, B. (2017). Improvement of Sodium Leaching Ratio of Ferric Bauxite Sinter after Direct Reduction. Minerals, 7(1), 10. https://doi.org/10.3390/min7010010