Carbon and Oxygen Isotopic Composition of Saline Lacustrine Dolomite Cements and Its Palaeoenvironmental Significance: A Case Study of Paleogene Shahejie Formation, Bohai Sea
Abstract
:1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
4.1. Petrophysical Characteristics
4.2. Geochemistry
4.2.1. Fluid Inclusion Microthermometry
4.2.2. Carbon and Oxygen Isotopes
4.2.3. Calcium and Magnesium Compositional Characteristics
5. Discussion
5.1. Oxygen Isotope Geothermometer
5.2. Paleoenvironmental Analysis
5.3. Genetic Analysis of Authigenic Dolomite
5.3.1. Source of Mg2+
Mg2+ in Pulveryte
Mg2+ in Intraclasts
Mg2+ from Seawater Invasion
5.3.2. Delivery Mechanism
5.3.3. Model for the Origin of Authigenic Dolomite
5.4. Geological Significance
6. Conclusions
Author Contributions
Conflicts of Interest
References
- Bath, A.; Milodowski, A.; Spiro, B. Diagenesis of carbonate cements in Permo-Triassic sandstones in the Wessex and East Yorkshire-Lincolnshire Basins, UK: A stable isotope study. Geol. Soc. Lond. Spec. Publ. 1987, 36, 173–190. [Google Scholar] [CrossRef]
- Munawar, M.J.; Lin, C.; Dong, C.; Zhang, X.; Zhao, H.; Azeem, T.; Zahid, M.A.; Ma, C. Architecture and reservoir quality of low-permeable Eocene lacustrine turbidite sandstone from the Dongying Depression, East China. Open Geosci. 2018, 10, 87–112. [Google Scholar] [CrossRef]
- Chowdhury, A.H.; Noble, J.P.A. Origin, distribution and significance of carbonate cements in the Albert Formation reservoir sandstones, New Brunswick, Canada. Mar. Pet. Geol. 1996, 13, 837–846. [Google Scholar] [CrossRef]
- Dutton, S.P.; Flanders, W.A. Evidence of reservoir compartmentalization by calcite cement layers in deepwater sandstones, Bell Canyon Formation, Delaware Basin, Texas. Geol. Soc. Lond. Spec. Publ. 2004, 237, 279–282. [Google Scholar] [CrossRef]
- Dutton, S.P. Calcite cement in Permian deep-water sandstones, Delaware Basin, west Texas: Origin, distribution, and effect on reservoir properties. AAPG Bull. 2008, 92, 765–787. [Google Scholar] [CrossRef]
- Taylor, T.R.; Giles, M.R.; Hathon, L.A.; Diggs, T.N.; Braunsdorf, N.R.; Birbiglia, G.V.; Kittridge, M.G.; Macaulay, C.I.; Espejo, I.S. Sandstone diagenesis and reservoir quality prediction: Models, myths, and reality. AAPG Bull. 2010, 94, 1093–1132. [Google Scholar] [CrossRef]
- Shen, J.; Chen, B.; Chen, F.; Cheng, C.; Li, Y.; Tian, Y. Paleogene lacustrine dolomitization, Xingou region, southern Qianjiang Depression, China. Geosci. J. 2016, 20, 183–197. [Google Scholar] [CrossRef]
- Wang, J.; Cao, Y.; Liu, K.; Liu, J.; Xue, X.; Xu, Q. Pore fluid evolution, distribution and water-rock interactions of carbonate cements in red-bed sandstone reservoirs in the Dongying Depression, China. Mar. Pet. Geol. 2016, 72, 279–294. [Google Scholar] [CrossRef]
- Xiong, D.; Azmy, K.; Blamey, N.J.F. Diagenesis and origin of calcite cement in the Flemish Pass Basin sandstone reservoir (Upper Jurassic): Implications for porosity development. Mar. Pet. Geol. 2016, 70, 93–118. [Google Scholar] [CrossRef]
- Bustillo, M.A.; Armenteros, I.; Huerta, P. Dolomitization, gypsum calcitization and silicification in carbonate-evaporite shallow lacustrine deposits. Sedimentology 2017, 64, 1147–1172. [Google Scholar] [CrossRef]
- Cui, Y.; Jones, S.J.; Saville, C.; Stricker, S.; Wang, G.; Tang, L. The role played by carbonate cementation in controlling reservoir quality of the Triassic Skagerrak Formation, Norway. Mar. Pet. Geol. 2017, 85, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Wang, G.; Jones, S.J.; Zhou, Z.; Ran, Y.; Lai, J.; Li, R. Prediction of diagenetic facies using well logs—A case study from the Upper Triassic Yanchang Formation, Ordos Basin, China. Mar. Pet. Geol. 2017, 81, 50–65. [Google Scholar] [CrossRef]
- Yang, Y.; Qiu, L.; Gregg, J.M.; Puckette, J.; Liu, K. Characterization of lacustrine carbonate reservoirs in the eocene Sikou Sag, Bohai Bay Basin, East China. Carbonates Evaporites 2017, 32, 75–93. [Google Scholar] [CrossRef]
- Tutolo, B.M.; Tosca, N.J. Experimental examination of the mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation. Geochim. Cosmochim. Acta 2018, 225, 80–101. [Google Scholar] [CrossRef]
- Zhang, G. An evaluation of exploration potential in Bodong area from the major discovery of shallow oil and gas in Shijiutuo Uplift. China Offshore Oil Gas 2000, 14, 84–92, (In Chinese with English abstract). [Google Scholar]
- Wang, Y.; Xue, Y.; Wang, G.; Li, G. Shallow layer hydrocarbon accumulation characteristics and their exploration significances in Shijiutuo Uplift, Bohai Sea. China Offshore Oil Gas 2015, 27, 8–16, (In Chinese with English Abstract). [Google Scholar]
- Pan, W.; Wang, Q.; Liu, S.; Feng, C.; Tian, D. Origin of lacustrine bioclastic dolostone in the Paleogene Shahejie Formation: A case study in Shijiutuo area, Bohai Sea. J. Palaeogeogr. 2017, 19, 835–848. [Google Scholar]
- Shi, W.; Li, H.; Mao, L.; Yang, H.; Chen, L.; Yu, H. Hydrocarbon Geological Characteristics and Exploration Potential of Qinnan Depression in Offshore Area of Bohai Sea. China Pet. Explor. 2014, 19, 32–40. [Google Scholar]
- Lv, Z.X.; Song, X.Z.; Qing, Y.; Qi, Y.; Jin, X. Characteristics of deep and high-quality Paleogene lacustrine carbonate reservoir in central Bohai Sea. Nat. Gas Ind. 2015, 36, 10–17, (In Chinese with English Abstract). [Google Scholar]
- Melim, L.A.; Swart, P.K.; Eberli, G.P. Mixing-zone Diagenesis in the subsurface of Florida and the Bahamas. J. Sediment. Res. 2004, 74, 904–913. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, X.; Guo, T.; Huang, R.; Cai, X.; Li, G. The puguang gas field: New giant discovery in the mature Sichuan Basin, southwest China. AAPG Bull. 2007, 91, 627–643. [Google Scholar] [CrossRef]
- Breesch, L.; Swennen, R.; Vincent, B.; Ellison, R.; Dewever, B. Dolomite cementation and recrystallisation of sedimentary breccias along the Musandam Platform margin (United Arab Emirates). J. Geochem. Explor. 2010, 106, 34–43. [Google Scholar] [CrossRef]
- Iannace, A.; Frijia, G.; Galluccio, L.; Parente, M. Facies and early dolomitization in Upper Albian shallow-water carbonates of the southern Apennines (Italy): Paleotectonic and paleoclimatic implications. Facies 2014, 60, 169–194. [Google Scholar] [CrossRef]
- Li, M.; Lin, X.; Tian, J.C.; Peng, S.F.; Xu, L.; Su, L. Study on variously dolomitized reservoir reef at platform margin of Changxing Formation in northeastern Sichuan Basin, southwestern China. Carbonates Evaporites 2018, 6, 1–14. [Google Scholar]
- Warren, J. Dolomite: Occurrence, evolution and economically important associations. Earth Sci. Rev. 2000, 52, 1–81. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Shen, A.J.; Zheng, J.F.; Qiao, Z.F.; Wang, X.F.; Lu, J.M. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction. Sci. China Earth Sci. 2014, 57, 2498–2511. [Google Scholar] [CrossRef]
- Mariusz, P.; Andrzej, P.; Karina, A.; Aleksandra, P.; Marcin, S. The significance of Chara vegetation in the precipitation of lacustrine calcium carbonate. Sedimentology 2013, 60, 1017–1035. [Google Scholar]
- Grotzinger, J.; Al-Rawahi, Z. Depositional facies and platform architecture of microbialite-dominated carbonate reservoirs, Ediacaran-Cambrian Ara Group, Sultante of Om. Am. Assoc. Pet. Geol. 2014, 98, 1453–1494. [Google Scholar] [CrossRef]
- Chagas, A.A.P.; Webb, G.E.; Burne, R.V.; Southam, G. Modern lacustrine microbialites: Towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth Sci. Rev. 2016, 162, 338–363. [Google Scholar] [CrossRef]
- Qing, H.R.; Mountjoy, E.W. Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presquile Barrier, western Canada Sedimentary Basin. Am. Assoc. AAPG Bull. 1994, 78, 55–77. [Google Scholar]
- Hollis, C.; Bastesen, E.; Boyce, A.; Corlett, H.; Gawthorpe, R.; Hirani, J.; Rotevatn, A.; Whitaker, F. Fault-controlled dolomitization in a rift basin. Geology 2017, 45, 219–222. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Worden, R.H.; Yang, C. Thermochemical sulphate reduction can improve carbonate petroleum reservoir quality. Geochim. Cosmochim. Acta 2018, 223, 127–140. [Google Scholar] [CrossRef]
- Al-Aasm, I.; Lonnee, J.; Clarke, J. Multiple fluid flow events and the formation of saddle dolomite: Examples from middle Devonian carbonates of the western Canada Sedimentary Basin. J. Geochem. Explor. 2000, 69–70, 11–15. [Google Scholar] [CrossRef]
- Feng, M.; Wu, P.; Qiang, Z. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation of central Sichuan Basin, southwestern China. Mar. Pet. Geol. 2017, 82, 206–219. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, X.; Li, J.; Lai, W. Reservoir characteristics and controlling factors of the paleogene Sha-2 member in 36-3 structure, eastern Shijiutuo Uplift, Bohai Sea. Oil Gas Geol. 2011, 32, 832–838, (In Chinese with English Abstract). [Google Scholar]
- Qing, Y.H.; Lv, Z.X.; Wang, X.D.; Song, X.Z.; Zhang, S.L.; Meng, H.L. Porosity evolution of high-quality reservoirs in deep palaeogene lacustrine carbonate rocks in the central bohai sea. Energy Explor. Exploit. 2018, in press. [Google Scholar] [CrossRef]
- Ni, J.; Sun, L.; Li, G.; He, J.; Zhao, W.; Liu, X. Depositional patterns of the 2nd member of the Shahejie Formation in Q oilfield of the Shijiutuo Uplift, Bohai Sea. Oil Gas Geol. 2013, 34, 491–498, (In Chinese with English Abstract). [Google Scholar]
- Peng, L. Heterogeneity and Controlling Factors of Lithofacies of the Lower 3rd Member of Paleogene Shahejie Formation Lacustrine Shale in Jiyang Depression. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2017. (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.; Hu, X.; Tao, N.; Zhang, X.; Gao, Y.; Hui, W.; Fan, T.; Bu, F. Controlling of Paleogeomorphology to Paleogene Sedimentary System of Shijiutuo Uplift in Bohai Basin. J. Jilin Univ. 2015, 45, 1590–1596. [Google Scholar]
- Li, J.P.; Zhou, X.H. On the distribution of the kongdian formation in the Bohai area with special reference to its bearings on oil exploration. J. Stratigr. 2010, 34, 89–96. [Google Scholar]
- Wang, Q.M.; Du, X.F.; Jia, D.H.; Wan, L.W. The 1st and 2nd members of the Shahejie Formation in No.428 uplifted area, Bohai Sea: Sedimentary systems and their controlling factors. Sedim. Geol. Tethyan Geol. 2015, 35, 12–16. [Google Scholar]
- Zhang, Y.; Wang, H.; Hu, X.; Zhang, X.; Bu, F.; Gao, Y. Reservoir modeling of complex lithologies with sparse wells: A case from a oilfield in Shijiutuo uplift, Bohai Bay Basin. Oil Gas Geol. 2016, 37, 450–456, (In Chinese with English Abstract). [Google Scholar]
- Yu, H.Z.; Wang, Y.; Jiang, T.; Chuai, Y.; Yang, H. Discovery of Bioclastic Dolostone in the Second Member of Shahejie Formation in Bozhong Depression and Its Significance in Oil Exploration. Sci. Technol. Rev. 2010, 28, 60–64. [Google Scholar]
- Lv, Z.X.; Zhang, S.L.; Yin, C.; Meng, H.L. Features and genesis of Paleogene high-quality reservoirs in lacustrine mixed siliciclastic-carbonate sediments, central Bohai Sea, China. Pet. Sci. 2017, 14, 50–60. [Google Scholar]
- Blamey, N.J.F.; Azmy, K.; Brand, U. Provenance and burial history of cement in sandstones of the Northbrook Formation (Carboniferous), western Newfoundland, Canada: A geochemical investigation. Sediment. Geol. 2014, 299, 30–41. [Google Scholar] [CrossRef]
- Lindholm, R.C.; Finkelman, R.B. Calcite staining, semiquantitative determination of ferrous iron. J. Sediment. Res. 1972, 42, 239–242. [Google Scholar] [CrossRef]
- Luo, P.; Su, L.P.; Luo, Z. Application of laser micro-sampling technique to analysis of C and O isotopes of oolitic dolomites in Feixianguan Formation. Northeast Sichuan Geochim. 2006, 35, 325–330. [Google Scholar]
- Kelts, K.; Talbot, M. Lacustrine Carbonates as Geochemical Archives of Environmental Change and Biotic/Abiotic Interactions; Springer: Berlin/Heidelberg, Germany, 1990; pp. 288–315. [Google Scholar]
- Pan, L.Y.; Huang, G.P.; Shou, J.F.; Liu, Z.G. A Preliminary Study of Formation Environment of the Neogene Lacustrine Carbonates in Nanyishan Area of Qaidam Basin: Constrains from Carbon-Oxygen Isotope and Fluid Inclusion Analysis. Bull. Mineral. Petrol. Ceochem. 2009, 28, 71–74. [Google Scholar]
- Urey, H.C.; Lowenstam, H.A.; Epstein, S.; Mckinney, C.R. Measurement of paleotemperatures and temperatures of the upper cretaceous of England, Denmark, and the southeastern United States. Geol. Soc. Am. Bull. 1951, 62, 399–416. [Google Scholar] [CrossRef]
- Qing, H. Petrography and geochemistry of early-stage, fine- and medium-crystalline dolomites in the Middle Devonian Presqu’ile Barrier at Pine Point, Canada. Sedimentology 1998, 45, 433–446. [Google Scholar] [CrossRef]
- Matthews, A.; Katz, A. Oxygen isotope fractionation during the dolomitization of calcium carbonate. Geochim. Cosmochim. Acta 1977, 41, 1431–1438. [Google Scholar] [CrossRef]
- Vasconcelos, C.; Mckenzie, J.A.; Warthmann, R.; Bernasconi, S.M. Calibration of the δ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments. Geology 2005, 33, 317–320. [Google Scholar] [CrossRef]
- Lovering, T.S. The origin of hydrothermal and low temperature dolomite. Econ. Geol. 1969, 64, 743–754. [Google Scholar] [CrossRef]
- Machel, H.G. Concepts and models of dolomitization: A critical reappraisal. Geol. Soc. Lond. Spec. Publ. 2004, 235, 7–63. [Google Scholar] [CrossRef]
- Talbot, M.R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chem. Geol. Isotope Geosci. 1990, 8, 261–279. [Google Scholar] [CrossRef]
- Yuan, J.Y.; Huang, C.G.; Cao, Z.L.; Li, Z.Y.; Wan, C. Carbon and oxygen isotopic composition of saline lacustrine dolomite and its palaeoenvironmental significance: A case study of Lower Eocene Ganchaigou Formation in western Qaidam Basin. Geochimica 2015, 44, 48–54. [Google Scholar]
- Wang, B.J.; Cai, M.J.; Lin, C.M.; Zhang, X. Characteristics and origin of lacustrine dolostone of the Paleogene Shahejie Formation in Tanggu area, Bohai Bay Basin. J. Palaeogeogr. 2014, 16, 65–76. [Google Scholar]
- Keith, M.L.; Weber, J.N. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim. Cosmochim. Acta 1964, 28, 1787–1816. [Google Scholar] [CrossRef]
- Wang, G.M.; Zhong, J.H.; Jiang, Z.X. Possible transgressive channel in paleogene deduced by lateral change of palaeosalinity in 1st Member of Shahejie Formation in Jiyang Depression. World Geol. 2005, 24, 243–247. [Google Scholar]
- Yuan, W.F.; Zeng, C.M.; Chen, S.Y. Characteristic of dinosterane and C31 Sterane in Paleocene Saline Formation of Jiyang Depression. Acta Sedimentol. Sin. 2008, 26, 683–687. [Google Scholar]
- Morrow, D.W. Diagenesis, 2. Dolomite—Part 2-dolomitization models and ancient dolostones. Research 1982, 9, 95–107. [Google Scholar]
- Zhao, H.W.; Brian, J. Genesis of fabric-destructive dolostones: A case study of the Brac Formation (Oligocene), Cayman Brac, British West Indies. Sediment. Geol. 2012, 267–268, 36–54. [Google Scholar] [CrossRef]
- Braitsch, O. Salt Deposits Their Origin and Composition; Springer: Berlin/Heidelberg, Germany, 1971. [Google Scholar]
- Carroll, D. Clay minerals: A guide to their X-ray identification. Spec. Pap. Geol. Soc. Am. 1970, 126, 1–80. [Google Scholar]
- Darby, D.A. Kaolinite and other clay minerals in Arctic Ocean sediments. J. Sediment. Petrol. 1975, 45, 272–279. [Google Scholar]
- Degens, E.T. Geochemistry of Sediments: A Brief Survey; Prentice-Hall: Upper Saddle River, NJ, USA, 1965. [Google Scholar]
- Xu, C. Preliminary research on clay minerals in salt lake sediments of china and its significance. Sci. China Chem. 1991, 34, 490–501. [Google Scholar]
- Xuan, Z. Review for the 50-years History of the Chinese Potassium Salts and the Prospects. J. Salt Lake Res. 2000, 8, 58–62. [Google Scholar]
- Jodry, R.L. Growth and Dolomitization of Silurian Reefs, St. Clair County, Michigan. AAPG Bull. 1969, 53, 957–981. [Google Scholar]
- Machel, H.G.; Anderson, J.H. Pervasive subsurface dolomitization of the Nisku Formation in central Alberta. J. Sediment. Petrol. 1989, 59, 891–911. [Google Scholar]
- Garven, G.; Freeze, R. Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. Am. J. Sci. 1984, 284, 1085–1174. [Google Scholar] [CrossRef]
- Folk, R.L. Mg/Ca ratio and salinity: Two controls over crystallization of dolomite. AAPG Bull. 1975, 59, 60–68. [Google Scholar]
- Huang, C.G.; Yuan, J.Y.; Wu, L.Y. Origin and research methods of lacustrine dolomite. Lithol. Reserv. 2016, 28, 7–15, (In Chinese with English Abstract). [Google Scholar]
- Bjørlykke, K. Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sediment. Geol. 2014, 301, 1–14. [Google Scholar] [CrossRef]
- Rossi, C.; Marfil, R.; Ramseyer, K. Facies-Related Diagenesis and Multiphase Siderite Cementation and Dissolution in the Reservoir Sandstones of the Khatatba Formation, Egypt’s Western Desert. J. Sediment. Res. 2001, 71, 459–472. [Google Scholar] [CrossRef]
- Kantorowicz, J.D.; Bryant, I.D.; Dawans, J.M. Controls on the geometry and distribution of carbonate cements in Jurassic sandstones: Bridport Sands, southern England and Viking Group, Troll Field, Norway. Geol. Soc. Lond. Speci. Publ. 1987, 36, 103–118. [Google Scholar] [CrossRef]
- Hu, Z.Q. Calcite cements in Upper Palaeozoic sand reservoir of Ordos Basin. Acta Pet. Sin. 2003, 24, 40–43, (In Chinese with English Abstract). [Google Scholar]
- Liu, C.Y.; Zheng, H.R.; Hu, Z.Q. Characteristics of carbonate cementation in clastic rocks from the Chang 6 sandbody of Yanchang Formation, southern Ordos Basin. Sci. China Earth Sci. 2012, 55, 58–66. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Y.; Liu, H. Reservoir characteristics and evaluation of the Permian Xiazijie Formation in Wuerhe area, Junggar Basin. Lithol. Reserv. 2015, 27, 53–60. [Google Scholar]
- Wei, W.; Zhu, X.M.; Guo, D.B. Carbonate cements in Lower Cretaceous Bayingebi sandstone reservoirs in Chagan Sag, Yin-e Basin: Formation phases and formation mechanisms. Geochimica 2015, 44, 590–599, (In Chinese with English Abstract). [Google Scholar]
- Flügel, E. Microfacies of Carbonate Rocks; Springer: Berlin/Heidelberg, Germany, 2004; pp. 267–334. [Google Scholar]
- Saller, A.H.; Henderson, N. Distribution of Porosity and Permeability in Platform Dolomites: Insight from the Permian of West Texas: Reply. AAPG Bull. 2001, 82, 1528–1550. [Google Scholar]
- Sun, S.Q. Dolomite reservoirs: Porosity evolution and reservoir characteristics. AAPG Bull. 1995, 79, 186–204. [Google Scholar]
- Jiang, L.; Cai, C.; Worden, R.H.; Crowley, S.F.; Jia, L.; Zhang, K.; Duncan, I.J. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs, Tarim Basin, north–west China. Sedimentology 2016, 63, 2130–2157. [Google Scholar] [CrossRef]
Well | Depth | Type | δ13CPDB | δ18OPDB | Paleo Temperature | Salinity Index | Salinity |
---|---|---|---|---|---|---|---|
(m) | (‰) | (‰) | (°C) | Z | S | ||
Q3 | 3376.5 | CD | 0.32 | −5.82 | 124.3 | 125.1 | 28.9 |
Q2 | 3762.6 | CD | 5.69 | −0.97 | 88.4 | 138.5 | 33.8 |
Q3 | 3382.1 | LD | 4.7 | −0.76 | 87 | 136.5 | 34.0 |
Q3 | 3375.06 | LD | 1.88 | −4.01 | 110.4 | 129.2 | 30.7 |
Q3 | 3375.65 | LD | −0.42 | −9.35 | 153.4 | 121.8 | 25.4 |
Q2 | 3762.6 | LD | 5.41 | −3.99 | 110.2 | 136.4 | 30.8 |
Q3 | 3378.92 | FD | 0.56 | −2.27 | 97.6 | 127.3 | 32.5 |
Q3 | 3377.34 | FD | 1.78 | −2.8 | 101.4 | 129.6 | 32.0 |
Q3 | 3380.25 | FD | 2.02 | −4.97 | 117.7 | 129.0 | 29.8 |
Q3 | 3341.25 | FD | 2.67 | −6.36 | 128.6 | 129.6 | 28.4 |
Q3 | 3376.65 | FD | 0.65 | −5.64 | 122.9 | 125.8 | 29.1 |
Q3 | 3375.06 | FD | 0.15 | −6.24 | 127.7 | 124.5 | 28.5 |
Q3 | 3341.78 | FD | 2.67 | −6.36 | 128.6 | 129.6 | 28.4 |
Q3 | 3382.1 | FD | −0.51 | −8.73 | 148.1 | 121.9 | 26.0 |
Q3 | 3384.9 | FD | 0.53 | −9.34 | 153.3 | 123.7 | 25.4 |
Q2 | 3762.6 | FD | 4 | −3.16 | 104.1 | 133.9 | 31.6 |
Well | Depth | SiO2 | Al2O3 | CaO | MgO | Fe2O3 | K2O | Na2O | Mg2+/Ca2+ |
---|---|---|---|---|---|---|---|---|---|
% | % | % | % | % | % | % | Molar | ||
Q5 | 3224.9 | 59.72 | 17.58 | 0.782 | 2.37 | 5.76 | 3.89 | 1.88 | 4.24 |
Q5 | 2915 | 61.32 | 15.4 | 0.738 | 2.07 | 6.48 | 3.25 | 1.85 | 3.93 |
Q5 | 2945 | 60.02 | 15.44 | 1.93 | 1.78 | 6.19 | 3.21 | 1.9 | 1.29 |
Q5 | 3005 | 57.26 | 16.51 | 0.867 | 2 | 6.99 | 3.33 | 1.91 | 3.23 |
Q5 | 3045 | 56.23 | 16.8 | 0.714 | 2.05 | 7.34 | 3.19 | 1.73 | 4.02 |
Q5 | 3095 | 57.2 | 16.68 | 0.723 | 2 | 6.68 | 4.03 | 1.36 | 3.87 |
Q5 | 3135 | 55.1 | 16.52 | 0.608 | 2.02 | 7.19 | 4.38 | 1.55 | 4.65 |
Q5 | 3175 | 52.93 | 15.56 | 1.51 | 2 | 7.73 | 4.68 | 1.67 | 1.85 |
Q5 | 3315 | 60.51 | 14.39 | 2.52 | 1.74 | 4.79 | 4.4 | 3.11 | 0.97 |
Q5 | 3345 | 54.42 | 13.17 | 4.38 | 2.82 | 5.08 | 4.39 | 2.48 | 0.90 |
Q5 | 3405 | 40.24 | 10.12 | 14.7 | 1.9 | 5 | 2.96 | 0.783 | 0.18 |
Q5 | 3440 | 51.66 | 11.04 | 5.38 | 1.72 | 5.43 | 3.58 | 1.23 | 0.45 |
Q4 | 3452.4 | 62.27 | 15.62 | 0.8 | 2.15 | 5.04 | 4.63 | 0.634 | 3.76 |
Q4 | 3452.5 | 60.75 | 15.22 | 1.14 | 2.05 | 6.29 | 4.65 | 0.58 | 2.52 |
Q4 | 3452.8 | 59.73 | 15.08 | 1.4 | 2.22 | 6.56 | 4.26 | 0.625 | 2.22 |
Q4 | 3453.3 | 61.83 | 15.24 | 2.51 | 2.01 | 4 | 3.4 | 0.571 | 1.12 |
Q4 | 3453.4 | 67.9 | 16.13 | 0.872 | 0.968 | 2.18 | 3.78 | 0.89 | 1.55 |
Q4 | 3453.7 | 73.53 | 11.22 | 2.04 | 1.01 | 1.92 | 3.73 | 0.541 | 0.69 |
Q4 | 3454.9 | 64.78 | 11.13 | 4.45 | 2.21 | 3.31 | 3.49 | 0.433 | 0.70 |
Q4 | 3455.7 | 65.66 | 12.57 | 3.2 | 1.73 | 3.99 | 3.5 | 0.492 | 0.76 |
Q1 | 3425 | 62.92 | 13.26 | 1.26 | 0.635 | 4.24 | 9.11 | 0.944 | 0.71 |
Q1 | 3145 | 54.23 | 16.92 | 0.853 | 2.18 | 7.07 | 4.12 | 1.43 | 3.58 |
Q1 | 3195 | 54.49 | 16.41 | 0.605 | 2.09 | 6.99 | 4.15 | 1.63 | 4.84 |
Q1 | 3250 | 50.12 | 14.62 | 6.08 | 2.02 | 6.56 | 3.38 | 1.24 | 0.47 |
Q1 | 3385 | 56.71 | 11.88 | 5.5 | 3.51 | 3.69 | 5.78 | 0.843 | 0.89 |
Q1 | 3590 | 43.03 | 13.2 | 2.24 | 4.68 | 12.13 | 3.69 | 1.58 | 2.93 |
Q1 | 3650 | 56.5 | 13.06 | 1.51 | 1.8 | 5.31 | 4.21 | 1.33 | 1.67 |
Q1 | 3680 | 57.97 | 13.5 | 2.46 | 2.19 | 6.36 | 4.18 | 1.22 | 1.25 |
Well | Depth | Photo | Point | Type | Na2O | SiO2 | MnO | MgO | SrO | FeO | K2O | CoO | CaO | BaO | Total | MgO/CaO |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | No. | No. | % | % | % | % | % | % | % | % | % | % | Molar | |||
Q2 | 3779.2 | a | a-2 | OD | 0.043 | 0.064 | 0.126 | 21.405 | 0.205 | 1.019 | 0 | 0 | 35.004 | 0.022 | 57.89 | 0.86 |
Q2 | 3779.2 | a | a-3 | OD | 0.121 | 0.24 | 0.134 | 20.681 | 0.048 | 0.905 | 0.045 | 0.03 | 35.005 | 0.005 | 57.21 | 0.83 |
Q2 | 3779.2 | a | a-4 | OD | 0.133 | 0.442 | 0.51 | 20.281 | 0.097 | 1.096 | 0.033 | 0.05 | 34.813 | - | 57.45 | 0.82 |
Q2 | 3779.2 | a | a-5 | OD | 0.142 | 0.111 | 0.165 | 21.504 | 0.135 | 0.823 | 0.017 | - | 31.853 | 0.071 | 54.82 | 0.95 |
Q2 | 3779.2 | a | a-6 | OD | 0.101 | 0.423 | 0.129 | 18.709 | 0.079 | 4.685 | 0.022 | 0.035 | 33.715 | 0.079 | 57.98 | 0.78 |
Q2 | 3762.6 | b | b-6 | CD | 0.128 | 0.236 | 1.039 | 21.128 | 0.123 | 0.839 | 0.044 | - | 34.494 | 0.079 | 58.11 | 0.86 |
Q2 | 3762.6 | b | b-7 | CD | 0.142 | 0.16 | 0.677 | 20.456 | 0.171 | 0.663 | 0.027 | 0.005 | 34.295 | 0.061 | 56.66 | 0.84 |
Q2 | 3779.2 | c | c-1 | CD | 0.133 | 1.105 | 0.175 | 18.799 | 0.127 | 1.636 | 0.075 | 0.041 | 32.887 | 0.029 | 55.01 | 0.80 |
Q2 | 3779.2 | c | c-2 | CD | 0.129 | 0.055 | 0.055 | 19.3 | 0.137 | 4.09 | 0.021 | - | 34.984 | 0.036 | 58.81 | 0.77 |
Q2 | 3762.6 | e | e-2 | LD | 0.152 | 0.019 | 0.046 | 21.837 | 0.235 | - | 0.017 | - | 32.002 | - | 54.31 | 0.96 |
Q2 | 3762.6 | b | b-8 | LD | 0.138 | 0.017 | - | 23.502 | 0.212 | - | 0.006 | - | 31.674 | 0.013 | 55.56 | 1.04 |
Q2 | 3762.6 | b | b-9 | LD | 0.086 | 0.001 | - | 22.164 | 0.161 | 0.163 | 0.016 | 0.052 | 32.291 | 0.072 | 55.01 | 0.96 |
Q2 | 3762.6 | f | f-7 | LD | 0.09 | - | 0.143 | 21.32 | 0.105 | 0.758 | 0.005 | 0.019 | 34.946 | 0.054 | 57.44 | 0.85 |
Q2 | 3762.6 | f | f-8 | LD | 0.126 | 0.119 | 0.343 | 22.183 | 0.121 | 0.681 | 0.028 | 0.015 | 33.014 | 0.048 | 56.68 | 0.94 |
Q2 | 3779.2 | d | d-1 | LD | 0.094 | 0.033 | - | 21.237 | 0.102 | 0.364 | 0.022 | 0.032 | 27.644 | 0.047 | 49.58 | 1.08 |
Q2 | 3762.6 | e | e-1 | FD | 0.123 | 0.017 | - | 19.593 | 0.048 | 0.031 | 0.011 | 0.052 | 30.474 | 0.03 | 50.38 | 0.90 |
Q2 | 3762.6 | f | f-1 | FD | 0.133 | 0.019 | 1.643 | 21.089 | 0.112 | 0.877 | 0.02 | - | 33.189 | 0.04 | 57.12 | 0.89 |
Q2 | 3762.6 | f | f-2 | FD | 0.105 | 0.016 | 0.179 | 19.137 | 0.095 | 0.414 | - | - | 33.931 | 0.014 | 53.89 | 0.79 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, H.; Lv, Z.; Shen, Z.; Xiong, C. Carbon and Oxygen Isotopic Composition of Saline Lacustrine Dolomite Cements and Its Palaeoenvironmental Significance: A Case Study of Paleogene Shahejie Formation, Bohai Sea. Minerals 2019, 9, 13. https://doi.org/10.3390/min9010013
Meng H, Lv Z, Shen Z, Xiong C. Carbon and Oxygen Isotopic Composition of Saline Lacustrine Dolomite Cements and Its Palaeoenvironmental Significance: A Case Study of Paleogene Shahejie Formation, Bohai Sea. Minerals. 2019; 9(1):13. https://doi.org/10.3390/min9010013
Chicago/Turabian StyleMeng, Hailong, Zhengxiang Lv, Zhongmin Shen, and Chenhao Xiong. 2019. "Carbon and Oxygen Isotopic Composition of Saline Lacustrine Dolomite Cements and Its Palaeoenvironmental Significance: A Case Study of Paleogene Shahejie Formation, Bohai Sea" Minerals 9, no. 1: 13. https://doi.org/10.3390/min9010013
APA StyleMeng, H., Lv, Z., Shen, Z., & Xiong, C. (2019). Carbon and Oxygen Isotopic Composition of Saline Lacustrine Dolomite Cements and Its Palaeoenvironmental Significance: A Case Study of Paleogene Shahejie Formation, Bohai Sea. Minerals, 9(1), 13. https://doi.org/10.3390/min9010013