Bioleaching of Major, Rare Earth, and Radioactive Elements from Red Mud by using Indigenous Chemoheterotrophic Bacterium Acetobacter sp.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Red Mud
2.2. Screening and Identification of Leaching Bacterial Strain
2.3. Bioleaching Experiments
2.4. Analytical Methods
3. Results and Discussion
3.1. Screening and Identification of Strain RM-B07
3.2. Variation of Baterial Cells and pH Value during Three Different Bioleaching Processes
3.3. Bioleaching Perfomance of Metal Elements under Different Bioleaching Processes
3.4. Radioactivity of RM after Bioleaching
3.5. Organic Acids Secretion of Acetobacter sp.
3.6. Change of Mineral Composition during Bioleaching of RM by Acetobacter sp.
3.7. Micromorphology of RM Particles and Acetobacter sp.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Power, G.; Gräfe, M.; Klauber, C. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy 2011, 108, 33–45. [Google Scholar] [CrossRef]
- Xue, S.; Zhu, F.; Kong, X.; Wu, C.; Huang, L.; Huang, N.; Hartley, W. A review of the characterization and revegetation of bauxite residues (Red mud). Environ. Sci. Pollut. Res. Int. 2016, 23, 1120–1132. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Lian, B. Bioleaching of rare earth and radioactive elements from red mud using Penicillium tricolor RM-10. Bioresour. Technol. 2013, 136, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Klauber, C.; Gräfe, M.; Power, G. Bauxite residue issues: II. options for residue utilization. Hydrometallurgy 2011, 108, 11–32. [Google Scholar] [CrossRef]
- Borra, C.R.; Blanpain, B.; Pontikes, Y.; Binnemans, K.; Van Gerven, T. Recovery of Rare Earths and Other Valuable Metals from Bauxite Residue (Red Mud): A Review. J. Sustain. Metall. 2016, 2, 365–386. [Google Scholar] [CrossRef]
- Brandl, H.; Barmettler, F.; Castelberg, C.; Fabbri, C. Microbial mobilization of rare earth elements (REE) from mineral solids—A mini review. AIMS Microbiol. 2016, 2, 190–204. [Google Scholar] [CrossRef] [Green Version]
- Brierley, C.L.; Brierley, J.A. Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 2013, 97, 7543–7552. [Google Scholar] [CrossRef] [PubMed]
- Burgstaller, W.; Schinner, F. Leaching of metals with fungi. J. Biotechnol. 1993, 27, 91–116. [Google Scholar] [CrossRef]
- Santini, T.C.; Kerr, J.L.; Warren, L.A. Microbially-driven strategies for bioremediation of bauxite residue. J. Hazard. Mater. 2015, 293, 131–157. [Google Scholar] [CrossRef] [Green Version]
- Urik, M.; Bujdos, M.; Milova-Ziakova, B.; Mikusova, P.; Slovak, M.; Matus, P. Aluminium leaching from red mud by filamentous fungi. J. Inorg. Biochem. 2015, 152, 154–169. [Google Scholar] [CrossRef] [PubMed]
- Vakilchap, F.; Mousavi, S.M.; Shojaosadati, S.A. Role of Aspergillus niger in recovery enhancement of valuable metals from produced red mud in Bayer process. Bioresour. Technol. 2016, 218, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Lian, B.; Mo, B.; Liu, C. Bioleaching of heavy metals from red mud using Aspergillus niger. Hydrometallurgy 2013, 136, 71–77. [Google Scholar] [CrossRef]
- Krishna, P.; Babu, A.G.; Reddy, M.S. Bacterial diversity of extremely alkaline bauxite residue site of alumina industrial plant using culturable bacteria and residue 16S rRNA gene clones. Extremophiles 2014, 18, 665–676. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, R.E. Bergey’s Manual of Determination Bacteriology, 8th ed.; Science Press: Beijing, China, 1984. [Google Scholar]
- Li, H.; Liu, D.; Lian, B.; Sheng, Y.; Dong, H. Microbial Diversity and Community Structure on Corroding Concretes. Geomicrobiol. J. 2012, 29, 450–458. [Google Scholar] [CrossRef]
- Shabani, M.A.; Irannajad, M.; Azadmehr, A.R.; Meshkini, M. Bioleaching of copper oxide ore by Pseudomonas aeruginosa. Int. J. Min. Met. Mater. 2013, 20, 1130–1133. [Google Scholar] [CrossRef]
- Banning, N.C.; Phillips, I.R.; Jones, D.L.; Murphy, D.V. Development of Microbial Diversity and Functional Potential in Bauxite Residue Sand under Rehabilitation. Restor. Ecol. 2011, 19, 78–87. [Google Scholar] [CrossRef]
- Krishna, P.; Arora, A.; Reddy, M.S. An alkaliphilic and xylanolytic strain of actinomycetes Kocuria sp. RM1 isolated from extremely alkaline bauxite residue sites. World J. Microb. Biot. 2008, 24, 3079–3085. [Google Scholar] [CrossRef]
- Schmalenberger, A.; O’Sullivan, O.; Gahan, J.; Cotter, P.D.; Courtney, R. Bacterial communities established in bauxite residues with different restoration histories. Environ. Sci. Technol. 2013, 47, 7110–7119. [Google Scholar] [CrossRef]
- Khaitan, S.; Dzombak, D.A.; Lowry, G.V. Chemistry of the acid neutralization capacity of bauxite residue. Environ. Eng. Sci. 2009, 26, 873–881. [Google Scholar] [CrossRef]
- Zobell, C.E. The effect of solid surfaces upon bacterial activity. J. Bacteriol. 1943, 46, 39–56. [Google Scholar]
- Rezza, I.; Salinas, E.; Elorza, M.; Tosetti, M.; Donati, E. Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem. 2001, 36, 495–500. [Google Scholar] [CrossRef]
- Gräfe, M.; Power, G.; Klauber, C. Bauxite residue issues: III. Alkalinity and associated chemistry. Hydrometallurgy 2011, 108, 60–79. [Google Scholar] [CrossRef]
- Smirnov, D.I.; Molchanova, T.V. The investigation of sulphuric acid sorption recovery of scandium and uranium from the red mud of alumina production. Hydrometallurgy 1997, 45, 249–259. [Google Scholar] [CrossRef]
- Xue, S.; Kong, X.; Zhu, F.; Hartley, W.; Li, X.; Li, Y. Proposal for management and alkalinity transformation of bauxite residue in China. Environ. Sci. Pollut. Res. Int. 2016, 23, 12822–12834. [Google Scholar] [CrossRef] [PubMed]
- Amiri, F.; Yaghmaei, S.; Mousavi, S.M.; Sheibani, S. Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger. Hydrometallurgy 2011, 109, 65–71. [Google Scholar] [CrossRef]
- Amiri, F.; Yaghmaei, S.; Mousavi, S.M. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresour. Technol. 2011, 102, 1567–1573. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Q.; Wang, Q.; Wu, T. Comparisons of one-Step and two-Step bioleaching for heavy metals removed from municipal solid waste incineration fly ash. Environ. Eng. Sci. 2008, 25, 783–789. [Google Scholar] [CrossRef]
- Aung, K.M.; Ting, Y.P. Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger. J. Biotechnol. 2005, 116, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Vachon, P.; Tyagl, R.D.; Auclair, J.C.; Wilkinson, K.J. Chemical and biogical leaching of Al from red mud. Environ. Sci. Technol. 1994, 28, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Horeh, N.B.; Mousavi, S.M.; Shojaosadati, S.A. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger. J. Power Sources 2016, 320, 257–266. [Google Scholar] [CrossRef] [Green Version]
- Rasoulnia, P.; Mousavi, S.M.; Rastegar, S.O.; Azargoshasb, H. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods. Waste Manag. 2016, 52, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Bosecker, K. bioleaching metal solubilization by microorganisms. FEMS Microbiol. Rev. 1997, 20, 591–604. [Google Scholar] [CrossRef]
- Somlai, J.; Jobbagy, V.; Kovacs, J.; Tarjan, S.; Kovacs, T. Radiological aspects of the usability of red mud as building material additive. J. Hazard. Mater. 2008, 150, 541–555. [Google Scholar] [CrossRef] [PubMed]
- GB6566-2001, Limit of Radionuclides in Building Materials; State Administration for Quality Supervision and Inspection and Quarantine (AQSIQ): Beijing, China, 2011.
- Radiation protection 112, Radiological Protection Principles Concerning the Natural Radioactivity of Building Materials; European Commission: Brussel, Belgium, 1999.
- Harris, J. Soil microbial communities and restoration ecology: Facilitators or followers? Science 2009, 325, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Hamel, R.; Levasseur, R.; Appanna, V.D. Oxalic acid production and aluminum tolerance in Pseudomonas fluorescens. J. Inorg. Biochem. 1999, 76, 99–104. [Google Scholar] [CrossRef]
- Dutton, M.V.; Evans, C.S. Oxalate production by fungi: Its role in pathogenicity and ecology in the soil environment. Can. J. Microbiol. 1996, 42, 881–895. [Google Scholar] [CrossRef]
- Li, Z.; Liu, L.; Chen, J.; Teng, H.H. Cellular dissolution at hypha- and spore-mineral interfaces revealing unrecognized mechanisms and scales of fungal weathering. Geology 2016, 44, 319–322. [Google Scholar] [CrossRef]
- Qu, Y.; Li, H.; Tian, W.; Wang, X.; Wang, X.; Jia, X.; Shi, B.; Song, G.; Tang, Y. Leaching of valuable metals from red mud via batch and continuous processes by using fungi. Miner. Eng. 2015, 81, 1–4. [Google Scholar] [CrossRef]
Biochemical Test | |||
---|---|---|---|
Anaerobic growth | − | Catalase | + |
Mobility | − | Oxidase | − |
Gram staining | − | H2S production | − |
Glucose glycolysis | + | MR test | + |
Sucrose glycolysis | + | VP test | + |
Lactose glycolysis | + | Indole | − |
Amylum hydrolysis | − | brown pigment | − |
Mannitol utilization | + (w) | urease | − |
Glycerinum utilization | + | Cellulase | + |
Radionuclide Activity Concentration of RM a (Bq/kg) | One-step Process | Two-step Process | Spent Medium Process | Raw Red Mud | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Pulp Densities (w/v) | Pulp Densities (w/v) | Pulp Densities (w/v) | |||||||||
2% | 5% | 10% | 2% | 5% | 10% | 2% | 5% | 10% | |||
226Ra | 156.9 | 172.4 | 275.5 | 147.6 | 188.3 | 272.5 | 221.3 | 261.1 | 291.2 | 310.3 | |
232Th | 114.4 | 140.8 | 184.7 | 118.2 | 154.6 | 198 | 140.9 | 175.7 | 203.5 | 219.7 | |
40K | 245.0 | 296.1 | 313.0 | 273.2 | 320.3 | 354.9 | 321.4 | 366.4 | 382.4 | 423.9 | |
Activity Concentration Index | |||||||||||
Ⅰ (China) b | 0.92 | 1.08 | 1.53 | 0.92 | 1.18 | 1.58 | 1.22 | 1.47 | 1.66 | 1.78 | |
Ⅰ (Europe) c | 1.18 | 1.38 | 1.95 | 1.17 | 1.51 | 2.02 | 1.55 | 1.87 | 2.16 | 2.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, Y.; Li, H.; Wang, X.; Tian, W.; Shi, B.; Yao, M.; Zhang, Y. Bioleaching of Major, Rare Earth, and Radioactive Elements from Red Mud by using Indigenous Chemoheterotrophic Bacterium Acetobacter sp. Minerals 2019, 9, 67. https://doi.org/10.3390/min9020067
Qu Y, Li H, Wang X, Tian W, Shi B, Yao M, Zhang Y. Bioleaching of Major, Rare Earth, and Radioactive Elements from Red Mud by using Indigenous Chemoheterotrophic Bacterium Acetobacter sp. Minerals. 2019; 9(2):67. https://doi.org/10.3390/min9020067
Chicago/Turabian StyleQu, Yang, Hui Li, Xiaoqing Wang, Wenjie Tian, Ben Shi, Minjie Yao, and Ying Zhang. 2019. "Bioleaching of Major, Rare Earth, and Radioactive Elements from Red Mud by using Indigenous Chemoheterotrophic Bacterium Acetobacter sp." Minerals 9, no. 2: 67. https://doi.org/10.3390/min9020067