Green Rust: The Simple Organizing ‘Seed’ of All Life?
Abstract
:The most important problem of synthetic biology is…the reduction of carbonic acid.Without the idea of spontaneous generation and a physical theory of life, the doctrine of evolution is a mutilated hypothesis without unity or cohesion.-Leduc [1]
1. Introduction
2. Model Assumptions
3. The Hadean Water World
4. The Precipitate Mound at the Submarine Alkaline Vent
5. The Disequilibria Imposed Across the Mineral Barrier
6. Green Rust—The First Organizing Nanoengine of Life?
Surface-active DLH minerals expand freely to accommodate molecular complexes of any size. These structures, thus, also serve as compartmental systems with flexible membranes and what may be called primitive cellular metabolic function. Like cells, they retain phosphate-charged reactants against high concentration gradients and exchange matter with the surroundings by controlled diffusion through the ‘pores’ provided by the opening of the interlayers at the crystal edges. Here, the exposed negative charge on the interrupted metal hydroxide ‘membrane’ leads to sorption of cations as ‘gatekeepers’.[8]
7. Iron Sulfides: The Supporting Cast
7.1. Mackinawite [Fe(Ni,Mo)S]: Electron Transfer Agent, Amino Acid Polymerase, and Possible Hydrogenase
7.2. Greigite [Fe3S4]
7.3. Tochilinite FeS[Mg,Fe2+][OH]2
8. The Peptide and Amyloid Takeover?
9. Ligand-Assisted Autocatalysis and ‘Protoenzymes’
10. Emergence of Life as a Biofilm
11. Discussion of Method and Approach
The chain of life is of necessity a continuous one, from the mineral at one end to the most complicated organism at the other. We cannot allow that it is broken at any point, or that there is a link missing between animate and inanimate nature (viz. the missing link between the inorganic and the organic kingdoms). Hence the theory of evolution necessarily admits the physico-chemical nature of life and the fact of spontaneous generation. Only thus can the evolutionary theory become a rational one, a stimulating and fertile inspirer of research.[1]
Who would have ever thought of the old stupid Athenæum taking to Oken-like transcendental philosophy written in Owenian style! It will be some time before we see “slime, snot, or protoplasm” (what an elegant writer) generating a new animal. But I have long regretted that I truckled to public opinion and used the Pentateuchal term of creation, by which I really meant “appeared” by some wholly unknown process. It is mere rubbish thinking, at present, of origin of life; one might as well think of origin of matter.
12. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Leduc, S. The Mechanism of Life; Rebman Ltd.: London, UK, 1911. [Google Scholar]
- Lane, N. The Vital Question: Energy, Evolution, and the Origins of Complex life; WW Norton & Company: London, UK, 2015. [Google Scholar]
- Branscomb, E.; Russell, M.J. Frankenstein or a submarine alkaline vent: Who is responsible for abiogenesis? Part 1: What is life—That it might create itself? BioEssays 2018, 40. [Google Scholar] [CrossRef] [PubMed]
- Branscomb, E.; Russell, M.J. Frankenstein or a submarine alkaline vent: Who is responsible for abiogenesis? Part 2: As life is now, so it must have been in the beginning. BioEssays 2018, 40. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Hall, A.J.; Turner, D. In vitro growth of iron sulphide chimneys: Possible culture chambers for origin-of-life experiments. Terra Nova 1989, 1, 238–241. [Google Scholar] [CrossRef]
- Lane, N. Why are cells powered by proton gradients. Nat. Educ. 2010, 3, 18. [Google Scholar]
- Branscomb, E.; Russell, M.J. Turnstiles and bifurcators: The disequilibrium converting engines that put metabolism on the road. Biochim. Biophys. Acta 2013, 1827, 62–78. [Google Scholar] [CrossRef] [PubMed]
- Arrhenius, G.O. Crystals and life. Helv. Chim. Acta 2003, 86, 1569–1586. [Google Scholar] [CrossRef]
- Allmann, R. Doppelschichtstrukturen mit brucitähnlichen Schichtionen [Me(II)1− xMe(III)x(OH)2]x+. Chimia 1970, 24, 99–108. [Google Scholar]
- Allmann, R. Das Bindungsprinzip der doppelschichtstrukturen mit brucitähnlichen schichtionen. Fortschr. Miner. 1971, 48, 24–30. [Google Scholar]
- Okumura, T.; Ohara, Y.; Stern, R.J.; Yamanaka, T.; Onishi, Y.; Watanabe, H.; Chen, C.; Bloomer, S.H.; Pujana, I.; Sakai, S.; et al. Brucite chimney formation and carbonate alteration at the Shinkai Seep Field, a serpentinite-hosted vent system in the southern Mariana forearc. Geochem. Geophys. Geosyst. 2016, 17, 3775–3796. [Google Scholar] [CrossRef] [Green Version]
- Price, R.; Boyd, E.S.; Hoehler, T.M.; Wehrmann, L.M.; Bogason, E.; Valtýsson, H.Þ.; Örlygsson, J.; Gautason, B.; Amend, J.P. Alkaline vents and steep Na+ gradients from ridge-flank basalts—Implications for the origin and evolution of life. Geology 2017, 45, 1135–1138. [Google Scholar] [CrossRef]
- Kelley, D.S.; Karson, J.A.; Blackman, D.K.; Früh-Green, G.L.; Butterfield, D.A.; Lilley, M.D.; Olson, E.J.; Schrenk, M.O.; Roe, K.K.; Lebon, G.T.; et al. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 2001, 412, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Branscomb, E.; Biancalani, T.; Goldenfeld, N.; Russell, M.J. Escapement mechanisms and the conversion of disequilibria: The engines of creation. Phys. Rep. 2017, 677, 1–6. [Google Scholar] [CrossRef]
- Windman, T.; Zolotova, N.; Schwandner, F.; Shock, E.L. Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems. Astrobiology 2007, 7, 873–890. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Hall, A.J. The onset and early evolution of life. Geol. Soc. Am. Mem. 2006, 198, 1–32. [Google Scholar]
- Nitschke, W.; Russell, M.J. Hydrothermal focusing of chemical and chemiosmotic energy, supported by delivery of catalytic Fe, Ni, Mo/W, Co, S and Se, forced life to emerge. J. Mol. Evol. 2009, 69, 481–496. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Nitschke, W.; Branscomb, E. The inevitable journey to being. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [PubMed]
- Génin, J.-M.R.; Aïssa, R.; Géhin, A.; Abdelmoula, M.; Benali, O.; Ernstsen, V.; Ona-Nguema, G.; Upadhyay, C.; Ruby, C. Fougerite and FeII–III hydroxycarbonate green rust; ordering, deprotonation and/or cation substitution; structure of hydrotalcite-like compounds and mythic ferrosic hydroxide Fe(OH)(2+x). Solid State Sci. 2005, 7, 545–572. [Google Scholar] [CrossRef]
- Wander, M.C.; Rosso, K.M.; Schoonen, M.A. Structure and charge hopping dynamics in green rust. J. Phys. Chem. C 2007, 111, 11414–11423. [Google Scholar] [CrossRef]
- Page, C.C.; Moser, C.C.; Chen, X.; Dutton, P.L. Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 1999, 402, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Daniel, R.M.; Hall, A.J.; Sherringham, J. A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J. Mol. Evol. 1994, 39, 231–243. [Google Scholar] [CrossRef]
- Mitchell, P. Keilin’s respiratory chain concept and its chemiosmotic consequences. Science 1979, 206, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Herschy, B.; Whicher, A.; Camprubi, E.; Watson, C.; Dartnell, L.; Ward, J.; Evans, J.R.; Lane, N. An origin-of-life reactor to simulate alkaline hydrothermal vents. J. Mol. Evol. 2014, 79, 213–227. [Google Scholar] [CrossRef] [PubMed]
- Ljungdahl, L.G.; Irion, E.; Wood, H.G. Total synthesis of acetate from CO2. I. Co-methylcobyric acid and co-(methyl)-5-methoxybenzimidizolycobamide as intermediates with Clostridium Thermoaceticum. Biochemisty 1965, 4, 2771–2779. [Google Scholar] [CrossRef]
- Fuchs, G. Alternative pathways of autotrophic CO2 fixation. In Autotrophic Bacteria; Schlegel, H.G., Bowen, B., Eds.; Science Technology: Madison, WI, USA, 1989. [Google Scholar]
- Fuchs, G. Alternative pathways of carbon dioxide fixation: Insights into the early evolution of life. Annu. Rev. Microbiol. 2011, 65, 631–658. [Google Scholar] [CrossRef] [PubMed]
- Ragsdale, S.W. The Eastern and Western branches of the Wood/Ljungdahl pathway: How the East and West were won. BioFactors 1997, 6, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Martin, W. The rocky roots of the acetyl coenzyme-A pathway. TIBS 2004, 24, 358–363. [Google Scholar]
- Russell, M.J.; Hall, A.J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J. Geol. Soc. 1997, 154, 377–402. [Google Scholar] [CrossRef]
- Sojo, V.; Herschy, B.; Whicher, A.; Camprubi, E.; Lane, N. The origin of life in alkaline hydrothermal vents. Astrobiology 2016, 16, 181–197. [Google Scholar] [CrossRef] [PubMed]
- Marchand, C.; Le Calve, S.; Mirabel, P.; Glasser, N.; Casset, A.; Schneider, N.; De Blay, F. Concentrations and determinants of gaseous aldehydes in 162 homes in Strasbourg (France). Atmos. Environ. 2008, 42, 505–516. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, P. Indoor carbonyl compounds in an academic building in Beijing, China: Concentrations and influencing factors. Front. Environ. Sci. Eng. 2012, 6, 184–194. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Yamamoto, M.; Takai, K.; Ishii, T.; Hashimoto, K.; Nakamura, R. Electrochemical CO2 reduction by Ni-containing iron sulfides: How is CO2 electrochemically reduced at bisulfide-bearing deep-sea hydrothermal precipitates? Electrochim. Acta 2014, 141, 311–318. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J.; Mellersh, A.R. On the dissipation of thermal and chemical energies on the early Earth: The onsets of hydrothermal convection, chemiosmosis, genetically regulated metabolism and oxygenic photosynthesis. In Natural and Laboratory-Simulated Thermal Geochemical Processes; Ikan, R., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Milner-White, E.J.; Russell, M.J. Nests as sites for phosphates and iron-sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs (nests). Orig. Life Evol. Biosph. 2005, 35, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Milner-White, E.J.; Russell, M.J. Functional capabilities of the earliest peptides and the emergence of life. Genes 2011, 2, 671–688. [Google Scholar] [CrossRef] [PubMed]
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The microbial engines that drive Earth’s biogeochemical cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Barge, L.; Flores, E.; VanderVelde, D.; Baum, M.M.; VanderVelde, D.; Russell, M.J. Redox and pH gradients drive amino acid synthesis in iron oxyhydroxide mineral systems. Proc. Natl. Acad. Sci. USA 2018. in review. [Google Scholar]
- Russell, M.J.; Hall, A.J.; Fallick, A.E.; Boyce, A.J. On hydrothermal convection systems and the emergence of life. Econ. Geol. 2005, 100, 419–438. [Google Scholar]
- Rickard, D.; Morse, J.W. Acid volatile sulfide (AVS). Marine Chem. 2005, 97, 141–197. [Google Scholar] [CrossRef]
- Huber, C.; Wächtershäuser, G. Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 1997, 276, 245–247. [Google Scholar] [CrossRef] [PubMed]
- Heinen, W.; Lauwers, A.M. Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig. Life Evol. Biosph. 1996, 26, 131–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinen, W.; Lauwers, A. The iron-sulfur world and the origins of life: Abiotic thiol synthesis from metallic iron, H2S and CO2; a comparison of the thiol generating FeS/HCl (H2S)/CO2-system and its Fe0/H2S/CO2-counterpart. Proc. K. Ned. Akad. Wet. Amst. 1997, 100, 11–25. [Google Scholar]
- Mielke, R.E.; Russell, M.J.; Wilson, P.R.; McGlynn, S.; Coleman, M.; Kidd, R.; Kanik, I. Design, fabrication and test of a hydrothermal reactor for origin-of-life experiments. Astrobiology 2010, 10, 799–810. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, T.; Yoshizaki, M.; Masaki, Y.; Suzuki, K.; Takai, K.; Russell, M.J. Reactions between basalt and CO2-rich seawater at 250 and 350 °C, 500bars: Implications for the CO2 sequestration into the modern oceanic crust and the composition of hydrothermal vent fluid in the CO2-rich early ocean. Chem. Geol. 2013, 359, 1–9. [Google Scholar] [CrossRef]
- Shibuya, T.; Russell, M.J.; Takai, K. Free energy distribution and hydrothermal mineral precipitation in Hadean submarine alkaline vent systems; Importance of iron redox reactions under anoxic conditions. Geochim. Cosmochim. Acta 2016, 175, 1–19. [Google Scholar] [CrossRef]
- Reeves, E.P.; McDermott, J.M.; Seewald, J.S. The origin of methanethiol in midocean ridge hydrothermal fluids. Proc. Natl. Acad. Sci. USA 2014, 111, 5474–5479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldschmidt, V.M. Geochemical aspects of the origin of complex organic molecules on Earth, as precursors to organic life. New Biol. 1952, 12, 97–105. [Google Scholar]
- Say, R.F.; Fuchs, G. Fructose 1, 6-bisphosphate aldolase/phosphatase may be an ancestral gluconeogenic enzyme. Nature 2010, 464, 1077–1081. [Google Scholar] [CrossRef] [PubMed]
- Proskurowski, G.; Lilley, M.D.; Seewald, J.S.; Früh-Green, G.L.; Olson, E.J.; Lupton, J.E.; Sylva, S.P.; Kelley, D.S. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 2008, 319, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Shock, E.L. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig. Life Evol. Biosph. 1990, 20, 331–367. [Google Scholar] [CrossRef]
- Williams, R.J.P.; Frausto da Silva, J.J.R. The Natural Selection of the Chemical Elements; Clarendon: Oxford, UK, 1996. [Google Scholar]
- Nitschke, W.; Russell, M.J. Beating the acetyl coenzyme-A pathway to the origin of life. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Nitschke, W. Methane: Fuel or exhaust at the emergence of life. Astrobiology 2017, 17, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Nealson, K.H.; Belz, A.; McKee, B. Breathing metals as a way of life: Geobiology in action. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2002, 81, 215–222. [Google Scholar] [CrossRef]
- Ducluzeau, A.-L.; van Lis, R.; Duval, S.; Schoepp-Cothenet, B.; Russell, M.J.; Nitschke, W. Was nitric oxide the first strongly oxidizing terminal electron sink? TIBS 2009, 34, 9–15. [Google Scholar]
- Wong, M.L.; Charnay, B.D.; Gao, P.; Yung, Y.L.; Russell, M.J. Nitrogen oxides in early Earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology 2017, 17, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Barge, L.M.; Bhartia, R.; Bocanegra, D.; Bracher, P.J.; Branscomb, E.; Kidd, R.; McGlynn, S.E.; Meier, D.H.; Nitschke, W.; et al. The drive to life on wet and icy worlds. Astrobiology 2014, 14, 308–343. [Google Scholar] [CrossRef] [PubMed]
- White, L.M.; Shibuya, T.; Vance, S.D.; Christensen, L.E.; Bhartia, B.; Kidd, R.; Hoffmann, A.; Stucky, G.D.; Kanik, I.; Russell, M.J. Simulating serpentinization as it could apply to the emergence of life using the JPL hydrothermal reactor. Astrobiology 2018. in review. [Google Scholar]
- McGlynn, S.E. Energy metabolism during anaerobic methane oxidation in ANME archaea. Microbes Environ. 2017, 32, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Roldan, A.; Hollingsworth, N.; Roffrey, A.; Islam, H.U.; Goodall, J.; Catlow, C.R.A.; Darr, J.A.; Bras, W.; Sankar, G.; Holt, K.B.; et al. Bio-inspired CO2 conversion by iron sulfide catalysts under sustainable conditions. Chem. Commun. 2015, 51, 7501–7504. [Google Scholar] [CrossRef] [PubMed]
- Camprubi, E.; Jordan, S.F.; Vasiliadou, R.; Lane, N. Iron catalysis at the origin of life. IUBMB Life 2017, 69, 373–381. [Google Scholar] [CrossRef] [PubMed]
- White, L.M.; Bhartia, R.; Stucky, G.D.; Kanik, I.; Russell, M.J. Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life. Earth Planet. Sci. Lett. 2015, 430, 105–114. [Google Scholar] [CrossRef]
- Mielke, R.E.; Robinson, K.J.; White, L.M.; McGlynn, S.E.; McEachern, K.; Bhartia, R.; Kanik, I.; Russell, M.J. Iron sulfide-bearing chimneys as potential catalytic energy traps at life’s emergence. Astrobiology 2011, 11, 933–950. [Google Scholar] [CrossRef] [PubMed]
- Rickard, D.; Butler, I.B.; Oldroyd, A. A novel iron sulphide mineral switch and its implications for Earth and planetary science. Earth Planet. Sci. Lett. 2001, 189, 85–91. [Google Scholar] [CrossRef]
- Ferris, F.G.; Jack, T.R.; Bramhill, B.J. Corrosion products associated with attached bacteria at an oil field water injection plant. Can. J. Microbiol. 1992, 38, 1320–1324. [Google Scholar] [CrossRef]
- Mullet, M.; Boursiquot, S.; Abdelmoula, M.; Génin, J.M.; Ehrhardt, J.J. Surface chemistry and structural properties of mackinawite prepared by reaction of sulfide ions with metallic iron. Geochim. Cosmochim. Acta 2002, 66, 829–836. [Google Scholar] [CrossRef]
- Benning, L.G.; Wilkin, R.T.; Barnes, H.L. Reaction pathways in the Fe–S system below 100 °C. Chem. Geol. 2000, 167, 25–51. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Beak, D.G. Uptake of nickel by synthetic mackinawite. Chem. Geol. 2017, 462, 15–29. [Google Scholar] [CrossRef]
- Helz, G.R.; Vorlicek, T.P.; Kahn, M.D. Molybdenum scavenging by iron monosulfide. Environ. Sci. Technol. 2004, 38, 4263–4268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Yuly, J.L.; Lubner, C.E.; Mulder, D.W.; King, P.W.; Peters, J.W.; Beratan, D.N. Electron bifurcation: Thermodynamics and kinetics of two-electron brokering in biological redox chemistry. Acc. Chem. Res. 2017, 50, 2410–2417. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, R.; Takashima, T.; Kato, S.; Takai, K.; Yamamoto, M.; Hashimoto, K. Electrical current generation across a black smoker chimney. Angew. Chem. Int. Ed. 2010, 49, 7692–7694. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Nakamura, R.; Oguri, K.; Kawagucci, S.; Suzuki, K.; Hashimoto, K.; Takai, K. Generation of electricity and illumination by an environmental fuel cell in deep-sea hydrothermal vents. Angew. Chem. Int. Ed. 2013, 52, 10758–10761. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, M.; Nakamura, R.; Kasaya, T.; Kumagai, H.; Suzuki, K.; Takai, K. Spontaneous and widespread electricity generation in natural deep-sea hydrothermal fields. Angew. Chem. Int. Ed. 2017, 56, 5725–5728. [Google Scholar] [CrossRef] [PubMed]
- Barge, L.M.; Abedian, Y.; Russell, M.J.; Doloboff, I.J.; Cartwright, J.H.; Kidd, R.D.; Kanik, I. From chemical gardens to fuel cells: Generation of electrical potential and current across self-assembling iron mineral membranes. Angew. Chem. Int. Ed. 2015, 54, 8184–8187. [Google Scholar] [CrossRef] [PubMed]
- Barge, L.M.; Abedian, Y.; Doloboff, I.J.; Nuñez, J.E.; Russell, M.J.; Kidd, R.D.; Kanik, I. Chemical gardens as flow-through reactors simulating natural hydrothermal systems. J. Vis. Exp. 2014, 105. [Google Scholar] [CrossRef] [PubMed]
- Nitschke, W.; Russell, M.J. Redox bifurcations; how they work and what they mean to extant life and (potentially) to its inorganic roots. BioEssays 2011, 34, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Tadokoro, M.; Hosoda, H.; Inoue, T.; Murayama, A.; Noguchi, K.; Iioka, A.; Nishimura, R.; Itoh, M.; Sugaya, T.; Kamebuchi, H.; et al. Synchronized collective proton-assisted electron transfer in solid state by hydrogen-bonding Ru(II)/R(III) mixed-valence molecular crystals. Inorg. Chem. 2017, 56, 8513–8526. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yamaguchi, A.; Yamamoto, M.; Takai, K.; Nakamura, R. Molybdenum sulfide: A bioinspired electrocatalyst for dissimilatory ammonia synthesis with geoelectrical current. J. Phys. Chem. C 2016, 121, 2154–2164. [Google Scholar] [CrossRef]
- Cotton, C.A.; Edlich-Muth, C.; Bar-Even, A. Reinforcing carbon fixation: CO2 reduction replacing and supporting carboxylation. Curr. Opin. Biotechnol. 2018, 49, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Kitadai, N.; Nakamura, R.; Yamamoto, M.; Takai, K.; Li, Y.; Yamaguchi, A.; Gilbert, A.; Ueno, Y.; Yoshida, N.; Oono, Y. Geoelectrochemical CO production: Implications for the autotrophic origin of life. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Ragsdale, S.W.; Pierce, E. Acetogenesis and the Wood–Ljungdahl pathway of CO2 fixation. Biochim. Biophys. Acta 2008, 1784, 1873–1898. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.P.; Shiota, Y.; Yoshizawa, K. DFT study of the mechanism for methane hydroxylation by soluble methane monooxygenase (sMMO): Effects of oxidation state, spin state, and coordination number. Dalton Trans. 2013, 42, 1011–1023. [Google Scholar] [CrossRef] [PubMed]
- Rosenzweig, A.C.; Frederick, C.A.; Lippard, S.J.; Nordlund, P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane. Nature 1993, 366, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.C.B.; Koch, C.B.; Nancke-Krogh, H.; Borggaard, O.K.; Sørensen, J. Abiotic nitrate reduction to ammonium: Key role of green rust. Environ. Sci. Technol. 1996, 30, 2053–2056. [Google Scholar] [CrossRef]
- Hansen, H.C.B.; Koch, C.B. Reduction of nitrate to ammonium by sulphate green rust: Activation energy and reaction mechanism. Clay Min. 1998, 33, 87–101. [Google Scholar] [CrossRef]
- Hansen, H.C.B.; Gulberg, S.; Erbs, M.; Koch, C.B. Kinetics of nitrate reduction by green rusts: Effects of interlayer anion and Fe(II):Fe(III) ratio. Appl. Clay Sci. 2001, 18, 81–91. [Google Scholar] [CrossRef]
- Trolard, F.; Bourrié, G. Fougerite a natural layered double hydroxide in gley soil: Habitus, structure, and some properties. In Clay Minerals in Nature: Their Characterization, Modification and Application; Valaskova, M., Martynkova, G.S., Eds.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Génin, J.-M.R.; Renard, A.; Ruby, C. Fougérite FeII-III oxyhydroxycarbonate in environmental chemistry and nitrate reduction. Hyperfine Interact. 2008, 186, 31–37. [Google Scholar] [CrossRef]
- Ottley, C.J.; Davison, W.; Edmunds, W.M. Chemical catalysis of nitrate reduction by iron (II). Geochim. Cosmochim. Acta 1997, 61, 1819–1828. [Google Scholar] [CrossRef]
- Martin, W.; Russell, M.J. On the origin of biochemistry at an alkaline hydrothermal vent. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 1887–1925. [Google Scholar] [CrossRef] [PubMed]
- De Duve, C. Blueprint for a Cell: The Nature and Origin of Life; Carolina Biological Supply Co.: Burlington, NC, USA, 1991. [Google Scholar]
- Whicher, A.; Camprubi, E.; Pinna, S.; Herschy, B.; Lane, N. Acetyl phosphate as a primordial energy currency at the origin of life. Orig. Life Evol. Biosph. 2018, 48, 159–179. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.Q.; Butterfield, D.A.; Schulte, M.; Kelley, D.S.; Lilley, M.D. Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field. Geochim. Cosmochim. Acta 2010, 74, 941–952. [Google Scholar] [CrossRef]
- Lang, S.Q.; Früh-Green, G.L.; Bernasconi, S.M.; Brazelton, W.J.; Schrenk, M.O.; McGonigle, J.M. Deeply-sourced formate fuels sulfate reducers but not methanogens at Lost City hydrothermal field. Sci. Rep. 2018, 8, 755. [Google Scholar] [CrossRef] [PubMed]
- Buis, J.M.; Broderick, J.B. Pyruvate formate-lyase activating enzyme: Elucidation of a novel mechanism for glycyl radical formation. Arch. Biochem. Biophys. 2005, 433, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Bar-Even, A. Formate assimilation: The metabolic architecture of natural and synthetic pathways. Biochemistry 2016, 55, 3851–3863. [Google Scholar] [CrossRef] [PubMed]
- Coveney, P.V.; Swadling, J.B.; Wattis, J.A.; Greenwell, H.C. Theory, modelling and simulation in origins of life studies. Chem. Soc. Rev. 2012, 41, 5430–5446. [Google Scholar] [CrossRef] [PubMed]
- Grégoire, B.; Erastova, V.; Geatches, D.L.; Clark, S.J.; Greenwell, H.C.; Fraser, D.G. Insights into the behaviour of biomolecules on the early Earth: The concentration of aspartate by layered double hydroxide minerals. Geochim. Cosmochim. Acta 2016, 176, 239–258. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Takeya, H.; Kushibe, T.; Koizumi, Y. Mineral-enhanced hydrothermal oligopeptide formation at the second time scale. Astrobiology 2011, 11, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Huber, C.; Eisenreich, W.; Hecht, S.; Wächtershäuser, G. A possible primordial peptide cycle. Science 2003, 301, 938–940. [Google Scholar] [CrossRef] [PubMed]
- Erastova, V.; Degiacomi, M.T.; Fraser, D.G.; Greenwell, H.C. Mineral surface chemistry control for origin of prebiotic peptides. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Santiburcio, D.; Marx, D. Chemistry in nanoconfined water. Chem. Sci. 2017, 8, 3444–3452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harford, C.; Sarkar, B. Amino terminal Cu(II) and Ni(II) binding ATCUN motif of proteins and peptides. Acc. Chem. Res. 1999, 30, 123–130. [Google Scholar] [CrossRef]
- Kitadai, N. Thermodynamic prediction of glycine polymerization as a function of temperature and pH consistent with experimentally obtained results. J. Mol. Evol. 2014, 78, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Huber, C.; Wächtershäuser, G. Peptides by activation of amino acids with CO on (Ni,Fe)S surfaces: Implications for the origin of life. Science 1998, 281, 670–671. [Google Scholar] [CrossRef] [PubMed]
- Leman, L.; Orgel, L.; Ghadiri, M.R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 2004, 306, 283–286. [Google Scholar] [CrossRef] [PubMed]
- Barge, L.M.; Doloboff, I.J.; Russell, M.J.; VanderVelde, D.; White, L.M.; Stucky, G.D.; Baum, M.M.; Zeytounian, J.; Kidd, R.; Kanik, I. Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates. Geochim. Cosmochim. Acta 2014, 128, 1–12. [Google Scholar] [CrossRef]
- Yin, W.; Huang, L.; Pedersen, E.B.; Frandsen, C.; Hansen, H.C.B. Glycine buffered synthesis of layered iron (II)-iron (III) hydroxides (green rusts). J. Colloid Interface Sci. 2017, 497, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Baymann, F.; Lebrun, E.; Brugna, M.; Schoepp-Cothenet, B.; Giudici-Orticoni, M.-T.; Nitschke, W. The redox protein construction kit; pre-LUCA evolution of energy conserving enzymes. Philos. Trans. R. Soc. Lond. B 2003, 358, 267–274. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, S.E.; Kanik, I.; Russell, M.J. Peptide and RNA contributions to iron–sulphur chemical gardens as life’s first inorganic compartments, catalysts, capacitors and condensers. Philos. Trans. R. Soc. A 2012, 370, 3007–3022. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A.; Giorgi, C.; Ruzza, P.; Toniolo, C.; Milner-White, E.J. A synthetic hexapeptide designed to resemble a proteinaceous P-loop nest is shown to bind inorganic phosphate. Proteins 2012, 80, 1418–1424. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.B.; Chamberlin, M.; Edsal, J.T. The association of nickel(II) ion with peptides. JACS 1960, 82, 495–498. [Google Scholar] [CrossRef]
- Ma, N.W.H.; White, D.A.; Martin, R.B. Metal ion exchange of square-planar nickel(II) tetraglycine with polydentate amines. Inorg. Chem. 1967, 6, 1632–1636. [Google Scholar] [CrossRef]
- Alipázaga, M.V.; Lowinsohn, D.; Bertotti, M.; Coichev, N. Sulfite induced autoxidationof Ni(II) and Co(II) tetraglycine complexes. Spectrophotometric and rotating ring-disc voltammetric studies. Dalton Trans. 2004. [Google Scholar] [CrossRef]
- Milner-White, E.J.; Russell, M.J. Predicting peptide and protein conformations in early evolution. Biol. Direct 2008, 3. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.D.; Rodriguez-Granillo, A.; Case, D.A.; Nanda, V.; Falkowski, P.G. Energetic selection of topology in ferredoxins. PLoS Comput. Biol. 2012, 8. [Google Scholar] [CrossRef] [PubMed]
- Bounama, C.; Franck, S.; von Bloh, W. The fate of the Earth’s ocean. Hydrol. Earth Syst. Sci. 2001, 5, 569–575. [Google Scholar] [CrossRef]
- Mojzsis, S.J.; Harrison, T.M.; Pidgeon, R.T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 2001, 409, 178–181. [Google Scholar] [CrossRef] [PubMed]
- Valley, J.W.; Lackey, J.S.; Cavosie, A.J.; Clechenko, C.C.; Spicuzza, M.J.; Basei, M.A.S.; Bindeman, I.N.; Ferreira, V.P.; Sial, A.N.; King, E.M.; et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contr. Mineral. Petrol. 2005, 150, 561–580. [Google Scholar] [CrossRef]
- Bédard, J.H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 2006, 70, 1188–1214. [Google Scholar] [CrossRef]
- Korenaga, J.; Planavsky, N.J.; Evans, D.A. Global water cycle and the coevolution of the Earth’s interior and surface environment. Philos. Trans. R. Soc. A 2017, 375. [Google Scholar] [CrossRef] [PubMed]
- Zahnle, K.; Arndt, N.; Cockell, C.; Halliday, A.; Nisbet, E.; Selsis, F.; Sleep, N.H. Emergence of a habitable planet. Space Sci. Rev. 2007, 129, 35–78. [Google Scholar] [CrossRef]
- Greenwood, R.C.; Barrat, J.A.; Miller, M.F.; Anand, M.; Dauphas, N.; Franchi, I.A.; Sillard, P.; Starkey, N.A. Oxygen isotopic evidence for accretion of Earth’s water before a high-energy Moon-forming giant impact. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Beall, A.P.; Moresi, L.; Cooper, C.M. Formation of cratonic lithosphere during the initiation of plate tectonics. Geology 2018, 46, 487–490. [Google Scholar] [CrossRef]
- Daly, R.T.; Schultz, P.H. The delivery of water by impacts from planetary accretion to present. Sci. Adv. 2018, 4. [Google Scholar] [CrossRef] [PubMed]
- Mann, P.; Taira, A. Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone. Tectonophysics 2004, 389, 137–190. [Google Scholar] [CrossRef]
- Roberge, J.; Wallace, P.J.; White, R.V.; Coffin, M.F. Anomalous uplift and subsidence of the Ontong Java Plateau inferred from CO2 contents of submarine basaltic glasses. Geology 2005, 33, 501–504. [Google Scholar] [CrossRef]
- Abramov, O.; Mojzsis, S.J. Microbial habitability of the Hadean earth during the late heavy bombardment. Nature 2009, 459, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.G.; Cabral, R.A.; Rose-Koga, E.F.; Koga, K.T.; Price, A.; Hauri, E.H.; Michael, P. Ultra-depleted melts in olivine-hosted melt inclusions from the Ontong Java Plateau. Chem. Geol. 2015, 414, 124–137. [Google Scholar] [CrossRef] [Green Version]
- Moore, W.B.; Webb, A.A.G. Heat-pipe Earth. Nature 2013, 501, 501–505. [Google Scholar] [CrossRef] [PubMed]
- O’Neil, J.; Boyet, M.; Carlson, R.W.; Paquette, J.-L. Half a billion years of reworking of Hadean mafic crust to produce the Nuvvuagittuq Eoarchean felsic crust. Earth Planet. Sci. Lett. 2013, 379, 13–25. [Google Scholar] [CrossRef]
- Fisher, C.M.; Vervoort, J.D. Using the magmatic record to constrain the growth of continental crust—The Eoarchean zircon Hf record of Greenland. Earth Planet. Sci. Lett. 2008, 488, 79–91. [Google Scholar] [CrossRef]
- Zharkov, V.N. On the history of the lunar orbit. Astron. Vesn. 2000, 34, 1–11. [Google Scholar]
- Pinti, D.L. The origin and evolution of the oceans. In Lectures in Astrobiology; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Vallée, Y.; Shalayel, I.; Ly, K.D.; Rao, K.R.; De Paëpe, G.; Märker, K.; Milet, A. At the very beginning of life on Earth: The thiol-rich peptide (TRP) world hypothesis. Int. J. Dev. Biol. 2017, 61, 471–478. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R. Astrobiology: Life’s beginnings. Nature 2011, 476, 30–31. [Google Scholar] [CrossRef]
- Van Kranendonk, M.J. Two types of Archean continental crust: Plume and plate tectonics on early Earth. Am. J. Sci. 2010, 310, 1187–1209. [Google Scholar] [CrossRef]
- Kamber, B.S. The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precam. Res. 2015, 258, 48–82. [Google Scholar] [CrossRef]
- Gourcerol, B.; Thurston, P.C.; Kontak, D.J.; Côté-Mantha, O.; Biczok, J. Distinguishing primary and mineralization-related signatures of chert from the banded iron-formation-hosted gold deposits at Musselwhite, Ontario and Meadowbank, Nunavut. Geol. Surv. Can. 2015, 1, 1–24. [Google Scholar]
- Kump, L.R.; Seyfried, W.E. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet. Sci. Lett. 2005, 235, 654–662. [Google Scholar] [CrossRef]
- Gäb, F.; Ballhaus, C.; Siemens, J.; Heuser, A.; Lissner, M.; Geisler, T.; Garbe-Schönberg, D. Siderite cannot be used as CO2 sensor for Archaean atmospheres. Geochim. Cosmochim. Acta 2017, 214, 209–225. [Google Scholar] [CrossRef]
- Sigurdsson, H.; Devine, J.D.; Tchua, F.M.; Presser, F.M.; Pringle, M.K.W.; Evans, W.C. Origin of the lethal gas burst from Lake Monoun, Cameroun. J. Volcanol. Geotherm. Res. 1987, 31, 1–16. [Google Scholar] [CrossRef]
- Kusakabe, M.; Tanyileke, G.Z.; McCord, S.A.; Schladow, S.G. Recent pH and CO2 profiles at Lakes Nyos and Monoun, Cameroon: Implications for the degassing strategy and its numerical simulation. J. Volcanol. Geotherm. Res. 2000, 97, 241–260. [Google Scholar] [CrossRef]
- Macleod, G.; McKeown, C.; Hall, A.J.; Russell, M.J. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig. Life Evol. Biosph. 1994, 24, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Arrhenius, G.; Gedulin, B.; Mojzsis, S. Phosphate in models for chemical evolution. In Chemical Evolution and Origin of Life; Ponnamperuma, C., Chela-Flores, J., Eds.; Harpers Brothers: New York, NY, USA, 1993. [Google Scholar]
- Tosca, N.J.; Guggenheim, S.; Pufahl, P.K. An authigenic origin for Precambrian greenalite: Implications for iron formation and the chemistry of ancient seawater. Geol. Soc. Am. Bull. 2016, 128, 511–530. [Google Scholar] [CrossRef]
- Halevy, I.; Alesker, M.; Schuster, E.M.; Popovitz-Biro, R.; Feldman, Y. A key role for green rust in the Precambrian oceans and the genesis of iron formations. Nat. Geosci. 2017, 10, 135–139. [Google Scholar] [CrossRef]
- Isley, A.E.; Abbott, D.H. Plume-related mafic volcanism and the deposition of banded iron formation. J. Geophys. Res. Solid Earth 1999, 104, 15461–15477. [Google Scholar] [CrossRef] [Green Version]
- Bernal, J.D.; Dasgupta, D.R.; Mackay, A.L. The oxides and hydroxides of iron and their structural inter-relationships. Clay Miner. Bull. 1959, 4, 15–30. [Google Scholar] [CrossRef]
- Antony, H.; Legrand, L.; Chaussé, A. Carbonate and sulphate green rusts—Mechanisms of oxidation and reduction. Electrochim. Acta 2008, 53, 7146–7156. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J.; Martin, W. Serpentinization as a source of energy at the origin of life. Geobiology 2010, 8, 355–371. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J. Life is a verb, not a noun. Geology 2017, 45, 1143–1144. [Google Scholar] [CrossRef] [Green Version]
- Appel, P.W.U. On the early Archaean Isua iron-formation, west Greenland. Precamb. Res. 1980, 11, 73–87. [Google Scholar] [CrossRef]
- Appel, P.W.U. Mineral occurrences in the 3.6 Ga old Isua supracrustal belt, West Greenland. Develop. Precamb. Geol. 1990, 8, 593–603. [Google Scholar]
- Gole, M.J. Mineralogy and petrology of very-low-metamorphic grade Archaean banded iron-formations, Weld Range, Western Australia. Am. Mineral. 1980, 65, 8–25. [Google Scholar]
- Kuma, K.; Paplawsky, W.; Gedulin, B.; Arrhenius, G. Mixed-valence hydroxides as bioorganic host minerals. Orig. Life Evol. Biosph. 1989, 19, 573–601. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J.; Hall, A.J. A hydrothermal source of energy and materials at the origin of life. In Chemical Evolution II: From Origins of Life to Modern Society; American Chemical Society: Washington, DC, USA, 2009. [Google Scholar]
- Klein, C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am. Mineral. 2005, 90, 1473–1499. [Google Scholar] [CrossRef]
- Sun, S.; Li, Y.L. Geneses and evolutions of iron-bearing minerals in banded iron formations of >3760 to ca. 2200 million-year-old: Constraints from electron microscopic, X-ray diffraction and Mössbauer spectroscopic investigations. Precamb. Res. 2017, 289, 1–17. [Google Scholar] [CrossRef]
- Ball, P. Water as an active constituent in cell biology. Chem. Rev. 2008, 108, 74–108. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Verma, C.S. Binding of buried structural water increases the flexibility of proteins. Proc. Natl. Acad. Sci. USA 1999, 96, 9613–9615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frauenfelder, H.; Chen, G.; Berendzen, J.; Fenimore, P.W.; Jansson, H.; McMahon, B.H.; Stroe, I.R.; Swenson, J.; Young, R.D. A unified model of protein dynamics. Proc. Natl. Acad. Sci. USA 2009, 106, 5129–5134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jungwirth, P. Biological water or rather water in biology? J. Phys. Chem. Lett. 2015, 6, 2449–2451. [Google Scholar] [CrossRef] [PubMed]
- Mentré, P. Water in the orchestration of the cell machinery. Some misunderstandings: A short review. J. Biol. Phys. 2012, 38, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Szent-Györgyi, A. Biology and the pathology of water. Perspect. Biol. Med. 1968, 14, 239–249. [Google Scholar] [CrossRef]
- Pattee, H.H. The nature of hierarchical controls in living matter. Found. Math. Biol. 1972, 1, 1–22. [Google Scholar]
- Helgeson, H.C.; Delany, J.M.; Nesbitt, H.W.; Bird, D.K. Summary and critique of the thermodynamic properties of rock-forming minerals. Am. J. Sci. 1978, 278, 1–229. [Google Scholar]
- Westheimer, F.H. Why nature chose phosphates. Science 1987, 235, 1173–1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunitz, J.D. The entropic cost of bound water in crystals and biomolecules. Science 1994, 264, 670–671. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Bylaska, E.J.; Weare, J.H. Weakly bound water structure, bond valence saturation and water dynamics at the goethite (100) surface/aqueous interface: ab initio dynamical simulations. Geochem. Trans. 2017, 18, 3. [Google Scholar] [CrossRef] [PubMed]
- Dorvee, J.R.; Veis, A. Water in the formation of biogenic minerals: Peeling away the hydration layers. J. Struct. Biol. 2013, 183, 278–303. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Santiburcio, D.; Marx, D. Nanoconfinement in slit pores enhances water self-dissociation. Phys. Rev. Lett. 2017, 119. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Voth, G.A. Computer simulation of explicit proton translocation in cytochrome c oxidase: The D-pathway. Proc. Natl. Acad. Sci. USA 2005, 102, 6795–6800. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.J.; Chng, L.L.; Nocera, D.G. Proton-coupled O−O activation on a redox platform bearing a hydrogen-bonding scaffold. JACS 2003, 125, 1866–1876. [Google Scholar] [CrossRef] [PubMed]
- Agmon, N. The grotthuss mechanism. Chem. Phys. Lett. 1995, 244, 456–462. [Google Scholar] [CrossRef]
- Cukierman, S. Et tu, Grotthuss! and other unfinished stories. Biochim. Biophys. Acta 2006, 1757, 876–885. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.; Williams, L.D. A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center. Nucl. Acids Res. 2009, 37, 3134–3142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.; Wagner, T.; Xu, T.; Hu, X.; Ermler, U.; Shima, S. Water-bridged H-bonding network contributes to the catalysis of a SAM-dependent C-methyltransferase HcgC. Angew. Chem. Int. Ed. 2017. [Google Scholar] [CrossRef]
- Cottrell, A. The natural philosophy of engines. Contemp. Phys. 1979, 20, 1–10. [Google Scholar] [CrossRef]
- Saleh, T.; Kalodimos, C.G. Enzymes at work are enzymes in motion: Protein motions and water both play key roles in enzyme catalysis. Science 2017, 355, 247–248. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, V.; Li, L.; Carter, C.W. A master switch couples Mg2+-assisted catalysis to domain motion in B. stearothermophilus tryptophanyl-tRNA synthetase. Structure 2012, 20, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Maden, B.E.H. Tetrahydrofolate and tetrahydromethanopterin compared: Functionally distinct carriers in C1 metabolism. Biochem. J. 2000, 350, 609–629. [Google Scholar] [CrossRef] [PubMed]
- Buckel, W.; Thauer, R.K. Flavin-based electron bifurcation, ferredoxin, flavodoxin, and anaerobic respiration with protons (Ech) or NAD+ (Rnf) as electron acceptors: A historical review. Front. Microbial. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, G.; Jayamani, E.; Mai, G.; Buckel, W. Energy conservation via electron-transferring flavoprotein in anaerobic bactera. J. Bacteriol. 2008, 190, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Baymann, F.; Schoepp-Cothenet, B.; Duval, S.; Guiral, M.; Brugna, M.; Baffert, C.; Russell, M.J.; Nitschke, W. On the natural history of flavin-based electron bifurcation. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 2008, 6, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Tsai, J.Y.; Kellosalo, J.; Sun, Y.J.; Goldman, A. Proton/sodium pumping pyrophosphatases: The last of the primary ion pumps. Curr. Opin. Struct. Biol. 2014, 27, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Muneyuki, E.; Hisabori, T. ATP synthase—A marvellous rotary engine of the cell. Nat. Rev. Mol. Cell Biol. 2001, 2, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Petrović, D.; Risso, V.A.; Kamerlin, S.C.L.; Sanchez-Ruiz, J.M. Conformational dynamics and enzyme evolution. J. Roy. Soc. Interface 2018, 15. [Google Scholar] [CrossRef] [PubMed]
- McDonald, L.R.; Whitley, M.J.; Boyer, J.A.; Lee, A.L. Colocalization of fast and slow timescale dynamics in the allosteric signaling protein CheY. J. Mol. Biol. 2013, 425, 2372–2381. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Esser, L.; Tang, W.K.; Zhou, F.; Zhou, Y.; Yu, L.; Yu, C.A. Structural analysis of cytochrome bc1 complexes: Implications to the mechanism of function. Biochim. Biophys. Acta 2013, 1827, 1278–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, A.C.; Ramsden, D.B. Hydrogen symbioses in evolution and disease. Q. J. Med. 2007, 100, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Beratan, D.N.; Liu, C.; Migliore, A.; Polizzi, N.F.; Skourtis, S.S.; Zhang, P.; Zhang, Y. Charge transfer in dynamical biosystems, or the treachery of (static) images. Acc. Chem. Res. 2014, 48, 474–481. [Google Scholar] [CrossRef] [PubMed]
- Makarieva, A.M.; Gorshkov, V.G.; Li, B.L. Energetics of the smallest: Do bacteria breathe at the same rate as whales? Proc. R. Soc. Lond. B Biol. Sci. 2005, 272, 2219–2224. [Google Scholar] [CrossRef] [PubMed]
- LaRowe, D.E.; Amend, J.P. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am. J. Sci. 2015, 315, 167–203. [Google Scholar] [CrossRef]
- Schoepp-Cothenet, B.; Van Lis, R.; Atteia, A.; Baymann, F.; Capowiez, L.; Ducluzeau, A.L.; Duval, S.; Ten Brink, F.; Russell, M.J.; Nitschke, W. On the universal core of bioenergetics. Biochim. Biophys. Acta 2013, 1827, 79–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems, and molecular machines. Rep. Prog. Phys. 2012, 75. [Google Scholar] [CrossRef] [PubMed]
- Caplan, S.; Essig, A. Bioenergetics and Linear Nonequilibrium Thermodynamics; The Steady State; Harvard University: Cambridge, MA, USA, 1999. [Google Scholar]
- Géhin, A.; Ruby, C.; Abdelmoula, M.; Benali, O.; Ghanbaja, J.; Refait, P.; Genin, J.M.R. Synthesis of Fe (II-III) hydroxysulphate green rust by coprecipitation. Solid State Sci. 2002, 4, 61–66. [Google Scholar] [CrossRef]
- Christiansen, B.C.; Balic-Zunic, T.; Petit, P.O.; Frandsen, C.; Mørup, S.; Geckeis, H.; Katerinopoulou, A.; Stipp, S.S. Composition and structure of an iron-bearing, layered double hydroxide (LDH)–green rust sodium sulphate. Geochim. Cosmochim. Acta 2009, 73, 3579–3592. [Google Scholar] [CrossRef]
- Khan, A.I.; O’Hare, D. Intercalation chemistry of layered double hydroxides: Recent developments and applications. J. Mat. Chem. 2002, 12, 3191–3198. [Google Scholar] [CrossRef]
- Braterman, P.S.; Xu, Z.P.; Yarberry, F. Layered double hydroxides (LDHs). In Handbook of Layered Materials; Marcel Dekker: New York, NY, USA, 2004. [Google Scholar]
- Génin, J.M.R.; Ruby, C. Anion and cation distributions in Fe (II–III) hydroxysalt green rusts from XRD and Mössbauer analysis (carbonate, chloride, sulphate, …); the “fougerite” mineral. Solid State Sci. 2004, 6, 705–718. [Google Scholar] [CrossRef]
- Thyveetil, M.A.; Coveney, P.V.; Greenwell, H.C.; Suter, J.L. Role of host layer flexibility in DNA guest intercalation revealed by computer simulation of layered nanomaterials. JACS 2008, 130, 12485–12495. [Google Scholar] [CrossRef] [PubMed]
- Hugot-LeáGoff, A. Localized corrosion processes in iron and steels studied by in situ Raman spectroscopy. Faraday Disc. 1992, 94, 137–147. [Google Scholar]
- Kolb, V.; Zhang, S.; Xu, Y.; Arrhenius, G. Mineral induced phosphorylation of glycolate ion—A metaphor in chemical evolution. Orig. Life Evol. Biosph. 1997, 27, 485–503. [Google Scholar] [CrossRef] [PubMed]
- Loyaux-Lawniczak, S.; Refait, P.; Ehrhardt, J.-J.; Lecomte, P.; Génin, J.-M.R. Trapping of Cr by formation of ferrihydrite during the reduction of chromate ions by Fe (II)-Fe (III) hydroxysalt green rusts. Environ. Sci. Technol. 2000, 34, 438–443. [Google Scholar] [CrossRef]
- O’Loughlin, E.J.; Kelly, S.D.; Cook, R.E.; Csencsits, R.; Kemner, K.M. Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): Formation of UO2 nanoparticles. Environ. Sci. Technol. 2003, 37, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Génin, J.M.; Mills, S.J.; Christy, A.G.; Guérin, O.; Herbillon, A.J.; Kuzmann, E.; Ona-Nguema, G.; Ruby, C.; Upadhyay, C. Mössbauerite, Fe3+6O4(OH)8[CO3]·3H2O, the fully oxidized ‘green rust’ mineral from Mont Saint-Michel Bay, France. Mineralog. Mag. 2014, 78, 447–465. [Google Scholar] [CrossRef]
- Trolard, F.; Bourrié, G. Structure of fougerite and green rusts and a thermodynamic model for their stabilities. J. Geochem. Exp. 2006, 88, 249–251. [Google Scholar] [CrossRef]
- Omwoma, S.; Chen, W.; Tsunashima, R.; Song, Y.F. Recent advances on polyoxometalates intercalated layered double hydroxides: From synthetic approaches to functional material applications. Coord. Chem. Rev. 2014, 258, 58–71. [Google Scholar] [CrossRef]
- Ookubo, A.; Ooi, K.; Hayashi, H. Preparation and phosphate ion-exchange properties of a hydrotalcite-like compound. Langmuir 1993, 9, 1418–1422. [Google Scholar] [CrossRef]
- Dass, A.V.; Jaber, M.; Brack, A.; Foucher, F.; Kee, T.P.; Georgelin, T.; Westall, F. Potential role of inorganic confined environments in prebiotic phosphorylation. Life 2018, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, E.J.; Gorski, C.A.; Scherer, M.M. Effects of phosphate on secondary mineral formation during the bioreduction of akaganeite (β-FeOOH): Green rust versus framboidal magnetite. Curr. Inorg. Chem. 2015, 5, 214–224. [Google Scholar] [CrossRef]
- Sabot, R.; Jeannin, M.; Gadouleau, M.; Guo, Q.; Sicre, E.; Refait, P. Influence of lactate ions on the formation of rust. Corros. Sci. 2007, 49, 1610–1624. [Google Scholar] [CrossRef]
- Sumoondur, A.D.; Shaw, S.; Benning, L.G. Formation of lactate intercalated green rust via the reductive dissolution of ferrihydrite. Geochim. Cosmochim. Acta 2009, 73, A1291. [Google Scholar]
- Ayala-Luis, K.B.; Koch, C.B.; Hansen, H.C.B. Intercalation of linear C9–C16 carboxylates in layered FeII–FeIII-hydroxides (green rust) via ion exchange. Appl. Clay Sci. 2010, 48, 334–341. [Google Scholar] [CrossRef]
- McGlynn, S.E.; Mulder, D.W.; Shepard, E.M.; Broderick, J.B.; Peters, J.W. Hydrogenase cluster biosynthesis: Organometallic chemistry nature’s way. Dalton Trans. 2009, 22, 4274–4285. [Google Scholar] [CrossRef] [PubMed]
- Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127–4170. [Google Scholar] [CrossRef] [PubMed]
- Myneni, S.C.B.; Tokunaga, T.K.; Brown, G.E. Abiotic selenium redox transformations in the presence of Fe (II, III) oxides. Science 1997, 278, 1106–1109. [Google Scholar] [CrossRef]
- Génin, J.M.R.; Ruby, C.; Upadhyay, C. Structure and thermodynamics of ferrous, stoichiometric and ferric oxyhydroxycarbonate green rusts; redox flexibility and fougerite mineral. Solid State Sci. 2006, 8, 1330–1343. [Google Scholar] [CrossRef]
- Mills, S.J.; Christy, A.G.; Génin, J.M.; Kameda, T.; Colombo, F. Nomenclature of the hydrotalcite supergroup: Natural layered double hydroxides. Mineral. Mag. 2012, 76, 1289–1336. [Google Scholar] [CrossRef]
- Turner, J.S. Homeostasis and the physiological dimension of niche construction theory in ecology and evolution. Evol. Ecol. 2016, 30, 203–219. [Google Scholar] [CrossRef]
- Amend, J.P.; Shock, E.L. Energetics of amino acid synthesis in hydrothermal ecosystems. Science 1998, 281, 1659–1662. [Google Scholar] [CrossRef] [PubMed]
- Kitadai, N. Energetics of amino acid synthesis in alkaline hydrothermal environments. Orig. Life Evol. Biosph. 2015, 45, 377–409. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, A.; Dinh, M.A.; Yildiz, B. Hydrogen weakens interlayer bonding in layered transition metal sulfide Fe 1+ x S. J. Mater. Chem. A 2017, 5, 5030–5035. [Google Scholar] [CrossRef]
- Marx, D.; Chandra, A.; Tuckerman, M.E. Aqueous basic solutions: Hydroxide solvation, structural diffusion, and comparison to the hydrated proton. Chem. Rev. 2010, 110, 2174–2216. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Santiburcio, D.; Wittekindt, C.; Marx, D. Nanoconfinement effects on hydrated excess protons in layered materials. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lovrincic, R.; Sepunaru, L.; Li, W.; Vilan, A.; Pecht, I.; Sheves, M.; Cahen, D. Insights into solid-state electron transport through proteins from inelastic tunneling spectroscopy: The case of azurin. ACS Nano 2015, 9, 9955–9963. [Google Scholar] [CrossRef] [PubMed]
- McKone, J.R.; Marinescu, S.C.; Brunschwig, B.S.; Winkler, J.R.; Gray, H.B. Earth-abundant hydrogen evolution electrocatalysts. Chem. Sci. 2014, 5, 865–878. [Google Scholar] [CrossRef] [Green Version]
- Kwon, K.D.; Refson, K.; Bone, S.; Qiao, R.; Yang, W.L.; Liu, Z.; Sposito, G. Magnetic ordering in tetragonal FeS: Evidence for strong itinerant spin fluctuations. Phys. Rev. B 2011, 83, 064402. [Google Scholar] [CrossRef] [Green Version]
- Kaila, V.R.I.; Verkhovsky, M.I.; Wikström, M. Proton-coupled electron transfer in cytochrome oxidase. Chem. Rev. 2010, 110, 7062–7081. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Ford, T.; Li, X.; Gu, J.D. Cytochrome cd1-containing nitrite reductase encoding gene nirS as a new functional biomarker for detection of anaerobic ammonium oxidizing (Anammox) bacteria. Environ. Sci. Technol. 2011, 45, 3547–3553. [Google Scholar] [CrossRef] [PubMed]
- Wraight, C.A. Chance and design—Proton transfer in water, channels and bioenergetic proteins. Biochim. Biophys. Acta 2006, 1757, 886–912. [Google Scholar] [CrossRef] [PubMed]
- Rickard, D.; Luther, G.W. Chemistry of iron sulfides. Chem. Rev. 2007, 107, 514–562. [Google Scholar] [CrossRef] [PubMed]
- Lennie, A.R.; Redfern, S.A.; Champness, P.E.; Stoddart, C.P.; Schofield, P.F.; Vaughan, D.J. Transformation of mackinawite to greigite: An in situ X-ray powder diffraction and transmission electron microscope study. Am. Mineral. 1997, 82, 302–309. [Google Scholar] [CrossRef]
- Vaughan, D.J.; Craig, J.R. The crystal chemistry of iron–nickel thiospinels. Am. Mineral. 1985, 70, 1036–1043. [Google Scholar]
- Andrews, S.C.; Berks, B.C.; McClay, J.; Ambler, A.; Quail, M.A.; Golby, P.; Guest, J.R. A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 1997, 143, 3633–3647. [Google Scholar] [CrossRef] [PubMed]
- Beinert, H.; Holm, R.H.; Münck, E. Iron-sulfur clusters: Nature’s modular, multipurpose structures. Science 1997, 277, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Walsby, C.J.; Hong, W.; Broderick, W.E.; Cheek, J.; Ortillo, D.; Broderick, J.B.; Hoffman, B.M. Electron-nuclear double resonance spectroscopic evidence that S-adenosylmethionine binds in contact with the catalytically active [4Fe-4S]+ cluster of pyruvate formate-lyase activating enzyme. JACS 2002, 124, 3143–3151. [Google Scholar] [CrossRef]
- Mehta, A.P.; Abdelwahed, S.H.; Mahanta, N.; Fedoseyenko, D.; Philmus, B.; Cooper, L.E.; Liu, Y.; Jhulki, I.; Ealick, S.E.; Begley, T.P. Radical S-adenosylmethionine (SAM) enzymes in cofactor biosynthesis: A treasure trove of complex organic radical rearrangement reactions. J. Biol. Chem. 2015, 290, 3980–3986. [Google Scholar] [CrossRef] [PubMed]
- Mitra-Delmotte, G.; Mitra, A. Magnetism, entropy, and the first nano-machines. Open Phys. 2010, 8, 259–272. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Zhang, B.; Yu, F.; Novakova, A.A.; Krivenkov, M.S.; Kiseleva, T.Y.; Chang, L.; Rao, J.; Polyakov, A.O.; Blake, G.R.; et al. High-purity Fe3S4 greigite microcrystals for magnetic and electrochemical performance. Chem. Mat. 2014, 26, 5821–5829. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Wu, Z.; Hao, H.; Liu, J.; Huang, T.; Sun, H.; Zhang, J.; Zhang, H.; Guo, Z. Colloidal synthesis of greigite nanoplates with controlled lateral size for electrochemical applications. Nanoscale 2015, 7, 4171–4178. [Google Scholar] [CrossRef] [PubMed]
- Sharifvaghefi, S.; Zheng, Y. Dispersed Ni and Co promoted MoS2 catalysts with magnetic greigite as a core: Performance and stability in hydrodesulfurization. Chem. Select. 2017, 2, 4678–4685. [Google Scholar] [CrossRef]
- Zolensky, M.E.; Mackinnon, I.D. Microstructures of cylindrical tochilinites. Am. Mineral. 1986, 71, 1201–1209. [Google Scholar]
- Beard, J.S. Occurrence and composition of tochilinite and related minerals in Site 1068 serpentinites. In Proceedings of the Ocean Drilling Program Scientific Results; Beslier, M.O., Whitmarsh, R.B., Wallace, P.J., Girardeau, J., Eds.; Ocean Drilling Program: College Station, TX, USA, 2000; Volume 173. [Google Scholar]
- Anthony, J.W.; Bideaux, R.A.; Bladh, K.W.; Nichols, M.C. Handbook of Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 2003. [Google Scholar]
- Pekov, I.V.; Sereda, E.V.; Polekhovsky, Y.S.; Britvin, S.N.; Chukanov, N.V.; Yapaskurt, V.O.; Bryzgalov, I.A. Ferrotochilinite, 6FeS·5Fe(OH)2, a new mineral from the Oktyabr’sky deposit, Noril’sk district, Siberia, Russia. Geol. Ore Depos. 2013, 55, 567–574. [Google Scholar] [CrossRef]
- Butt, C.R.M.; Nickel, E.H. Mineralogy and geochemistry of the weathering of the disseminated nickel sulfide deposit at Mt. Keith, Western Australia. Econ. Geol. 1981, 76, 1736–1751. [Google Scholar] [CrossRef]
- Peng, Y.; Xu, L.; Xi, G.; Zhong, C.; Lu, J.; Meng, Z.; Li, G.; Zhang, S.; Zhang, G.; Qian, Y. An experimental study on the hydrothermal preparation of tochilinite nanotubes and tochilinite–serpentine-intergrowth nanotubes from metal particles. Geochim. Cosmochim. Acta 2007, 71, 2858–2875. [Google Scholar] [CrossRef]
- Tomeoka, K.; Buseck, P.R. A new layered mineral from the Mighei carbonaceous chondrite. Nature 1983, 306, 354–356. [Google Scholar] [CrossRef]
- Tomeoka, K.; Buseck, P.R. Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni. Geochim. Cosmochim. Acta 1985, 49, 2149–2163. [Google Scholar] [CrossRef]
- Matsubara, S.; Kato, A. Tochilinite in ultrabasic rock from Kurotani, Gifu Prefecture, central Japan. Bull. Nat. Sci. Mus. Tokyo Ser. C 1992, 18, 117–120. [Google Scholar]
- Zolensky, M.E. Hydrothermal alternation of CM carbonaceous chondrites: Implications of the identification of tochilinite as one type of meteoritic PCP. Meteoritics 1984, 19, 346–347. [Google Scholar]
- Baltscheffsky, M.; von Stedingk, L.-V.; Heldt, H.-W.; Klingenberg, M. Inorganic pyrophosphate; formation in bacterial photophosphorylation. Science 1966, 153, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Baltscheffsky, M.; Schultz, A.; Baltscheffsky, H. H+-PPases: A tightly membrane-bound family. FEBS Lett. 1999, 457, 527–533. [Google Scholar] [CrossRef]
- Watson, J.D.; Milner-White, E.J. A novel main-chain anion-binding site in proteins: The nest. A particular combination of phi, psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J. Mol. Biol. 2002, 315, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Hayward, S.; Leader, D.P.; Al-Shubailly, F.; Milner-White, E.J. Rings and ribbons in protein structures: Characterization using helical parameters and Ramachandran plots for repeating dipeptides. Proteins 2014, 82, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.E.; Saraste, M.; Runswick, M.J.; Gay, N.J. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold. EMBO J. 1982, 1, 945–951. [Google Scholar] [PubMed]
- Carny, O.; Gazit, E. Creating prebiotic sanctuary: Self-assembling supramolecular peptide structures bind and stabilize RNA. Orig. Life Evol. Biosph. 2011, 41, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Freemont, P.S.; Friedman, J.M.; Beese, L.S.; Sanderson, M.R.; Steitz, T.A. Cocrystal structure of an editing complex of Klenow fragment with DNA. Proc. Natl. Acad. Sci. USA 1988, 85, 8924–8928. [Google Scholar] [CrossRef] [PubMed]
- Steitz, T.A.; Steitz, J.A. A general two-metal-ion mechanism for catalytic RNA. Proc. Natl. Acad. Sci. USA 1993, 90, 6498–6502. [Google Scholar] [CrossRef] [PubMed]
- Nanda, V.; Senn, S.; Pike, D.H.; Rodriguez-Granillo, A.; Hansen, W.A.; Khare, S.D.; Noy, D. Structural principles for computational and de novo design of 4Fe–4S metalloproteins. Biochim. Biophys. Acta 2016, 1857, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Kurland, C.G. The RNA dreamtime: Modern cells feature proteins that might have supported a prebiotic polypeptide world but nothing indicates that RNA world ever was. BioEssays 2010, 32, 866–871. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, J.; Riek, R. On the possible amyloid origin of protein folds. J. Mol. Biol. 2012, 421, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, D.S.; Sawaya, M.R. Structural studies of amyloid proteins at the molecular level. Ann. Rev. Biochem. 2017, 86, 69–95. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Mihara, H. Construction of a chemically and conformationally self-replicating system of amyloid-like fibrils. Bioorg. Med. Chem. 2004, 12, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Maury, C.P.J. Self-propagating β-sheet polypeptide structures as prebiotic informational molecular entities: The amyloid world. Orig. Life Evol. Biosph. 2009, 39, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Wiltzius, J.J.; Landau, M.; Nelson, R.; Sawaya, M.R.; Apostol, M.I.; Goldschmidt, L.; Soriaga, A.B.; Cascio, D.; Rajashankar, K.; Eisenberg, D. Molecular mechanisms for protein-encoded inheritance. Nat. Struct. Mol. Biol. 2009, 16. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.G.; Huynh, T.; Xia, Z.; Zhang, Y.; Fang, H.; Wei, G.; Zhou, R. Hydrophobic interaction drives surface-assisted epitaxial assembly of amyloid-like peptides. JACS 2013, 135, 3150–3157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 1993, 90, 3334–3338. [Google Scholar] [CrossRef] [PubMed]
- Rufo, C.M.; Moroz, Y.S.; Moroz, O.V.; Stöhr, J.; Smith, T.A.; Hu, X.; DeGrado, W.F.; Korendovych, I.V. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 2014, 6, 303–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalai, P.; Ustriyana, P.; Sahai, N. Aqueous magnesium as an environmental selection pressure in the evolution of phospholipid membranes on early earth. Geochim. Cosmochim. Acta 2018, 223, 216–228. [Google Scholar] [CrossRef]
- Russell, M.J.; Daia, D.E.; Hall, A.J. The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean. In Thermophiles: The Keys to Molecular Evolution and the Origin of Life? Wiegel, J., Adams, M.W., Eds.; Taylor and Francis: London, UK; Philadelphia, PA, USA, 1998. [Google Scholar]
- Chernoff, Y.O. Amyloidogenic domains, prions and structural inheritance: Rudiments of early life or recent acquisition? Curr. Opin. Chem. Biol. 2004, 8, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, M.M.; Chapman, M.R. Curli biogenesis and function. Annu. Rev. Microbiol. 2006, 60, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Branda, S.S.; Vik, Å.; Friedman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Traverse, C.C.; Mayo-Smith, L.M.; Poltak, S.R.; Cooper, V.S. Tangled bank of experimentally evolved Burkholderia biofilms reflects selection during chronic infections. Proc. Natl. Acad. Sci. USA 2013, 110, E250–E259. [Google Scholar] [CrossRef] [PubMed]
- Hobley, L.; Harkins, C.; MacPhee, C.E.; Stanley-Wall, N.R. Giving structure to the biofilm matrix: An overview of individual strategies and emerging common themes. FEMS Microbial. Rev. 2015, 39, 649–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berlanga, M.; Guerrero, R. Living together in biofilms: The microbial cell factory and its biotechnological implications. Microb. Cell Fact. 2016, 15. [Google Scholar] [CrossRef] [PubMed]
- Decho, A.W.; Gutierrez, T. Microbial extracellular polymeric substances (EPSs) in ocean systems. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.J. The generation at hot springs of ores, microbialites and life. Ore Geol. Rev. 1996, 10, 199–214. [Google Scholar] [CrossRef]
- Wicken, J.S. Evolution, Thermodynamics and Information: Extending the Darwinian Program; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Peretó, J.; Bada, J.L.; Lazcano, A. Charles Darwin and the origin of life. Orig. Life Evol. Biosph. 2009, 39, 395–406. [Google Scholar] [CrossRef] [PubMed]
- Evenson, E. Charles Darwin—Geologist. Geol. Soc. Am. Abstr. Prog. 2009, 41, 243. [Google Scholar]
- Greene, M.T. Man, myth, geologist. Nat. Geosci. 2009, 2, 666–667. [Google Scholar] [CrossRef]
- Polanyi, M. Personal Knowledge, Towards a Post-critical Epistemology; Routledge and Kegan Paul: London, UK, 1952. [Google Scholar]
- Šešelja, D.; Straßer, C. Epistemic justification in the context of pursuit: A coherentist approach. Synthese 2014, 191, 3111–3141. [Google Scholar] [CrossRef]
- Pasteur, L. Mémoire sur les corpuscules organisés qui existent en suspension dans l’atmosphère. Examen de la doctrine des générations spontanées (Extrait). Comptes Rend. Chim. 1861, 52, 1142–1143. [Google Scholar]
- Fox Keller, E. Making Sense of Life: Explaining Biological Development with Models, Metaphors, and Machines; Harvard University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Russell, M.J. Discussion. Evolution of Hydrothermal Ecosystems on Earth (and Mars); Bock, G.R., Goode, J.A., Eds.; John Wiley & Sons: London, UK, 1996. [Google Scholar]
- Ritson, D.J.; Battilocchio, C.; Ley, S.V.; Sutherland, J.D. Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairns-Smith, A.G. Genetic Takeover: And the Mineral Origins of Life; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Feynman, R. The Character of Physical Law; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Astumian, R.D.; Mukherjee, S.; Warshel, A. The physics and physical chemistry of molecular machines. Chem. Phys. Chem 2016, 17, 1719–1741. [Google Scholar] [CrossRef] [PubMed]
- Greenwell, H.C.; Jones, W.; Coveney, P.V.; Stackhouse, S. On the application of computer simulation techniques to anionic and cationic clays: A materials chemistry perspective. J. Mater. Chem. 2006, 16, 708–723. [Google Scholar] [CrossRef]
- Mitchell, P. The origin of life and the formation and organizing functions of natural membranes. In Proceedings of the First International Symposium on the Origin of Life on the Earth; Oparin, A.I., Pasynskiĭ, A.G., Brauntsteĭn, A.E., Pavlovskaya, T.E., Eds.; House Academy of Science: Moscow, Russia, 1957. [Google Scholar]
Biosyntonically ‘Engineered’ Steps, | Mineral Barriers, Engines, Catalysts | Abiotic Reaction Coupling and/or Gradient | References | |
---|---|---|---|---|
cf. Prebiotic Enzyme Analogues | ||||
0. {5OH− + HS−} + 2Fe2+ + Fe3+ + Ni2+ → {FeS + Fe2(OH)5} + ē | Green rust and [FeNi]S set in SiO2? | Spontaneous barrier precipitation | [6,22,24,30,31,35,45,59,65,67] | |
membrane | ||||
1. H2 → 2H• → 2H+ + 2e− | GR>FeS>NiS>MoS2/Chimneys | Redox gradient | [68,69,70,71,72,73,74,75,76,77,78,79] | |
NiFe[Mo]-Hydrogenasase | ||||
1a. proton-coupled electron transfer processes | GR, mackinawite, greigite | Proton gradient | [79] | |
Ferredoxin | ||||
1b. electron bifurcation, conformation plasticity, electron and proton transfer, gating | MMO, Nir | GR, mackinawite, greigite, MoSx | Redox gradient | [4,7,8,18,19,20,61,67,72,73,74,75,76,77,78,79,80] |
2. H+ + 2ē + CO2 → HCOO− + H2O | FHL | Ni3Fe, or [FeNi]S or MoS | Serpentinization, or redox, pH gradient | [24,60] |
2a. CO2 + 2ē + H+ → CO + OH− | CODH | Violarite | Electron conduction | [34,81,82,83] |
3. CH4 + NO3− + H2 + H+ → •CH3 + 2H2O + NO | GR & Mo-dosed greigite (redox/pH gradients) | Undemonstrated (Redox and pH gradient) | [54,55,61,80,84,85] | |
MMO | ||||
4. NO3− + 4H2 + 2H+ → NH4+ + 3H2O | GR (redox/pH gradients) | Redox (~180 min) | [86,87,88,89,90,91] | |
Nar/Nir/NOR | ||||
5. •CH3 + OH−/SH−?) → CH3OH/ CH3SH) + ē | GR? high T | Low yield | [43,44] | |
MMO? | ||||
6. CH3OH + [2FeIII] → HCHO + [2FeII] + 2H+ | MDH | GR [FeNi]S? Fe2(MoO4)3 | Undemonstrated | [54] |
7. HCHO+HP2O73− + [OH−] → [HCOPO4]2− +HPO42− | ? | Undemonstrated (exergonic) | [92] | |
FK | ||||
8. HCOPO42− + HS− + 2H+ + 2ē → CH3S− + HPO42− | ? | Undemonstrated (exergonic) | [92,93] | |
9. CH3S− + HCOO− + H+ → CH3COOH + HS− | Fe4NiS9(HN)2 | cf. Reppe chemistry | [29,42,92,93,94,95,96] | |
ACS | ||||
9a. CH3S− + CO → CH3COS− | Fe4NiS9(HN)2 | High yield (20 h) | [42] | |
9b. (CH3COS− + HPO42− → CH3COPO42− + HS−) | ? | Low yield | [94] | |
10. HCOO− + CH3CO~SCH3 + ē → CH3COCOO− + HSCH3− | Fe2(RS)2(CO)6 | Undemonstrated | [97,98] | |
PFL | ||||
10a. CH3COCOO− + (HP2O7)3− + CO2 → CH2C=C(OPO3)2−COO− + HPO42− +H+ | GR/mackinawite? | Predicted | [16] | |
PPase | ||||
10b. CH2=C(OPO3)2−COO− + CO2 + H2O → −OOCCH2COCOO− + HPO42− + H+ | ACC | GR/mackinawite? | Predicted | [16] |
11. CH3COCOO− + NH4+ + 2ē + 2H+ → CH3CH(NH2)COO− + H2O | ALT | GR/mackinawite? | 24 h | [39] |
12. (CH3CH(NH2)COOH)4 + CH3CH(NH2)COOH → CH3CH(NH2)CO-CH3CH(NH)CO-CH3CH(NH)CO-CH3CH(NH)CO-CH3CH(NH)COOH + 4H2O | Dolomite (ab initio simulations mackinawite and double layer hydroxide) | Spontaneous (Dolomite) | [99,100,101,102,103,104,105,106,107,108] | |
DLH [cf. “DNA pol”] | ||||
13. Pi + Pi → PPi by GR | H+-PPase | FeS, GR | Only at ~equilibrium | [109] |
ligand-assistedrecapitulation? | ||||
{13} poly-alanine peptide-strengthened membrane? | mineral-organic framework | Spontaneous | [65,110,111,112] | |
{14} SGAGKT peptide + Pi → | P-loop | 6mer peptide | Spontaneous | [113] |
{15} CH3CH(NH2)CO-CH3CH(NH)CO-CH3CH(NH2)CO-CH3CH(NH)COOH + Ni2+ → Ni-CH3CH(NH2)CO-CH3CH(NH)CO-CH3CH(NH)CO-CH3CH(NH)COOH | ATCUN motif | 4mer peptide | Spontaneous | [94,95,96,97,98,99,100,101,102,103,104,105,106,107] [114,115,116] |
{16} (Fe4NiS) + CH3CH(NH2)CO-CH3CH(NH)CO-CH3CH(NH)CO-CH3CH(NH)CO-CH3CH(NH)COOH → [Fe4NiS]-CH3CH(NH2)CO-CH3CH(NH)CO-CH3CH(NH)CO-CH3CH(NH)CO-CH3CH(NH)COOH | Proto-fd, ACS, CODH | 6mer peptide | Partial demonstration | [117,118] |
→ {16}{1}{2}{3}{4}{5}{6}{7}{8}{9}{10}{11}{12}{13} → repeat | GR breakout metabolism? | Figure 1 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russell, M.J. Green Rust: The Simple Organizing ‘Seed’ of All Life? Life 2018, 8, 35. https://doi.org/10.3390/life8030035
Russell MJ. Green Rust: The Simple Organizing ‘Seed’ of All Life? Life. 2018; 8(3):35. https://doi.org/10.3390/life8030035
Chicago/Turabian StyleRussell, Michael J. 2018. "Green Rust: The Simple Organizing ‘Seed’ of All Life?" Life 8, no. 3: 35. https://doi.org/10.3390/life8030035
APA StyleRussell, M. J. (2018). Green Rust: The Simple Organizing ‘Seed’ of All Life? Life, 8(3), 35. https://doi.org/10.3390/life8030035