New Applications of High-Resolution Analytical Methods to Study Trace Organic Compounds in Extraterrestrial Materials
Abstract
:1. Introduction
2. Equipment
2.1. Clean Environment
2.2. High-Resolution Mass Spectrometry
2.3. High Separation Efficiency Chromatography
2.4. Organic Compound Imaging by in Situ Analysis
3. Sample and Analytical Procedures
3.1. Sample
3.2. NanoLC/HRMS
3.3. Amino Acid Analysis by 2D-HPLC
3.4. DESI/HRMS Analysis
4. Results and Discussion
4.1. NanoLC/HRMS
4.2. Enantiomer Distribution of Amino Acids
4.3. DESI/HRMS Analysis
5. Applications
- (1)
- High-resolution mass spectroscopy (HRMS) of various solvent extracts with electrospray ionization coupled with or without nano-liquid chromatography;
- (2)
- DL-amino acid analysis using high-resolution column chromatography with high-sensitivity fluorescence spectroscopy coupled with HRMS; and
- (3)
- In situ organic compound analysis and molecular imaging using DESI/HRMS.
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakamura, T.; Noguchi, T.; Tanaka, M.; Zolensky, M.E.; Kimura, M.; Tsuchiyama, A.; Nakato, A.; Ogami, T.; Ishida, H.; Uesugi, M.; et al. Itokawa dust particles: A direct link between S-Type asteroids and ordinary chondrites. Science 2011, 333, 1113–1116. [Google Scholar] [CrossRef] [PubMed]
- Yurimoto, H.; Abe, K.; Abe, M.; Ebihara, E.; Fujimura, A.; Hashiguchi, M.; Hashizume, K.; Ireland, T.R.; Itoh, S.; Katayama, J.; et al. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission. Science 2011, 333, 1116–1119. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Bose, M. New clues to ancient water on Itokawa. Sci. Adv. 2019, 5, eaav8106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naraoka, H.; Mita, H.; Hamase, K.; Mita, M.; Yabuta, H.; Saito, K.; Fukushima, K.; Kitajima, F.; Sandford, S.A.; Nakamura, T.; et al. Preliminary organic compound analysis of microparticles returned from Asteroid 25143 Itokawa by the Hayabusa mission. Geochem. J. 2012, 46, 61–72. [Google Scholar] [CrossRef] [Green Version]
- Tsuchiyama, A.; Uesugi, M.; Matsushima, T.; Michikami, T.; Kadono, T.; Nakamura, T.; Uesugi, K.; Nakano, T.; Sandford, S.A.; Noguchi, R.; et al. Three-dimensional structure of Hayabusa samples: Origin and evolution of Itokawa regolith. Science 2011, 333, 1125–1128. [Google Scholar] [CrossRef] [PubMed]
- Yada, T.; Fujimura, A.; Abe, M.; Nakamura, T.; Noguchi, T.; Okazaki, R.; Nagao, K.; Ishibashi, Y.; Shirai, K.; Zolensky, M.E.; et al. Hayabusa return sample curation in the planetary material sample curation facility of JAXA. Meteorit. Planet. Sci. 2014, 49, 135–153. [Google Scholar] [CrossRef]
- Schmitt-Kopplin, P.; Gabelica, Z.; Gougeon, R.D.; Fekete, A.; Kanawati, B.; Harir, M.; Gebefuegi, I.; Eckel, G.; Hertkorn, N. High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall. Proc. Nat. Acad. Sci. USA 2010, 107, 2763–2768. [Google Scholar] [CrossRef] [Green Version]
- Hertzog, J.; Naraoka, H.; Schmitt-Kopplin, P. Profiling Murchison soluble organic matter for new organic compounds with APPI- and ESI-FT-ICR MS. Life 2019, 9, 48. [Google Scholar] [CrossRef] [PubMed]
- Ruf, A.; Kanawati, B.; Hertkorn, N.; Yin, Q.Z.; Moritz, F.; Harir, M.; Lucio, M.; Michalke, B.; Wimpenny, J.; Shilobreeva, S.; et al. Previously unknown class of metalorganic compounds revealed in meteorites. Proc. Nat. Acad. Sci. USA 2017, 114, 2819–2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naraoka, H.; Yamashita, Y.; Yamaguchi, M.; Orthous-Daunay, F.-R. Molecular evolution of N-containing cyclic compounds in the parent body of the Murchison meteorite. ACS Earth Space Chem. 2018, 1, 540–550. [Google Scholar] [CrossRef]
- Naraoka, H.; Hashiguchi, M. Distinct distribution of soluble N-heteorcyclic compounds between CM and CR chondrites. Geochem. J. 2019, 53, 33–40. [Google Scholar] [CrossRef]
- Hamase, K.; Nakauchi, Y.; Miyoshi, Y.; Koga, R.; Kusano, N.; Onigahara, H.; Naraoka, H.; Mita, H.; Kadota, Y.; Nishino, Y.; et al. Enantioselective determination of extraterrestrial amino acids using a two-dimensional chiral high- performance liquid chromatographic system. Chromatography 2014, 35, 103–110. [Google Scholar] [CrossRef]
- Clemett, S.J.; Zare, R.N. Microprobe two-step laser mass spectrometry as an analytical tool for meteoritic samples. In Molecules in Astrophysics: Probes and Processes; Dishoeck, E.F.V., Ed.; International Astronomical union: Leiden, The Netherland, 1996; pp. 305–320. [Google Scholar]
- Plows, F.L.; Elsila, J.E.; Zare, R.N.; Buseck, P.R. Evidence that polycyclic aromatic hydrocarbons in two carbonaceous chondrites predate parent-body formation. Geochim. Cosmochim. Acta 2003, 67, 1429–1436. [Google Scholar] [CrossRef]
- Stephan, T. TOF-SIMS in cosmochemistry. Planet. Space Sci. 2001, 49, 859–906. [Google Scholar] [CrossRef]
- Takát, Z.; Wiseman, J.M.; Golgan, B.; Cooks, R.G. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef] [PubMed]
- Naraoka, H.; Hashiguchi, M. In Situ organic compound analysis on a meteorite surface by desorption electrospray ionization coupled with an Orbitrap mass spectrometer. Rapid Commun. Mass Spectrom. 2018, 32, 959–964. [Google Scholar] [CrossRef] [PubMed]
- Hashiguchi, M.; Naraoka, H. High-mass resolution molecular imaging of organic compounds on the surface of Murchison meteorite. Meteorit. Planet. Sci. 2019, 54, 452–468. [Google Scholar] [CrossRef]
- Koga, T.; Naraoka, H. A new family of extraterrestrial amino acids in the Murchison meteorite. Sci. Rep. 2017, 7, 636. [Google Scholar] [CrossRef]
- Pizzarello, S.; Zolensky, M.E.; Turk, K.A. Nonracemic isovaline in the Murchison meteorite: Chiral distribution and mineral association. Geochim. Cosmochim. Acta 2003, 67, 1589–1595. [Google Scholar] [CrossRef]
- Glavin, D.P.; Elsila, J.E.; Burton, A.S.; Callahan, M.P.; Dworkin, J.P.; Hilts, R.W.; Herd, C.D.K. Unusual nonterrestrial L-proteinogenic amino acid excesses in the Tagish Lake meteorite. Meteorit. Planet. Sci. 2012, 47, 1347–1364. [Google Scholar] [CrossRef]
- Pizzarello, S.; Schrader, D.L.; Monroe, A.A.; Lauretta, D.S. Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proc. Nat. Acad. Sci. USA 2012, 109, 11940–11954. [Google Scholar] [CrossRef] [PubMed]
- Kitazato, K.; Milliken, R.E.; Iwata, T.; Abe, M.; Ohtake, M.; Matsuura, S.; Arai, T.; Nakauchi, Y.; Nakamura, T.; Matsuoka, M.; et al. The surface composition of asteroid162173 Ryugu from Hayabusa2 near-infrared spectroscopy. Science 2019, 364, 272–275. [Google Scholar] [PubMed]
- Tachibana, S.; Abe, M.; Arakawa, M.; Fujimoto, M.; Ujimoto, M.; Iijima, Y.; Ishiguro, M.; Kitazato, K.; Kobayashi, N.; Namiki, N.; et al. Hayabusa2: Scientific importance of samples returned from C-type near-Earth asteroid (162173) 1999 JU 3. Geochem. J. 2014, 48, 571–587. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naraoka, H.; Hashiguchi, M.; Sato, Y.; Hamase, K. New Applications of High-Resolution Analytical Methods to Study Trace Organic Compounds in Extraterrestrial Materials. Life 2019, 9, 62. https://doi.org/10.3390/life9030062
Naraoka H, Hashiguchi M, Sato Y, Hamase K. New Applications of High-Resolution Analytical Methods to Study Trace Organic Compounds in Extraterrestrial Materials. Life. 2019; 9(3):62. https://doi.org/10.3390/life9030062
Chicago/Turabian StyleNaraoka, Hiroshi, Minako Hashiguchi, Yu Sato, and Kenji Hamase. 2019. "New Applications of High-Resolution Analytical Methods to Study Trace Organic Compounds in Extraterrestrial Materials" Life 9, no. 3: 62. https://doi.org/10.3390/life9030062
APA StyleNaraoka, H., Hashiguchi, M., Sato, Y., & Hamase, K. (2019). New Applications of High-Resolution Analytical Methods to Study Trace Organic Compounds in Extraterrestrial Materials. Life, 9(3), 62. https://doi.org/10.3390/life9030062