Conformally Coupled Inflation
Abstract
:1. Introduction
2. Non-Minimal Coupling
3. Consequences for Inflation
4. Conclusions
Acknowledgments
Conflict of Interest
References
- Brandenberger, R.H. Cosmology of the very early universe. AIP Conf. Proc. 2010, 1268, 3–70. [Google Scholar]
- Cai, Y.-F.; Brandenberger, R.H.; Peter, P. Anisotropy in a non-singular bounce. Class. Quantum Grav. 2013, 30, 075019:1–075019:20. [Google Scholar] [CrossRef]
- Steinhardt, P.J.; Turok, N. Cosmic evolution in a cyclic universe. Phys. Rev. D 2002, 65, 126003:1–126003:20. [Google Scholar] [CrossRef]
- Khoury, J.; Ovrut, B.A.; Steinhardt, P.J.; Turok, N. Ekpyrotic universe: Colliding branes and the origin of the hot big bang. Phys. Rev. D 2001, 64, 123522:1–123522:23. [Google Scholar] [CrossRef]
- Khoury, J.; Steinhardt, P.J. Adiabatic ekpyrosis: Scale-invariant curvature perturbations from a single scalar field in a contracting universe. Phys. Rev. Lett. 2010, 104, 91301:1–91301:4. [Google Scholar] [CrossRef]
- Brandenberger, R.H. String Gas Cosmology. In String Cosmology; Erdmenger, J., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Battefeld, T.; Watson, S. String gas cosmology. Rev. Mod. Phys. 2006, 78, 435–454. [Google Scholar] [CrossRef]
- Brandenberger, R.H. String gas cosmology: Progress and problems. Class. Quantum Grav. 2011, 28, 204005:1–204005:14. [Google Scholar] [CrossRef]
- Chernikov, N.A.; Tagirov, E.A. Quantum theory of scalar field in de Sitter space. Ann. Inst. H. Poincaré A 1968, 9, 109–141. [Google Scholar]
- Callan, C.G., Jr.; Coleman, S.; Jackiw, R. A new improved energy-momentum tensor. Ann. Phys. 1970, 59, 42–73. [Google Scholar] [CrossRef]
- Birrell, N.D.; Davies, P.C. Quantum Fields in Curved Space; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Birrell, N.D.; Davies, P.C. Conformal-symmetry breaking and cosmological particle creation in λϕ4 theory. Phys. Rev. D 1980, 22, 322–329. [Google Scholar] [CrossRef]
- Nelson, B.; Panangaden, P. Scaling behavior of interacting quantum fields in curved spacetime. Phys. Rev. D 1982, 25, 1019–1027. [Google Scholar] [CrossRef]
- Ford, L.H.; Toms, D.J. Dynamical symmetry breaking due to radiative corrections in cosmology. Phys. Rev. D 1982, 25, 1510–1518. [Google Scholar] [CrossRef]
- Ishikawa, J. Gravitational effect on effective potential. Phys. Rev. D 1983, 28, 2445–2454. [Google Scholar] [CrossRef]
- Parker, L.; Toms, D.J. Renormalization-group analysis of grand unified theories in curved spacetime. Phys. Rev. D 1985, 29, 1584–1608. [Google Scholar] [CrossRef]
- Sonego, S.; Faraoni, V. Coupling to the curvature for a scalar field from the equivalence principle. Class. Quantum Grav. 1993, 10, 1185–1187. [Google Scholar] [CrossRef]
- DeWitt, B.S.; Brehme, R.W. Radiation damping in a gravitational field. Ann. Phys. 1960, 9, 220–259. [Google Scholar] [CrossRef]
- Friedlander, F.G. The Wave Equation on a Curved Spacetime; Cambridge University Press: Cambridge, UK, 1975. [Google Scholar]
- Hadamard, J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations; Dover: New York, NY, USA, 1952. [Google Scholar]
- John, R.W. The Hadamard construction of Green’s functions on a curved space-time with symmetries. Annalen der Physik 1987, 44, 531–544. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Gérard, J.-M. The strong equivalence principle from a gravitational gauge structure. Class. Quantum Grav. 2007, 24, 1867–1877. [Google Scholar] [CrossRef]
- Sotiriou, T.P.; Liberati, S.; Faraoni, V. Theory of gravitation theories: A no-progress report. Int. J. Mod. Phys. D 2008, 17, 399–423. [Google Scholar] [CrossRef]
- Faraoni, V. Cosmology in Scalar-Tensor Gravity; Kluwer Academic: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Buchbinder, I.L. Renormalization of quantum field theory in curved space-time and renormalization group equations. Fortschr. Phys. 1986, 34, 605–628. [Google Scholar]
- Odintsov, S.D. Renormalization group, effective action and grand unification theories in curved space-time. Fortschr. Phys. 1991, 39, 621–641. [Google Scholar] [CrossRef]
- Muta, T.S.; Odintsov, S.D. Model dependence of the nonminimal scalar graviton effective coupling constant in curved space-time. Mod. Phys. Lett. A 1991, 6, 3641–3646. [Google Scholar] [CrossRef]
- Elizalde, E.; Odintsov, S.D. Renormalization-group improved effective potential for finite grand unified theories in curved spacetime. Phys. Lett. B 1994, 333, 331–336. [Google Scholar] [CrossRef]
- Buchbinder, I.L.; Odintsov, S.D.; Shapiro, I.L. Effective Action in Quantum Gravity; IOP Publishing: Bristol, UK, 1992. [Google Scholar]
- Buchbinder, I.L.; Odintsov, S.D.; Lichtzier, I. The behavior of effective coupling constants in “finite” grand unification theories in curved space-time. Class. Quantum Grav. 1989, 6, 605–610. [Google Scholar] [CrossRef]
- Bonanno, A. Coarse graining and renormalization group in the Einstein Universe. Phys. Rev. D 1995, 52, 969–980. [Google Scholar] [CrossRef]
- Bonanno, A.; Zappalá, D. Nonperturbative renormalization group approach for a scalar theory in higher-derivative gravity. Phys. Rev. D 1997, 55, 6135–6146. [Google Scholar] [CrossRef]
- Futamase, T.; Maeda, K. Chaotic inflationary scenario of the universe with a nonminimally coupled “inflaton” field. Phys. Rev. D 1989, 39, 399–404. [Google Scholar] [CrossRef]
- Futamase, T.; Rothman, T.; Matzner, R. Behavior of chaotic inflation in anisotropic cosmologies with nonminimal coupling. Phys. Rev. D 1989, 39, 405–411. [Google Scholar] [CrossRef]
- Kolb, E.W.; Salopek, D.; Turner, M.S. Origin of density fluctuations in extended inflation. Phys. Rev. D 1990, 42, 3925–3935. [Google Scholar] [CrossRef]
- Fakir, R.; Unruh, W.G. Improvement on cosmological chaotic inflation through nonminimal coupling. Phys. Rev. D 1990, 41, 1783–1791. [Google Scholar] [CrossRef]
- Makino, N.; Sasaki, M. The density perturbation in the chaotic inflation with nonminimal coupling. Prog. Theor. Phys. 1991, 86, 103–118. [Google Scholar] [CrossRef]
- Barroso, A.; Casasayas, J.; Crawford, P.; Moniz, P.; Nunes, A. Inflation in the presence of a nonminimal coupling. Phys. Lett. B 1992, 275, 264–272. [Google Scholar] [CrossRef]
- Fakir, R.; Habib, S. Quantum fluctuations with strong curvature coupling. Mod. Phys. Lett. A 1993, 8, 2827–2842. [Google Scholar] [CrossRef]
- Laycock, A.M.; Liddle, A.R. Extended inflation with a curvature coupled inflaton. Phys. Rev. D 1994, 49, 1827–1839. [Google Scholar] [CrossRef]
- Garcia-Bellido, J.; Linde, A. Stationary solutions in Brans-Dicke stochastic inflationary cosmology. Phys. Rev. D 1995, 52, 6730–6738. [Google Scholar] [CrossRef]
- Komatsu, E.; Futamase, T. Constraints on the chaotic inflationary scenario with a nonminimally coupled “inflaton” field from the cosmic microwave background radiation anisotropy. Phys. Rev. D 1998, 58, 023004:1–023004:8. [Google Scholar] [CrossRef]
- Bassett, B.; Liberati, S. Geometric reheating after inflation. Phys. Rev. D 1998, 58, 021302(R):1–021302(R):5. [Google Scholar] [CrossRef]
- Futamase, T.; Tanaka, M. Chaotic inflation with running nonminimal coupling. Phys. Rev. D 1999, 60, 063511:1–063511:6. [Google Scholar] [CrossRef]
- Komatsu, E.; Futamase, T. Complete constraints on a nonminimally coupled chaotic inflationary scenario from the cosmic microwave background. Phys. Rev. D 1999, 59, 064029:1–064029:7. [Google Scholar] [CrossRef]
- Lee, J.; Koh, S.; Park, C.; Sin, S.J.; Lee, C.H. Oscillating inflation with a nonminimally coupled scalar field. Phys. Rev. D 1999, 61, 027301:1–027301:3. [Google Scholar] [CrossRef]
- Cooper, F.; Venturi, G. Cosmology and broken scale invariance. Phys. Rev. D 1981, 24, 3338–3340. [Google Scholar] [CrossRef]
- Kallosh, R.; Kofman, L.; Linde, A.D.; Van Proeyen, A. Superconformal symmetry, supergravity and cosmology. Class. Quantum Grav. 2004, 17, 4269–4338. [Google Scholar] [CrossRef]
- Basak, A.; Bhatt, J.R. A note on inflationary scenario with non-minimal coupling. ArXiv E-Prints 2013. arXiv:1208.3298. [Google Scholar]
- Gunzig, E.; Saa, A.; Brenig, L.; Faraoni, V.; Rocha-Filho, T.M.; Figueiredo, A. Superinflation, quintessence, and nonsingular cosmologies. Phys. Rev. D 2001, 63, 067301:1–067301:4. [Google Scholar] [CrossRef]
- Faraoni, V. Phase space geometry in scalar-tensor cosmology. Ann. Phys. 2005, 317, 366–382. [Google Scholar] [CrossRef]
- Lucchin, F.; Matarrese, S. Power-law inflation. Phys. Rev. D 1985, 32, 1316–1322. [Google Scholar] [CrossRef]
- Pollock, M.D. On the initial conditions for super-exponential inflation. Phys. Lett. B 1988, 215, 635–641. [Google Scholar] [CrossRef]
- Rocha Filho, T.M.; Figueiredo, A.; Brenig, L.; Gunzig, E.; Faraoni, V. Explicit analytic solutions of classical scalar field cosmology. Int. J. Theor. Phys. 2000, 39, 1933–1961. [Google Scholar] [CrossRef]
- Faraoni, V. Superquintessence. Int. J. Mod. Phys. D 2002, 11, 471–482. [Google Scholar] [CrossRef]
- Faraoni, V. Possible end of the universe in a finite future from dark energy with w < -1. Phys. Rev. D 2003, 68, 063508:1–063508:5. [Google Scholar]
- Bardeen, J.M. Gauge-invariant cosmological perturbations. Phys. Rev. D 1980, 22, 1882–1905. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Bruni, M. Covariant and gauge-invariant approach to cosmological density fluctuations. Phys. Rev. D 1989, 40, 1804–1818. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Hwang, J.-C.; Bruni, M. Covariant and gauge-independent perfect-fluid Robertson-Walker perturbations. Phys. Rev. D 1989, 40, 1819–1826. [Google Scholar] [CrossRef]
- Ellis, G.F.R.; Bruni, M.; Hwang, J.-C. Density-gradient-vorticity relation in perfect-fluid Robertson-Walker perturbations. Phys. Rev. D 1990, 42, 1035–1046. [Google Scholar] [CrossRef]
- Hwang, J.-C. Cosmological perturbations in generalized gravity theories: Solutions. Phys. Rev. D 1990, 42, 2601–2606. [Google Scholar] [CrossRef]
- Hwang, J.-C. Unified analysis of cosmological perturbations in generalized gravity. Phys. Rev. D 1996, 53, 762–765. [Google Scholar] [CrossRef]
- Hwang, J.-C. Cosmological perturbations in generalized gravity theories: Conformal transformation. Class. Quantum Grav. 1997, 14, 1981–1991. [Google Scholar] [CrossRef]
- Hwang, J.-C. Quantum generations of cosmological perturbations in generalized gravity. Class. Quantum Grav. 1998, 14, 3327–3336. [Google Scholar] [CrossRef]
- Hwang, J.-C. Gravitational wave spectra from pole-like inflations based on generalized gravity theories. Class. Quantum Grav. 1998, 15, 1401–1413. [Google Scholar] [CrossRef]
- Hwang, J.-C.; Noh, H. Density spectra from pole-like inflations based on generalized gravity theories. Class. Quantum Grav. 1998, 15, 1387–1400. [Google Scholar] [CrossRef]
- Hwang, J.-C.; Noh, H. Cosmological perturbations in generalized gravity theories. Phys. Rev. D 1996, 54, 1460–1473. [Google Scholar] [CrossRef]
- Faraoni, V. A crucial ingredient of inflation. Int. J. Theor. Phys. 2001, 40, 2259–2294. [Google Scholar] [CrossRef]
© 2013 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Faraoni, V. Conformally Coupled Inflation. Galaxies 2013, 1, 96-106. https://doi.org/10.3390/galaxies1020096
Faraoni V. Conformally Coupled Inflation. Galaxies. 2013; 1(2):96-106. https://doi.org/10.3390/galaxies1020096
Chicago/Turabian StyleFaraoni, Valerio. 2013. "Conformally Coupled Inflation" Galaxies 1, no. 2: 96-106. https://doi.org/10.3390/galaxies1020096
APA StyleFaraoni, V. (2013). Conformally Coupled Inflation. Galaxies, 1(2), 96-106. https://doi.org/10.3390/galaxies1020096