Observational Tests of Active Galactic Nuclei Feedback: An Overview of Approaches and Interpretation
Abstract
:1. Introduction
2. A Multi-Faceted Approach to a Complex Problem
2.1. Multiple Spatial Scales, Temperatures, Gas Phases, and Timescales
2.2. The Multi-Faceted Approach to Observational Work on AGN Feedback
3. AGN Accretion Modes and Methods of Energy Injection into the Host
3.1. AGN Accretion Modes and Mechanisms of Energy Output
3.2. Radio-Identified AGN
3.3. Connecting Observed AGN Populations to Traditional ‘Feedback Modes’
4. Energy–Gas Coupling: Outflow Kinematics and Energetics
4.1. Multi-Phase Gas Outflows
4.2. Coupling between Energy and Gas
4.3. Outflow Energetics and Potential for Impact
5. Localised and Transient Impact on Gas and Star Formation
6. Global and Long-Term Cumulative Impact of AGN Feedback
7. Concluding Remarks
- AGN should be considered events and not objects that persist in time. AGN are self-regulatory and variable; therefore, it may be difficult to directly relate a single accretion episode to a significant, global impact on galaxy properties. Ultimately, the properties of a galaxy will be influenced by the cumulative output of multiple accretion episodes/feedback events (see Section 2).
- Both the high accretion rate (‘radiatively efficient’) and low accretion rate (‘radiatively inefficient’) AGN can have multiple, overlapping mechanisms for injecting energy into their hosts (see Figure 3). These can contribute to both ejective and regulative channels of feedback (see Figure 2). Radio emissions can trace a range of feedback mechanisms over a range accretion rates (see Figure 3 and Figure 4). Therefore, care should be taken when comparing the simplified theoretical feedback modes with the observed AGN populations (see Section 3).
- An AGN-driven outflow is gas that has been kinematically disturbed by a variety of possible driving mechanisms including accretion disc winds, radiation pressure, and jets. For the outflows to be relevant for feedback, their energy has to couple to the multi-phase gas, and this coupling depends on several factors including AGN luminosity or jet-power, jet/wind orientation, and ISM properties. More efficient coupling will result in a more significant impact on the properties/distribution of the gas, both localised and globally (see Figure 2). The observations of the representative samples of AGN of different luminosities, hosted in galaxies with diverse properties, are needed to quantify the relevance of the previously mentioned factors on the coupling (see Section 4).
- Whilst the current AGN state of a galaxy is not a priori a useful proxy for assessing the impact on global galaxy properties, by studying currently active AGN with spatially resolved observations, we can obtain crucial information on the physics of localised impact. This is essential to determine how the energy couples with the gas, and under which circumstances it enhances or reduces star formation efficiency (see Figure 2 and Section 5).
- Evidence of the cumulative impact of AGN episodes on global galaxy properties is likely found in the galaxy population as a whole (not necessarily currently active). The distributions of galaxy properties are important for testing and ruling out different AGN feedback prescriptions implemented in cosmological simulations (see Section 6).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | We ignore the possibility of three regimes, with the addition of a distinct extremely highly accretion rate state (‘super Eddington’), which may be particularly relevant for early black hole growth, including the origin and accretion rates of massive black holes in the early Universe that have been observed with JWST [76,77,78]. |
2 | The variety of multi-wavelength methods used to identify radiatively efficient AGN results in a menagerie of AGN classifications and terminology used in the literature [89]. Here, we consider two broad classes: quasars and Seyferts. Quasars have high bolometric luminosities ( 1045 erg s−1) and lower-luminosity AGN are considered to be Seyferts. Both classes can be type-1, where direct accretion emission and the broad line region (BLR) are observed, or type-2 where no accretion emission or BLR is detected. |
3 | |
4 | Although the values in [106] are generated from a population model, with values not calculated for individual sources, they do represent the general observed quasar population trends. We also note that, unlike in [106], we do not assume that radio emission associated with AGN (as opposed to star formation) is necessarily attributed to jets. |
5 | We note that “Low-ionisation nuclear emission-line regions” (LINERs) are another class of galaxies, where the observed emission is not dominated by photoionisation from AGN, nor from star-forming regions and a subset of these sources may be associated with radiatively inefficient AGN (e.g., [109,110,111]). |
References
- Ghez, A.M.; Salim, S.; Weinberg, N.N.; Lu, J.R.; Do, T.; Dunn, J.K.; Matthews, K.; Morris, M.R.; Yelda, S.; Becklin, E.E.; et al. Measuring Distance and Properties of the Milky Way’s Central Supermassive Black Hole with Stellar Orbits. Astrophys. J. 2008, 689, 1044–1062. [Google Scholar] [CrossRef]
- Kormendy, J.; Ho, L.C. Coevolution (or Not) of Supermassive Black Holes and Host Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 511–653. [Google Scholar] [CrossRef]
- Akiyama, K. et al. [Event Horizon Telescope Collaboration] First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole. Astrophys. J. Lett. 2019, 875, L1. [Google Scholar] [CrossRef]
- Abuter, R. et al. [GRAVITY Collaboration] Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 2020, 636, L5. [Google Scholar] [CrossRef]
- Nightingale, J.W.; Smith, R.J.; He, Q.; O’Riordan, C.M.; Kegerreis, J.A.; Amvrosiadis, A.; Edge, A.C.; Etherington, A.; Hayes, R.G.; Kelly, A.; et al. Abell 1201: Detection of an ultramassive black hole in a strong gravitational lens. Mon. Not. R. Astron. Soc. 2023, 521, 3298–3322. [Google Scholar] [CrossRef]
- Soltan, A. Masses of quasars. Mon. Not. R. Astron. Soc. 1982, 200, 115–122. [Google Scholar] [CrossRef]
- Marconi, A.; Risaliti, G.; Gilli, R.; Hunt, L.K.; Maiolino, R.; Salvati, M. Local supermassive black holes, relics of active galactic nuclei and the X-ray background. Mon. Not. R. Astron. Soc. 2004, 351, 169–185. [Google Scholar] [CrossRef]
- Alexander, D.M.; Hickox, R.C. What drives the growth of black holes? New Astron. Rev. 2012, 56, 93–121. [Google Scholar] [CrossRef]
- Harrison, C.M.; Costa, T.; Tadhunter, C.N.; Flütsch, A.; Kakkad, D.; Perna, M.; Vietri, G. AGN outflows and feedback twenty years on. Nat. Astron. 2018, 2, 198–205. [Google Scholar] [CrossRef]
- Magorrian, J.; Tremaine, S.; Richstone, D.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Gebhardt, K.; Green, R.; Grillmair, C.; et al. The Demography of Massive Dark Objects in Galaxy Centers. Astron. J. 1998, 115, 2285–2305. [Google Scholar] [CrossRef]
- Gebhardt, K.; Bender, R.; Bower, G.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; Green, R.; Grillmair, C.; Ho, L.C.; Kormendy, J.; et al. A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. Astrophys. J. Lett. 2000, 539, L13–L16. [Google Scholar] [CrossRef]
- Ferrarese, L.; Merritt, D. A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. Astrophys. J. Lett. 2000, 539, L9–L12. [Google Scholar] [CrossRef]
- Silk, J.; Rees, M.J. Quasars and galaxy formation. Astron. Astrophys. 1998, 331, L1–L4. [Google Scholar] [CrossRef]
- King, A. Black Holes, Galaxy Formation, and the MBH-σ Relation. Astrophys. J. Lett. 2003, 596, L27–L29. [Google Scholar] [CrossRef]
- King, A. The AGN-Starburst Connection, Galactic Superwinds, and MBH-σ. Astrophys. J. Lett. 2005, 635, L121–L123. [Google Scholar] [CrossRef]
- Binney, J.; Tabor, G. Evolving cooling flows. Mon. Not. R. Astron. Soc. 1995, 276, 663–678. [Google Scholar] [CrossRef]
- Ciotti, L.; Ostriker, J.P. Cooling Flows and Quasars: Different Aspects of the Same Phenomenon? I. Concepts. Astrophys. J. Lett. 1997, 487, L105–L108. [Google Scholar] [CrossRef]
- Peterson, J.R.; Kahn, S.M.; Paerels, F.B.S.; Kaastra, J.S.; Tamura, T.; Bleeker, J.A.M.; Ferrigno, C.; Jernigan, J.G. High-Resolution X-Ray Spectroscopic Constraints on Cooling-Flow Models for Clusters of Galaxies. Astrophys. J. 2003, 590, 207–224. [Google Scholar] [CrossRef]
- Benson, A.J.; Bower, R.G.; Frenk, C.S.; Lacey, C.G.; Baugh, C.M.; Cole, S. What Shapes the Luminosity Function of Galaxies? Astrophys. J. 2003, 599, 38–49. [Google Scholar] [CrossRef]
- Springel, V.; Di Matteo, T.; Hernquist, L. Modelling feedback from stars and black holes in galaxy mergers. Mon. Not. R. Astron. Soc. 2005, 361, 776–794. [Google Scholar] [CrossRef]
- Croton, D.J.; Springel, V.; White, S.D.M.; De Lucia, G.; Frenk, C.S.; Gao, L.; Jenkins, A.; Kauffmann, G.; Navarro, J.F.; Yoshida, N. The many lives of active galactic nuclei: Cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 2006, 365, 11–28. [Google Scholar] [CrossRef]
- Bower, R.G.; Benson, A.J.; Malbon, R.; Helly, J.C.; Frenk, C.S.; Baugh, C.M.; Cole, S.; Lacey, C.G. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 2006, 370, 645–655. [Google Scholar] [CrossRef]
- Somerville, R.S.; Hopkins, P.F.; Cox, T.J.; Robertson, B.E.; Hernquist, L. A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 2008, 391, 481–506. [Google Scholar] [CrossRef]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Khandai, N.; Di Matteo, T.; Croft, R.; Wilkins, S.; Feng, Y.; Tucker, E.; DeGraf, C.; Liu, M.S. The MassiveBlack-II simulation: The evolution of haloes and galaxies to z∼0. Mon. Not. R. Astron. Soc. 2015, 450, 1349–1374. [Google Scholar] [CrossRef]
- Dubois, Y.; Peirani, S.; Pichon, C.; Devriendt, J.; Gavazzi, R.; Welker, C.; Volonteri, M. The HORIZON-AGN simulation: Morphological diversity of galaxies promoted by AGN feedback. Mon. Not. R. Astron. Soc. 2016, 463, 3948–3964. [Google Scholar] [CrossRef]
- Naab, T.; Ostriker, J.P. Theoretical Challenges in Galaxy Formation. Annu. Rev. Astron. Astrophys. 2017, 55, 59–109. [Google Scholar] [CrossRef]
- McCarthy, I.G.; Schaye, J.; Bird, S.; Le Brun, A.M.C. The BAHAMAS project: Calibrated hydrodynamical simulations for large-scale structure cosmology. Mon. Not. R. Astron. Soc. 2017, 465, 2936–2965. [Google Scholar] [CrossRef]
- Nelson, D.; Pillepich, A.; Springel, V.; Weinberger, R.; Hernquist, L.; Pakmor, R.; Genel, S.; Torrey, P.; Vogelsberger, M.; Kauffmann, G.; et al. First results from the IllustrisTNG simulations: The galaxy colour bimodality. Mon. Not. R. Astron. Soc. 2018, 475, 624–647. [Google Scholar] [CrossRef]
- Davé, R.; Anglés-Alcázar, D.; Narayanan, D.; Li, Q.; Rafieferantsoa, M.H.; Appleby, S. SIMBA: Cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 2019, 486, 2827–2849. [Google Scholar] [CrossRef]
- Choi, E.; Somerville, R.S.; Ostriker, J.P.; Naab, T.; Hirschmann, M. The Role of Black Hole Feedback on Size and Structural Evolution in Massive Galaxies. Astrophys. J. 2018, 866, 91. [Google Scholar] [CrossRef]
- Davies, J.J.; Crain, R.A.; McCarthy, I.G.; Oppenheimer, B.D.; Schaye, J.; Schaller, M.; McAlpine, S. The gas fractions of dark matter haloes hosting simulated ∼L⋆ galaxies are governed by the feedback history of their black holes. Mon. Not. R. Astron. Soc. 2019, 485, 3783–3793. [Google Scholar] [CrossRef]
- Peirani, S.; Sonnenfeld, A.; Gavazzi, R.; Oguri, M.; Dubois, Y.; Silk, J.; Pichon, C.; Devriendt, J.; Kaviraj, S. Total density profile of massive early-type galaxies in HORIZON-AGN simulation: Impact of AGN feedback and comparison with observations. Mon. Not. R. Astron. Soc. 2019, 483, 4615–4627. [Google Scholar] [CrossRef]
- van der Vlugt, D.; Costa, T. How AGN feedback drives the size growth of the first quasars. Mon. Not. R. Astron. Soc. 2019, 490, 4918–4934. [Google Scholar] [CrossRef]
- Wright, R.J.; Lagos, C.d.P.; Power, C.; Mitchell, P.D. The impact of stellar and AGN feedback on halo-scale baryonic and dark matter accretion in the EAGLE simulations. Mon. Not. R. Astron. Soc. 2020, 498, 1668–1692. [Google Scholar] [CrossRef]
- Cochrane, R.K.; Anglés-Alcázar, D.; Mercedes-Feliz, J.; Hayward, C.C.; Faucher-Giguère, C.A.; Wellons, S.; Terrazas, B.A.; Wetzel, A.; Hopkins, P.F.; Moreno, J.; et al. The impact of AGN-driven winds on physical and observable galaxy sizes. Mon. Not. R. Astron. Soc. 2023, 523, 2409–2421. [Google Scholar] [CrossRef]
- Obreja, A.; Arrigoni Battaia, F.; Macciò, A.V.; Buck, T. AGN radiation imprints on the circumgalactic medium of massive galaxies. Mon. Not. R. Astron. Soc. 2024, 527, 8078–8102. [Google Scholar] [CrossRef]
- Zakamska, N.L.; Lampayan, K.; Petric, A.; Dicken, D.; Greene, J.E.; Heckman, T.M.; Hickox, R.C.; Ho, L.C.; Krolik, J.H.; Nesvadba, N.P.H.; et al. Star formation in quasar hosts and the origin of radio emission in radio-quiet quasars. Mon. Not. R. Astron. Soc. 2016, 455, 4191–4211. [Google Scholar] [CrossRef]
- Ishibashi, W.; Fabian, A.C.; Maiolino, R. The energetics of AGN radiation pressure-driven outflows. Mon. Not. R. Astron. Soc. 2018, 476, 512–519. [Google Scholar] [CrossRef]
- Rakshit, S.; Woo, J.H. A Census of Ionized Gas Outflows in Type 1 AGNs: Gas Outflows in AGNs. V. Astrophys. J. 2018, 865, 5. [Google Scholar] [CrossRef]
- Jarvis, M.E.; Harrison, C.M.; Thomson, A.P.; Circosta, C.; Mainieri, V.; Alexander, D.M.; Edge, A.C.; Lansbury, G.B.; Molyneux, S.J.; Mullaney, J.R. Prevalence of radio jets associated with galactic outflows and feedback from quasars. Mon. Not. R. Astron. Soc. 2019, 485, 2710–2730. [Google Scholar] [CrossRef]
- Costa, T.; Pakmor, R.; Springel, V. Powering galactic superwinds with small-scale AGN winds. Mon. Not. R. Astron. Soc. 2020, 497, 5229–5255. [Google Scholar] [CrossRef]
- Brüggen, M.; Scannapieco, E. The Launching of Cold Clouds by Galaxy Outflows. IV. Cosmic-Ray-driven Acceleration. Astrophys. J. 2020, 905, 19. [Google Scholar] [CrossRef]
- Venturi, G.; Cresci, G.; Marconi, A.; Mingozzi, M.; Nardini, E.; Carniani, S.; Mannucci, F.; Marasco, A.; Maiolino, R.; Perna, M.; et al. MAGNUM survey: Compact jets causing large turmoil in galaxies. Enhanced line widths perpendicular to radio jets as tracers of jet-ISM interaction. Astron. Astrophys. 2021, 648, A17. [Google Scholar] [CrossRef]
- Mandal, A.; Mukherjee, D.; Federrath, C.; Nesvadba, N.P.H.; Bicknell, G.V.; Wagner, A.Y.; Meenakshi, M. Impact of relativistic jets on the star formation rate: A turbulence-regulated framework. Mon. Not. R. Astron. Soc. 2021, 508, 4738–4757. [Google Scholar] [CrossRef]
- Meena, B.; Crenshaw, D.M.; Schmitt, H.R.; Revalski, M.; Chapman, Z.; Fischer, T.C.; Kraemer, S.B.; Robinson, J.H.; Falcone, J.; Polack, G.E. Investigating the Narrow-line Region Dynamics in Nearby Active Galaxies. Astrophys. J. 2023, 943, 98. [Google Scholar] [CrossRef]
- Calistro Rivera, G.; Alexander, D.M.; Harrison, C.M.; Fawcett, V.A.; Best, P.N.; Williams, W.L.; Hardcastle, M.J.; Rosario, D.J.; Smith, D.J.B.; Arnaudova, M.I.; et al. Ubiquitous radio emission in quasars: Predominant AGN origin and a connection to jets, dust and winds. arXiv 2023, arXiv:2312.10177. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. Annu. Rev. Astron. Astrophys. 2012, 50, 455–489. [Google Scholar] [CrossRef]
- McNamara, B.R.; Nulsen, P.E.J. Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 2012, 14, 055023. [Google Scholar] [CrossRef]
- Heckman, T.M.; Best, P.N. The Coevolution of Galaxies and Supermassive Black Holes: Insights from Surveys of the Contemporary Universe. Annu. Rev. Astron. Astrophys. 2014, 52, 589–660. [Google Scholar] [CrossRef]
- Harrison, C.M. Impact of supermassive black hole growth on star formation. Nat. Astron. 2017, 1, 0165. [Google Scholar] [CrossRef]
- Morganti, R. The many routes to AGN feedback. Front. Astron. Space Sci. 2017, 4, 42. [Google Scholar] [CrossRef]
- King, A.; Pounds, K. Powerful Outflows and Feedback from Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2015, 53, 115–154. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Croston, J.H. Radio galaxies and feedback from AGN jets. New Astron. Rev. 2020, 88, 101539. [Google Scholar] [CrossRef]
- Veilleux, S.; Maiolino, R.; Bolatto, A.D.; Aalto, S. Cool outflows in galaxies and their implications. Astron. Astrophys. Rev. 2020, 28, 2. [Google Scholar] [CrossRef]
- Bourne, M.A.; Yang, H.Y.K. Recent Progress in Modeling the Macro- and Micro-Physics of Radio Jet Feedback in Galaxy Clusters. Galaxies 2023, 11, 73. [Google Scholar] [CrossRef]
- Krause, M.G.H. Jet Feedback in Star-Forming Galaxies. Galaxies 2023, 11, 29. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Ricci, C. Nuclear obscuration in active galactic nuclei. Nat. Astron. 2017, 1, 679–689. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Sternberg, A. The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time. Annu. Rev. Astron. Astrophys. 2020, 58, 157–203. [Google Scholar] [CrossRef]
- Tumlinson, J.; Peeples, M.S.; Werk, J.K. The Circumgalactic Medium. Annu. Rev. Astron. Astrophys. 2017, 55, 389–432. [Google Scholar] [CrossRef]
- Davies, J.J.; Crain, R.A.; Oppenheimer, B.D.; Schaye, J. The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. Mon. Not. R. Astron. Soc. 2020, 491, 4462–4480. [Google Scholar] [CrossRef]
- Ganguly, S.; Li, Y.; Olivares, V.; Su, Y.; Combes, F.; Prakash, S.; Hamer, S.; Guillard, P.; Ha, T. The nature of the motions of multiphase filaments in the centers of galaxy clusters. Front. Astron. Space Sci. 2023, 10, 1138613. [Google Scholar] [CrossRef]
- García-Burillo, S.; Alonso-Herrero, A.; Ramos Almeida, C.; González-Martín, O.; Combes, F.; Usero, A.; Hönig, S.; Querejeta, M.; Hicks, E.K.S.; Hunt, L.K.; et al. The Galaxy Activity, Torus, and Outflow Survey (GATOS). I. ALMA images of dusty molecular tori in Seyfert galaxies. Astron. Astrophys. 2021, 652, A98. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bicknell, G.V.; Wagner, A.Y.; Sutherland, R.S.; Silk, J. Relativistic jet feedback—III. Feedback on gas discs. Mon. Not. R. Astron. Soc. 2018, 479, 5544–5566. [Google Scholar] [CrossRef]
- Richings, A.J.; Faucher-Giguère, C.A. The origin of fast molecular outflows in quasars: Molecule formation in AGN-driven galactic winds. Mon. Not. R. Astron. Soc. 2018, 474, 3673–3699. [Google Scholar] [CrossRef]
- Peterson, B.M. Variability of Active Galactic Nuclei. In Proceedings of the Advanced Lectures on the Starburst-AGN; Aretxaga, I., Kunth, D., Mújica, R., Eds.; World Scientific: Singapore, 2001; p. 3. [Google Scholar] [CrossRef]
- Lintott, C.J.; Schawinski, K.; Keel, W.; van Arkel, H.; Bennert, N.; Edmondson, E.; Thomas, D.; Smith, D.J.B.; Herbert, P.D.; Jarvis, M.J.; et al. Galaxy Zoo: ‘Hanny’s Voorwerp’, a quasar light echo? Mon. Not. R. Astron. Soc. 2009, 399, 129–140. [Google Scholar] [CrossRef]
- Mostert, R.I.J.; Morganti, R.; Brienza, M.; Duncan, K.J.; Oei, M.S.S.L.; Röttgering, H.J.A.; Alegre, L.; Hardcastle, M.J.; Jurlin, N. Finding AGN remnant candidates based on radio morphology with machine learning. Astron. Astrophys. 2023, 674, A208. [Google Scholar] [CrossRef]
- King, A.; Nixon, C. AGN flickering and chaotic accretion. Mon. Not. R. Astron. Soc. 2015, 453, L46–L47. [Google Scholar] [CrossRef]
- Schawinski, K.; Koss, M.; Berney, S.; Sartori, L.F. Active galactic nuclei flicker: An observational estimate of the duration of black hole growth phases of ∼105 yr. Mon. Not. R. Astron. Soc. 2015, 451, 2517–2523. [Google Scholar] [CrossRef]
- Sabater, J.; Best, P.N.; Hardcastle, M.J.; Shimwell, T.W.; Tasse, C.; Williams, W.L.; Brüggen, M.; Cochrane, R.K.; Croston, J.H.; de Gasperin, F.; et al. The LoTSS view of radio AGN in the local Universe. The most massive galaxies are always switched on. Astron. Astrophys. 2019, 622, A17. [Google Scholar] [CrossRef]
- Hickox, R.C.; Mullaney, J.R.; Alexander, D.M.; Chen, C.T.J.; Civano, F.M.; Goulding, A.D.; Hainline, K.N. Black Hole Variability and the Star Formation-Active Galactic Nucleus Connection: Do All Star-forming Galaxies Host an Active Galactic Nucleus? Astrophys. J. 2014, 782, 9. [Google Scholar] [CrossRef]
- Novak, G.S.; Ostriker, J.P.; Ciotti, L. Feedback from Central Black Holes in Elliptical Galaxies: Two-dimensional Models Compared to One-dimensional Models. Astrophys. J. 2011, 737, 26. [Google Scholar] [CrossRef]
- Hickox, R.C.; Alexander, D.M. Obscured Active Galactic Nuclei. Annu. Rev. Astron. Astrophys. 2018, 56, 625–671. [Google Scholar] [CrossRef]
- Aird, J.; Coil, A.L.; Georgakakis, A. X-rays across the galaxy population—II. The distribution of AGN accretion rates as a function of stellar mass and redshift. Mon. Not. R. Astron. Soc. 2018, 474, 1225–1249. [Google Scholar] [CrossRef]
- Rennehan, D.; Babul, A.; Moa, B.; Davé, R. Three regimes of black hole feedback. arXiv 2023, arXiv:2309.15898. [Google Scholar] [CrossRef]
- Lupi, A.; Quadri, G.; Volonteri, M.; Colpi, M.; Regan, J.A. Sustained super-Eddington accretion in high-redshift quasars. arXiv 2023, arXiv:2312.08422. [Google Scholar] [CrossRef]
- Maiolino, R.; Scholtz, J.; Witstok, J.; Carniani, S.; D’Eugenio, F.; de Graaff, A.; Uebler, H.; Tacchella, S.; Curtis-Lake, E.; Arribas, S.; et al. A small and vigorous black hole in the early Universe. arXiv 2023, arXiv:2305.12492. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Esin, A.A.; McClintock, J.E.; Narayan, R. Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991. Astrophys. J. 1997, 489, 865–889. [Google Scholar] [CrossRef]
- Narayan, R.; Yi, I. Advection-dominated Accretion: A Self-similar Solution. Astrophys. J. Lett. 1994, 428, L13. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Sikora, M.; Stawarz, Ł.; Lasota, J.P. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. Astrophys. J. 2007, 658, 815–828. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef]
- Begelman, M.C.; McKee, C.F.; Shields, G.A. Compton heated winds and coronae above accretion disks. I. Dynamics. Astrophys. J. 1983, 271, 70–88. [Google Scholar] [CrossRef]
- Yuan, F.; Narayan, R. Hot Accretion Flows around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529–588. [Google Scholar] [CrossRef]
- Gan, Z.; Yuan, F.; Ostriker, J.P.; Ciotti, L.; Novak, G.S. Active Galactic Nucleus Feedback in an Isolated Elliptical Galaxy: The Effect of Strong Radiative Feedback in the Kinetic Mode. Astrophys. J. 2014, 789, 150. [Google Scholar] [CrossRef]
- Almeida, I.; Nemmen, R.; Riffel, R.A. Quenching star formation with low-luminosity AGN winds. Mon. Not. R. Astron. Soc. 2023, 526, 217–223. [Google Scholar] [CrossRef]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What is in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef]
- Arrigoni Battaia, F.; Hennawi, J.F.; Prochaska, J.X.; Oñorbe, J.; Farina, E.P.; Cantalupo, S.; Lusso, E. QSO MUSEUM I: A sample of 61 extended Ly α-emission nebulae surrounding z∼3 quasars. Mon. Not. R. Astron. Soc. 2019, 482, 3162–3205. [Google Scholar] [CrossRef]
- Costa, T.; Arrigoni Battaia, F.; Farina, E.P.; Keating, L.C.; Rosdahl, J.; Kimm, T. AGN-driven outflows and the formation of Lyα nebulae around high-z quasars. Mon. Not. R. Astron. Soc. 2022, 517, 1767–1790. [Google Scholar] [CrossRef]
- Costa, T.; Rosdahl, J.; Sijacki, D.; Haehnelt, M.G. Quenching star formation with quasar outflows launched by trapped IR radiation. Mon. Not. R. Astron. Soc. 2018, 479, 2079–2111. [Google Scholar] [CrossRef]
- Murray, N.; Chiang, J.; Grossman, S.A.; Voit, G.M. Accretion Disk Winds from Active Galactic Nuclei. Astrophys. J. 1995, 451, 498. [Google Scholar] [CrossRef]
- Proga, D.; Stone, J.M.; Kallman, T.R. Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. Astrophys. J. 2000, 543, 686–696. [Google Scholar] [CrossRef]
- Mizumoto, M.; Nomura, M.; Done, C.; Ohsuga, K.; Odaka, H. UV line-driven disc wind as the origin of UltraFast Outflows in AGN. Mon. Not. R. Astron. Soc. 2021, 503, 1442–1458. [Google Scholar] [CrossRef]
- Tanner, R.; Weaver, K.A. Simulations of AGN-driven Galactic Outflow Morphology and Content. Astron. J. 2022, 163, 134. [Google Scholar] [CrossRef]
- Sazonov, S.Y.; Ostriker, J.P.; Ciotti, L.; Sunyaev, R.A. Radiative feedback from quasars and the growth of massive black holes in stellar spheroids. Mon. Not. R. Astron. Soc. 2005, 358, 168–180. [Google Scholar] [CrossRef]
- Bourne, M.A.; Nayakshin, S. Inverse Compton X-ray signature of AGN feedback. Mon. Not. R. Astron. Soc. 2013, 436, 2346–2351. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA Observations of Objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195. [Google Scholar] [CrossRef]
- Xu, C.; Livio, M.; Baum, S. Radio-loud and Radio-quiet Active Galactic Nuclei. Astron. J. 1999, 118, 1169–1176. [Google Scholar] [CrossRef]
- Klindt, L.; Alexander, D.M.; Rosario, D.J.; Lusso, E.; Fotopoulou, S. Fundamental differences in the radio properties of red and blue quasars: Evolution strongly favoured over orientation. Mon. Not. R. Astron. Soc. 2019, 488, 3109–3128. [Google Scholar] [CrossRef]
- Helou, G.; Soifer, B.T.; Rowan-Robinson, M. Thermal infrared and nonthermal radio: Remarkable correlation in disks of galaxies. Astrophys. J. Lett. 1985, 298, L7–L11. [Google Scholar] [CrossRef]
- Ivison, R.J.; Magnelli, B.; Ibar, E.; Andreani, P.; Elbaz, D.; Altieri, B.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; et al. The far-infrared/radio correlation as probed by Herschel. Astron. Astrophys. 2010, 518, L31. [Google Scholar] [CrossRef]
- Best, P.N.; Heckman, T.M. On the fundamental dichotomy in the local radio-AGN population: Accretion, evolution and host galaxy properties. Mon. Not. R. Astron. Soc. 2012, 421, 1569–1582. [Google Scholar] [CrossRef]
- Del Moro, A.; Alexander, D.M.; Mullaney, J.R.; Daddi, E.; Pannella, M.; Bauer, F.E.; Pope, A.; Dickinson, M.; Elbaz, D.; Barthel, P.D.; et al. GOODS-Herschel: Radio-excess signature of hidden AGN activity in distant star-forming galaxies. Astron. Astrophys. 2013, 549, A59. [Google Scholar] [CrossRef]
- Macfarlane, C.; Best, P.N.; Sabater, J.; Gürkan, G.; Jarvis, M.J.; Röttgering, H.J.A.; Baldi, R.D.; Calistro Rivera, G.; Duncan, K.J.; Morabito, L.K.; et al. The radio loudness of SDSS quasars from the LOFAR Two-metre Sky Survey: Ubiquitous jet activity and constraints on star formation. Mon. Not. R. Astron. Soc. 2021, 506, 5888–5907. [Google Scholar] [CrossRef]
- Zakamska, N.L.; Strauss, M.A.; Heckman, T.M.; Ivezić, Ž.; Krolik, J.H. Candidate Type II Quasars from the Sloan Digital Sky Survey. II. From Radio to X-Rays. Astron. J. 2004, 128, 1002–1016. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Condon, J.J.; Kimball, A.E.; Perley, R.A.; Ivezić, Ž. Radio-loud and Radio-quiet QSOs. Astrophys. J. 2016, 831, 168. [Google Scholar] [CrossRef]
- Heckman, T.M. An Optical and Radio Survey of the Nuclei of Bright Galaxies—Activity in the Normal Galactic Nuclei. Astron. Astrophys. 1980, 87, 152. [Google Scholar]
- Flohic, H.M.L.G.; Eracleous, M.; Chartas, G.; Shields, J.C.; Moran, E.C. The Central Engines of 19 LINERs as Viewed by Chandra. Astrophys. J. 2006, 647, 140–160. [Google Scholar] [CrossRef]
- Ho, L.C. Radiatively Inefficient Accretion in Nearby Galaxies. Astrophys. J. 2009, 699, 626–637. [Google Scholar] [CrossRef]
- Nims, J.; Quataert, E.; Faucher-Giguère, C.A. Observational signatures of galactic winds powered by active galactic nuclei. Mon. Not. R. Astron. Soc. 2015, 447, 3612–3622. [Google Scholar] [CrossRef]
- Panessa, F.; Baldi, R.D.; Laor, A.; Padovani, P.; Behar, E.; McHardy, I. The origin of radio emission from radio-quiet active galactic nuclei. Nat. Astron. 2019, 3, 387–396. [Google Scholar] [CrossRef]
- Morabito, L.K.; Sweijen, F.; Radcliffe, J.F.; Best, P.N.; Kondapally, R.; Bondi, M.; Bonato, M.; Duncan, K.J.; Prandoni, I.; Shimwell, T.W.; et al. Identifying active galactic nuclei via brightness temperature with sub-arcsecond international LOFAR telescope observations. Mon. Not. R. Astron. Soc. 2022, 515, 5758–5774. [Google Scholar] [CrossRef]
- Jarvis, M.E.; Harrison, C.M.; Mainieri, V.; Alexander, D.M.; Arrigoni Battaia, F.; Calistro Rivera, G.; Circosta, C.; Costa, T.; De Breuck, C.; Edge, A.C.; et al. The quasar feedback survey: Discovering hidden Radio-AGN and their connection to the host galaxy ionized gas. Mon. Not. R. Astron. Soc. 2021, 503, 1780–1797. [Google Scholar] [CrossRef]
- Fischer, T.C.; Johnson, M.C.; Secrest, N.J.; Crenshaw, D.M.; Kraemer, S.B. No Small-scale Radio Jets Here: Multiepoch Observations of Radio Continuum Structures in NGC 1068 with the VLBA. Astrophys. J. 2023, 953, 87. [Google Scholar] [CrossRef]
- Bicknell, G.V.; Mukherjee, D.; Wagner, A.Y.; Sutherland, R.S.; Nesvadba, N.P.H. Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies. Mon. Not. R. Astron. Soc. 2018, 475, 3493–3501. [Google Scholar] [CrossRef]
- Meenakshi, M.; Mukherjee, D.; Wagner, A.Y.; Nesvadba, N.P.H.; Bicknell, G.V.; Morganti, R.; Janssen, R.M.J.; Sutherland, R.S.; Mandal, A. Modelling observable signatures of jet-ISM interaction: Thermal emission and gas kinematics. Mon. Not. R. Astron. Soc. 2022, 516, 766–786. [Google Scholar] [CrossRef]
- Sijacki, D.; Springel, V.; Di Matteo, T.; Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 2007, 380, 877–900. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Di Matteo, T.; Robertson, B.; Springel, V. A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophys. J. Suppl. 2006, 163, 1–49. [Google Scholar] [CrossRef]
- Dubois, Y.; Devriendt, J.; Slyz, A.; Teyssier, R. Jet-regulated cooling catastrophe. Mon. Not. R. Astron. Soc. 2010, 409, 985–1001. [Google Scholar] [CrossRef]
- Bower, R.G.; Benson, A.J.; Crain, R.A. What shapes the galaxy mass function? Exploring the roles of supernova-driven winds and active galactic nuclei. Mon. Not. R. Astron. Soc. 2012, 422, 2816–2840. [Google Scholar] [CrossRef]
- Oppenheimer, B.D.; Davies, J.J.; Crain, R.A.; Wijers, N.A.; Schaye, J.; Werk, J.K.; Burchett, J.N.; Trayford, J.W.; Horton, R. Feedback from supermassive black holes transforms centrals into passive galaxies by ejecting circumgalactic gas. Mon. Not. R. Astron. Soc. 2020, 491, 2939–2952. [Google Scholar] [CrossRef]
- Cicone, C.; Mainieri, V.; Circosta, C.; Kakkad, D.; Vietri, G.; Perna, M.; Bischetti, M.; Carniani, S.; Cresci, G.; Harrison, C.; et al. SUPER. VI. A giant molecular halo around a z∼2 quasar. Astron. Astrophys. 2021, 654, L8. [Google Scholar] [CrossRef]
- Audibert, A.; Ramos Almeida, C.; García-Burillo, S.; Combes, F.; Bischetti, M.; Meenakshi, M.; Mukherjee, D.; Bicknell, G.; Wagner, A.Y. Jet-induced molecular gas excitation and turbulence in the Teacup. Astron. Astrophys. 2023, 671, L12. [Google Scholar] [CrossRef]
- Longinotti, A.L.; Krongold, Y.; Kriss, G.A.; Ely, J.; Gallo, L.; Grupe, D.; Komossa, S.; Mathur, S.; Pradhan, A. The Rise of an Ionized Wind in the Narrow-line Seyfert 1 Galaxy Mrk 335 Observed by XMM-Newton and HST. Astrophys. J. 2013, 766, 104. [Google Scholar] [CrossRef]
- Tombesi, F.; Cappi, M.; Reeves, J.N.; Nemmen, R.S.; Braito, V.; Gaspari, M.; Reynolds, C.S. Unification of X-ray winds in Seyfert galaxies: From ultra-fast outflows to warm absorbers. Mon. Not. R. Astron. Soc. 2013, 430, 1102–1117. [Google Scholar] [CrossRef]
- Chartas, G.; Cappi, M.; Vignali, C.; Dadina, M.; James, V.; Lanzuisi, G.; Giustini, M.; Gaspari, M.; Strickland, S.; Bertola, E. Multiphase Powerful Outflows Detected in High-z Quasars. Astrophys. J. 2021, 920, 24. [Google Scholar] [CrossRef]
- Murray, N.; Chiang, J. Active Galactic Nuclei Disk Winds, Absorption Lines, and Warm Absorbers. Astrophys. J. Lett. 1995, 454, L105. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Bachev, R.; Marziani, P.; Negrete, C.A.; Dultzin, D. C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei. Astrophys. J. 2007, 666, 757–777. [Google Scholar] [CrossRef]
- Coil, A.L.; Weiner, B.J.; Holz, D.E.; Cooper, M.C.; Yan, R.; Aird, J. Outflowing Galactic Winds in Post-starburst and Active Galactic Nucleus Host Galaxies at 0.2 < z < 0.8. Astrophys. J. 2011, 743, 46. [Google Scholar] [CrossRef]
- Martin, C.L.; Dijkstra, M.; Henry, A.; Soto, K.T.; Danforth, C.W.; Wong, J. The Lyα Line Profiles of Ultraluminous Infrared Galaxies: Fast Winds and Lyman Continuum Leakage. Astrophys. J. 2015, 803, 6. [Google Scholar] [CrossRef]
- Harrison, C.M.; Alexander, D.M.; Mullaney, J.R.; Swinbank, A.M. Kiloparsec-scale outflows are prevalent among luminous AGN: Outflows and feedback in the context of the overall AGN population. Mon. Not. R. Astron. Soc. 2014, 441, 3306–3347. [Google Scholar] [CrossRef]
- Villar-Martín, M.; Arribas, S.; Emonts, B.; Humphrey, A.; Tadhunter, C.; Bessiere, P.; Cabrera Lavers, A.; Ramos Almeida, C. Ionized outflows in luminous type 2 AGNs at z < 0.6: No evidence for significant impact on the host galaxies. Mon. Not. R. Astron. Soc. 2016, 460, 130–162. [Google Scholar] [CrossRef]
- Förster Schreiber, N.M.; Genzel, R.; Newman, S.F.; Kurk, J.D.; Lutz, D.; Tacconi, L.J.; Wuyts, S.; Bandara, K.; Burkert, A.; Buschkamp, P.; et al. The Sins/zC-Sinf Survey of z ~2 Galaxy Kinematics: Evidence for Powerful Active Galactic Nucleus-Driven Nuclear Outflows in Massive Star-Forming Galaxies. Astrophys. J. 2014, 787, 38. [Google Scholar] [CrossRef]
- Förster Schreiber, N.M.; Übler, H.; Davies, R.L.; Genzel, R.; Wisnioski, E.; Belli, S.; Shimizu, T.; Lutz, D.; Fossati, M.; Herrera-Camus, R.; et al. The KMOS3D Survey: Demographics and Properties of Galactic Outflows at z = 0.6–2.7. Astrophys. J. 2019, 875, 21. [Google Scholar] [CrossRef]
- Rose, M.; Tadhunter, C.; Ramos Almeida, C.; Rodríguez Zaurín, J.; Santoro, F.; Spence, R. Quantifying the AGN-driven outflows in ULIRGs (QUADROS)–I: VLT/Xshooter observations of nine nearby objects. Mon. Not. R. Astron. Soc. 2018, 474, 128–156. [Google Scholar] [CrossRef]
- Scholtz, J.; Alexander, D.M.; Harrison, C.M.; Rosario, D.J.; McAlpine, S.; Mullaney, J.R.; Stanley, F.; Simpson, J.; Theuns, T.; Bower, R.G.; et al. Identifying the subtle signatures of feedback from distant AGN using ALMA observations and the EAGLE hydrodynamical simulations. Mon. Not. R. Astron. Soc. 2018, 475, 1288–1305. [Google Scholar] [CrossRef]
- Scholtz, J.; Harrison, C.M.; Rosario, D.J.; Alexander, D.M.; Chen, C.C.; Kakkad, D.; Mainieri, V.; Tiley, A.L.; Turner, O.; Cirasuolo, M.; et al. KASHz: No evidence for ionised outflows instantaneously suppressing star formation in moderate luminosity AGN at z∼1.4–2.6. Mon. Not. R. Astron. Soc. 2020, 492, 3194–3216. [Google Scholar] [CrossRef]
- Rupke, D.S.N.; Veilleux, S. Breaking the Obscuring Screen: A Resolved Molecular Outflow in a Buried QSO. Astrophys. J. Lett. 2013, 775, L15. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Acosta-Pulido, J.A.; Tadhunter, C.N.; González-Fernández, C.; Cicone, C.; Fernández-Torreiro, M. A near-infrared study of the multiphase outflow in the type-2 quasar J1509+0434. Mon. Not. R. Astron. Soc. 2019, 487, L18–L23. [Google Scholar] [CrossRef]
- Speranza, G.; Ramos Almeida, C.; Acosta-Pulido, J.A.; Riffel, R.A.; Tadhunter, C.; Pierce, J.C.S.; Rodríguez-Ardila, A.; Coloma Puga, M.; Brusa, M.; Musiimenta, B.; et al. Warm molecular and ionized gas kinematics in the type-2 quasar J0945+1737. Astron. Astrophys. 2022, 665, A55. [Google Scholar] [CrossRef]
- Riffel, R.A.; Storchi-Bergmann, T.; Riffel, R.; Bianchin, M.; Zakamska, N.L.; Ruschel-Dutra, D.; Bentz, M.C.; Burtscher, L.; Crenshaw, D.M.; Dahmer-Hahn, L.G.; et al. The AGNIFS survey: Spatially resolved observations of hot molecular and ionized outflows in nearby active galaxies. Mon. Not. R. Astron. Soc. 2023, 521, 1832–1848. [Google Scholar] [CrossRef]
- Morganti, R.; Tadhunter, C.N.; Oosterloo, T.A. Fast neutral outflows in powerful radio galaxies: A major source of feedback in massive galaxies. Astron. Astrophys. 2005, 444, L9–L13. [Google Scholar] [CrossRef]
- Morganti, R.; Veilleux, S.; Oosterloo, T.; Teng, S.H.; Rupke, D. Another piece of the puzzle: The fast H I outflow in Mrk 231. Astron. Astrophys. 2016, 593, A30. [Google Scholar] [CrossRef]
- Rupke, D.S.; Veilleux, S.; Sanders, D.B. Outflows in Active Galactic Nucleus/Starburst-Composite Ultraluminous Infrared Galaxies1. Astrophys. J. 2005, 632, 751–780. [Google Scholar] [CrossRef]
- Cazzoli, S.; Arribas, S.; Maiolino, R.; Colina, L. Neutral gas outflows in nearby [U]LIRGs via optical NaD feature. Astron. Astrophys. 2016, 590, A125. [Google Scholar] [CrossRef]
- Concas, A.; Popesso, P.; Brusa, M.; Mainieri, V.; Thomas, D. Two-face(s): Ionized and neutral gas winds in the local Universe. Astron. Astrophys. 2019, 622, A188. [Google Scholar] [CrossRef]
- Maiolino, R.; Gallerani, S.; Neri, R.; Cicone, C.; Ferrara, A.; Genzel, R.; Lutz, D.; Sturm, E.; Tacconi, L.J.; Walter, F.; et al. Evidence of strong quasar feedback in the early Universe. Mon. Not. R. Astron. Soc. 2012, 425, L66–L70. [Google Scholar] [CrossRef]
- Bischetti, M.; Maiolino, R.; Carniani, S.; Fiore, F.; Piconcelli, E.; Fluetsch, A. Widespread QSO-driven outflows in the early Universe. Astron. Astrophys. 2019, 630, A59. [Google Scholar] [CrossRef]
- Dasyra, K.M.; Combes, F. Turbulent and fast motions of H2 gas in active galactic nuclei. Astron. Astrophys. 2011, 533, L10. [Google Scholar] [CrossRef]
- Riffel, R.A.; Zakamska, N.L.; Riffel, R. Active galactic nuclei winds as the origin of the H2 emission excess in nearby galaxies. Mon. Not. R. Astron. Soc. 2020, 491, 1518–1529. [Google Scholar] [CrossRef]
- Sturm, E.; González-Alfonso, E.; Veilleux, S.; Fischer, J.; Graciá-Carpio, J.; Hailey-Dunsheath, S.; Contursi, A.; Poglitsch, A.; Sternberg, A.; Davies, R.; et al. Massive Molecular Outflows and Negative Feedback in ULIRGs Observed by Herschel-PACS. Astrophys. J. Lett. 2011, 733, L16. [Google Scholar] [CrossRef]
- Veilleux, S.; Meléndez, M.; Sturm, E.; Gracia-Carpio, J.; Fischer, J.; González-Alfonso, E.; Contursi, A.; Lutz, D.; Poglitsch, A.; Davies, R.; et al. Fast Molecular Outflows in Luminous Galaxy Mergers: Evidence for Quasar Feedback from Herschel. Astrophys. J. 2013, 776, 27. [Google Scholar] [CrossRef]
- Spoon, H.W.W.; Farrah, D.; Lebouteiller, V.; González-Alfonso, E.; Bernard-Salas, J.; Urrutia, T.; Rigopoulou, D.; Westmoquette, M.S.; Smith, H.A.; Afonso, J.; et al. Diagnostics of AGN-Driven Molecular Outflows in ULIRGs from Herschel-PACS Observations of OH at 119 μm. Astrophys. J. 2013, 775, 127. [Google Scholar] [CrossRef]
- González-Alfonso, E.; Fischer, J.; Spoon, H.W.W.; Stewart, K.P.; Ashby, M.L.N.; Veilleux, S.; Smith, H.A.; Sturm, E.; Farrah, D.; Falstad, N.; et al. Molecular Outflows in Local ULIRGs: Energetics from Multitransition OH Analysis. Astrophys. J. 2017, 836, 11. [Google Scholar] [CrossRef]
- Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F. Quasar feedback revealed by giant molecular outflows. Astron. Astrophys. 2010, 518, L155. [Google Scholar] [CrossRef]
- Cicone, C.; Maiolino, R.; Sturm, E.; Graciá-Carpio, J.; Feruglio, C.; Neri, R.; Aalto, S.; Davies, R.; Fiore, F.; Fischer, J.; et al. Massive molecular outflows and evidence for AGN feedback from CO observations. Astron. Astrophys. 2014, 562, A21. [Google Scholar] [CrossRef]
- Pereira-Santaella, M.; Colina, L.; García-Burillo, S.; Combes, F.; Emonts, B.; Aalto, S.; Alonso-Herrero, A.; Arribas, S.; Henkel, C.; Labiano, A.; et al. Spatially resolved cold molecular outflows in ULIRGs. Astron. Astrophys. 2018, 616, A171. [Google Scholar] [CrossRef]
- Fluetsch, A.; Maiolino, R.; Carniani, S.; Marconi, A.; Cicone, C.; Bourne, M.A.; Costa, T.; Fabian, A.C.; Ishibashi, W.; Venturi, G. Cold molecular outflows in the local Universe and their feedback effect on galaxies. Mon. Not. R. Astron. Soc. 2019, 483, 4586–4614. [Google Scholar] [CrossRef]
- Lamperti, I.; Pereira-Santaella, M.; Perna, M.; Colina, L.; Arribas, S.; García-Burillo, S.; González-Alfonso, E.; Aalto, S.; Alonso-Herrero, A.; Combes, F.; et al. Physics of ULIRGs with MUSE and ALMA: The PUMA project. IV. No tight relation between cold molecular outflow rates and AGN luminosities. Astron. Astrophys. 2022, 668, A45. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Bischetti, M.; García-Burillo, S.; Alonso-Herrero, A.; Audibert, A.; Cicone, C.; Feruglio, C.; Tadhunter, C.N.; Pierce, J.C.S.; Pereira-Santaella, M.; et al. The diverse cold molecular gas contents, morphologies, and kinematics of type-2 quasars as seen by ALMA. Astron. Astrophys. 2022, 658, A155. [Google Scholar] [CrossRef]
- Scholtz, J.; Maiolino, R.; Jones, G.C.; Carniani, S. Evidence of extended cold molecular gas and dust haloes around z 2.3 extremely red quasars with ALMA. Mon. Not. R. Astron. Soc. 2023, 519, 5246–5262. [Google Scholar] [CrossRef]
- Cicone, C.; Brusa, M.; Ramos Almeida, C.; Cresci, G.; Husemann, B.; Mainieri, V. The largely unconstrained multiphase nature of outflows in AGN host galaxies. Nat. Astron. 2018, 2, 176–178. [Google Scholar] [CrossRef]
- Rupke, D.S.N.; Gültekin, K.; Veilleux, S. Quasar-mode Feedback in Nearby Type 1 Quasars: Ubiquitous Kiloparsec-scale Outflows and Correlations with Black Hole Properties. Astrophys. J. 2017, 850, 40. [Google Scholar] [CrossRef]
- Fluetsch, A.; Maiolino, R.; Carniani, S.; Arribas, S.; Belfiore, F.; Bellocchi, E.; Cazzoli, S.; Cicone, C.; Cresci, G.; Fabian, A.C.; et al. Properties of the multiphase outflows in local (ultra)luminous infrared galaxies. Mon. Not. R. Astron. Soc. 2021, 505, 5753–5783. [Google Scholar] [CrossRef]
- Speranza, G.; Ramos Almeida, C.; Acosta-Pulido, J.A.; Audibert, A.; Holden, L.R.; Tadhunter, C.N.; Lapi, A.; González-Martín, O.; Brusa, M.; López, I.E.; et al. Multiphase characterization of AGN winds in five local type-2 quasars. Astron. Astrophys. 2024, 681, A63. [Google Scholar] [CrossRef]
- Nesvadba, N.P.H.; Lehnert, M.D.; De Breuck, C.; Gilbert, A.M.; van Breugel, W. Evidence for powerful AGN winds at high redshift: Dynamics of galactic outflows in radio galaxies during the “Quasar Era”. Astron. Astrophys. 2008, 491, 407–424. [Google Scholar] [CrossRef]
- Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; et al. Ionised outflows in z ~2.4 quasar host galaxies. Astron. Astrophys. 2015, 580, A102. [Google Scholar] [CrossRef]
- Kakkad, D.; Mainieri, V.; Vietri, G.; Carniani, S.; Harrison, C.M.; Perna, M.; Scholtz, J.; Circosta, C.; Cresci, G.; Husemann, B.; et al. SUPER. II. Spatially resolved ionised gas kinematics and scaling relations in z∼2 AGN host galaxies. Astron. Astrophys. 2020, 642, A147. [Google Scholar] [CrossRef]
- Vayner, A.; Zakamska, N.L.; Riffel, R.A.; Alexandroff, R.; Cosens, M.; Hamann, F.; Perrotta, S.; Rupke, D.S.N.; Bergmann, T.S.; Veilleux, S.; et al. Powerful winds in high-redshift obscured and red quasars. Mon. Not. R. Astron. Soc. 2021, 504, 4445–4459. [Google Scholar] [CrossRef]
- Concas, A.; Maiolino, R.; Curti, M.; Hayden-Pawson, C.; Cirasuolo, M.; Jones, G.C.; Mercurio, A.; Belfiore, F.; Cresci, G.; Cullen, F.; et al. Being KLEVER at cosmic noon: Ionized gas outflows are inconspicuous in low-mass star-forming galaxies but prominent in massive AGN hosts. Mon. Not. R. Astron. Soc. 2022, 513, 2535–2562. [Google Scholar] [CrossRef]
- Wylezalek, D.; Vayner, A.; Rupke, D.S.N.; Zakamska, N.L.; Veilleux, S.; Ishikawa, Y.; Bertemes, C.; Liu, W.; Barrera-Ballesteros, J.K.; Chen, H.W.; et al. First Results from the JWST Early Release Science Program Q3D: Turbulent Times in the Life of a z 3 Extremely Red Quasar Revealed by NIRSpec IFU. Astrophys. J. Lett. 2022, 940, L7. [Google Scholar] [CrossRef]
- Vayner, A.; Zakamska, N.L.; Ishikawa, Y.; Sankar, S.; Wylezalek, D.; Rupke, D.S.N.; Veilleux, S.; Bertemes, C.; Barrera-Ballesteros, J.K.; Chen, H.W.; et al. First Results from the JWST Early Release Science Program Q3D: Powerful Quasar-driven Galactic Scale Outflow at z = 3. Astrophys. J. 2024, 960, 126. [Google Scholar] [CrossRef]
- Cicone, C.; Maiolino, R.; Gallerani, S.; Neri, R.; Ferrara, A.; Sturm, E.; Fiore, F.; Piconcelli, E.; Feruglio, C. Very extended cold gas, star formation and outflows in the halo of a bright quasar at z > 6. Astron. Astrophys. 2015, 574, A14. [Google Scholar] [CrossRef]
- Stacey, H.R.; Costa, T.; McKean, J.P.; Sharon, C.E.; Calistro Rivera, G.; Glikman, E.; van der Werf, P.P. Red quasars blow out molecular gas from galaxies during the peak of cosmic star formation. Mon. Not. R. Astron. Soc. 2022, 517, 3377–3391. [Google Scholar] [CrossRef]
- Decarli, R.; Walter, F.; Venemans, B.P.; Bañados, E.; Bertoldi, F.; Carilli, C.; Fan, X.; Farina, E.P.; Mazzucchelli, C.; Riechers, D.; et al. An ALMA [C II] Survey of 27 Quasars at z > 5.94. Astrophys. J. 2018, 854, 97. [Google Scholar] [CrossRef]
- Novak, M.; Venemans, B.P.; Walter, F.; Neeleman, M.; Kaasinen, M.; Liang, L.; Feldmann, R.; Bañados, E.; Carilli, C.; Decarli, R.; et al. No Evidence for [C II] Halos or High-velocity Outflows in z ≳ 6 Quasar Host Galaxies. Astrophys. J. 2020, 904, 131. [Google Scholar] [CrossRef]
- Herrera-Camus, R.; Tacconi, L.; Genzel, R.; Förster Schreiber, N.; Lutz, D.; Bolatto, A.; Wuyts, S.; Renzini, A.; Lilly, S.; Belli, S.; et al. Molecular and Ionized Gas Phases of an AGN-driven Outflow in a Typical Massive Galaxy at z ≈ 2. Astrophys. J. 2019, 871, 37. [Google Scholar] [CrossRef]
- D’Eugenio, F.; Perez-Gonzalez, P.; Maiolino, R.; Scholtz, J.; Perna, M.; Circosta, C.; Uebler, H.; Arribas, S.; Boeker, T.; Bunker, A.; et al. A fast-rotator post-starburst galaxy quenched by supermassive black-hole feedback at z = 3. arXiv 2023, arXiv:2308.06317. [Google Scholar] [CrossRef]
- Vayner, A.; Zakamska, N.; Wright, S.A.; Armus, L.; Murray, N.; Walth, G. Multiphase Outflows in High-redshift Quasar Host Galaxies. Astrophys. J. 2021, 923, 59. [Google Scholar] [CrossRef]
- Veilleux, S.; Teng, S.H.; Rupke, D.S.N.; Maiolino, R.; Sturm, E. Half-megasecond Chandra Spectral Imaging of the Hot Circumgalactic Nebula around Quasar Mrk 231. Astrophys. J. 2014, 790, 116. [Google Scholar] [CrossRef]
- Greene, J.E.; Pooley, D.; Zakamska, N.L.; Comerford, J.M.; Sun, A.L. Extended X-Ray Emission from a Quasar-driven Superbubble. Astrophys. J. 2014, 788, 54. [Google Scholar] [CrossRef]
- Lansbury, G.B.; Jarvis, M.E.; Harrison, C.M.; Alexander, D.M.; Del Moro, A.; Edge, A.C.; Mullaney, J.R.; Thomson, A.P. Storm in a Teacup: X-Ray View of an Obscured Quasar and Superbubble. Astrophys. J. Lett. 2018, 856, L1. [Google Scholar] [CrossRef]
- Morganti, R.; Fogasy, J.; Paragi, Z.; Oosterloo, T.; Orienti, M. Radio Jets Clearing the Way Through a Galaxy: Watching Feedback in Action. Science 2013, 341, 1082–1085. [Google Scholar] [CrossRef]
- Russell, H.R.; Lopez, L.A.; Allen, S.W.; Chartas, G.; Choudhury, P.P.; Dupke, R.A.; Fabian, A.C.; Flores, A.M.; Garofali, K.; Hodges-Kluck, E.; et al. The evolution of galaxies and clusters at high spatial resolution with AXIS. arXiv 2023, arXiv:2311.07661. [Google Scholar] [CrossRef]
- Simionescu, A.; ZuHone, J.; Zhuravleva, I.; Churazov, E.; Gaspari, M.; Nagai, D.; Werner, N.; Roediger, E.; Canning, R.; Eckert, D.; et al. Constraining Gas Motions in the Intra-Cluster Medium. Space Sci. Rev. 2019, 215, 24. [Google Scholar] [CrossRef]
- Brownson, S.; Maiolino, R.; Tazzari, M.; Carniani, S.; Henden, N. Detecting the halo heating from AGN feedback with ALMA. Mon. Not. R. Astron. Soc. 2019, 490, 5134–5146. [Google Scholar] [CrossRef]
- Richter, P. Hot Gas in Galaxy Halos Traced by Coronal Broad Lyα Absorbers. Astrophys. J. 2020, 892, 33. [Google Scholar] [CrossRef]
- Richings, A.J.; Faucher-Giguère, C.A.; Stern, J. Unravelling the physics of multiphase AGN winds through emission line tracers. Mon. Not. R. Astron. Soc. 2021, 503, 1568–1585. [Google Scholar] [CrossRef]
- Fiore, F.; Feruglio, C.; Shankar, F.; Bischetti, M.; Bongiorno, A.; Brusa, M.; Carniani, S.; Cicone, C.; Duras, F.; Lamastra, A.; et al. AGN wind scaling relations and the co-evolution of black holes and galaxies. Astron. Astrophys. 2017, 601, A143. [Google Scholar] [CrossRef]
- Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; et al. The multi-phase winds of Markarian 231: From the hot, nuclear, ultra-fast wind to the galaxy-scale, molecular outflow. Astron. Astrophys. 2015, 583, A99. [Google Scholar] [CrossRef]
- García-Burillo, S.; Combes, F.; Usero, A.; Aalto, S.; Krips, M.; Viti, S.; Alonso-Herrero, A.; Hunt, L.K.; Schinnerer, E.; Baker, A.J.; et al. Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. Astron. Astrophys. 2014, 567, A125. [Google Scholar] [CrossRef]
- Saito, T.; Takano, S.; Harada, N.; Nakajima, T.; Schinnerer, E.; Liu, D.; Taniguchi, A.; Izumi, T.; Watanabe, Y.; Bamba, K.; et al. The Kiloparsec-scale Neutral Atomic Carbon Outflow in the Nearby Type 2 Seyfert Galaxy NGC 1068: Evidence for Negative AGN Feedback. Astrophys. J. Lett. 2022, 927, L32. [Google Scholar] [CrossRef]
- Tadhunter, C.; Morganti, R.; Rose, M.; Oonk, J.B.R.; Oosterloo, T. Jet acceleration of the fast molecular outflows in the Seyfert galaxy IC 5063. Nature 2014, 511, 440–443. [Google Scholar] [CrossRef]
- Morganti, R.; Oosterloo, T.; Oonk, J.B.R.; Frieswijk, W.; Tadhunter, C. The fast molecular outflow in the Seyfert galaxy IC 5063 as seen by ALMA. Astron. Astrophys. 2015, 580, A1. [Google Scholar] [CrossRef]
- Talbot, R.Y.; Bourne, M.A.; Sijacki, D. Blandford-Znajek jets in galaxy formation simulations: Method and implementation. Mon. Not. R. Astron. Soc. 2021, 504, 3619–3650. [Google Scholar] [CrossRef]
- Talbot, R.Y.; Sijacki, D.; Bourne, M.A. Blandford-Znajek jets in galaxy formation simulations: Exploring the diversity of outflows produced by spin-driven AGN jets in Seyfert galaxies. Mon. Not. R. Astron. Soc. 2022, 514, 4535–4559. [Google Scholar] [CrossRef]
- Couto, G.S.; Storchi-Bergmann, T.; Schnorr-Müller, A. Gas rotation, shocks and outflow within the inner 3 kpc of the radio galaxy 3C 33. Mon. Not. R. Astron. Soc. 2017, 469, 1573–1586. [Google Scholar] [CrossRef]
- Balmaverde, B.; Capetti, A.; Marconi, A.; Venturi, G.; Chiaberge, M.; Baldi, R.D.; Baum, S.; Gilli, R.; Grandi, P.; Meyer, E.; et al. The MURALES survey. II. Presentation of MUSE observations of 20 3C low-z radio galaxies and first results. Astron. Astrophys. 2019, 632, A124. [Google Scholar] [CrossRef]
- Balmaverde, B.; Capetti, A.; Baldi, R.D.; Baum, S.; Chiaberge, M.; Gilli, R.; Jimenez-Gallardo, A.; Marconi, A.; Massaro, F.; Meyer, E.; et al. The MURALES survey. VI. Properties and origin of the extended line emission structures in radio galaxies. Astron. Astrophys. 2022, 662, A23. [Google Scholar] [CrossRef]
- Girdhar, A.; Harrison, C.M.; Mainieri, V.; Bittner, A.; Costa, T.; Kharb, P.; Mukherjee, D.; Arrigoni Battaia, F.; Alexander, D.M.; Calistro Rivera, G.; et al. Quasar feedback survey: Multiphase outflows, turbulence, and evidence for feedback caused by low power radio jets inclined into the galaxy disc. Mon. Not. R. Astron. Soc. 2022, 512, 1608–1628. [Google Scholar] [CrossRef]
- Venturi, G.; Treister, E.; Finlez, C.; D’Ago, G.; Bauer, F.; Harrison, C.M.; Ramos Almeida, C.; Revalski, M.; Ricci, F.; Sartori, L.F.; et al. Complex AGN feedback in the Teacup galaxy. A powerful ionised galactic outflow, jet-ISM interaction, and evidence for AGN-triggered star formation in a giant bubble. Astron. Astrophys. 2023, 678, A127. [Google Scholar] [CrossRef]
- Nyland, K.; Harwood, J.J.; Mukherjee, D.; Jagannathan, P.; Rujopakarn, W.; Emonts, B.; Alatalo, K.; Bicknell, G.V.; Davis, T.A.; Greene, J.E.; et al. Revolutionizing Our Understanding of AGN Feedback and its Importance to Galaxy Evolution in the Era of the Next Generation Very Large Array. Astrophys. J. 2018, 859, 23. [Google Scholar] [CrossRef]
- Harrison, C.M.; Thomson, A.P.; Alexander, D.M.; Bauer, F.E.; Edge, A.C.; Hogan, M.T.; Mullaney, J.R.; Swinbank, A.M. Storm in a “Teacup”: A Radio-quiet Quasar with ≈10 kpc Radio-emitting Bubbles and Extreme Gas Kinematics. Astrophys. J. 2015, 800, 45. [Google Scholar] [CrossRef]
- Girdhar, A.; Harrison, C.M.; Mainieri, V.; Fernández Aranda, R.; Alexander, D.M.; Arrigoni Battaia, F.; Bianchin, M.; Calistro Rivera, G.; Circosta, C.; Costa, T.; et al. Quasar feedback survey: Molecular gas affected by central outflows and by 10 kpc radio lobes reveal dual feedback effects in ’radio quiet’ quasars. Mon. Not. R. Astron. Soc. 2023, 527, 9322–9342. [Google Scholar] [CrossRef]
- Cresci, G.; Tozzi, G.; Perna, M.; Brusa, M.; Marconcini, C.; Marconi, A.; Carniani, S.; Brienza, M.; Giroletti, M.; Belfiore, F.; et al. Bubbles and outflows: The novel JWST/NIRSpec view of the z = 1.59 obscured quasar XID2028. Astron. Astrophys. 2023, 672, A128. [Google Scholar] [CrossRef]
- Veilleux, S.; Liu, W.; Vayner, A.; Wylezalek, D.; Rupke, D.S.N.; Zakamska, N.L.; Ishikawa, Y.; Bertemes, C.; Barrera-Ballesteros, J.K.; Chen, H.W.; et al. First Results from the JWST Early Release Science Program Q3D: The Warm Ionized Gas Outflow in z 1.6 Quasar XID 2028 and Its Impact on the Host Galaxy. Astrophys. J. 2023, 953, 56. [Google Scholar] [CrossRef]
- Wagner, A.Y.; Bicknell, G.V.; Umemura, M.; Sutherland, R.S.; Silk, J. Galaxy-scale AGN feedback—Theory. Astron. Nachrichten 2016, 337, 167. [Google Scholar] [CrossRef]
- Venanzi, M.; Hönig, S.; Williamson, D. The Role of Infrared Radiation Pressure in Shaping Dusty Winds in AGNs. Astrophys. J. 2020, 900, 174. [Google Scholar] [CrossRef]
- Glikman, E.; Urrutia, T.; Lacy, M.; Djorgovski, S.G.; Mahabal, A.; Myers, A.D.; Ross, N.P.; Petitjean, P.; Ge, J.; Schneider, D.P.; et al. FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust. Astrophys. J. 2012, 757, 51. [Google Scholar] [CrossRef]
- Banerji, M.; Alaghband-Zadeh, S.; Hewett, P.C.; McMahon, R.G. Heavily reddened type 1 quasars at z > 2–I. Evidence for significant obscured black hole growth at the highest quasar luminosities. Mon. Not. R. Astron. Soc. 2015, 447, 3368–3389. [Google Scholar] [CrossRef]
- Mercedes-Feliz, J.; Anglés-Alcázar, D.; Kiat Oh, B.; Hayward, C.C.; Cochrane, R.K.; Richings, A.J.; Faucher-Giguère, C.A.; Wellons, S.; Terrazas, B.A.; Moreno, J.; et al. Dense stellar clump formation driven by strong quasar winds in the FIRE cosmological hydrodynamic simulations. arXiv 2023, arXiv:2310.19863. [Google Scholar] [CrossRef]
- Rosario, D.J.; Togi, A.; Burtscher, L.; Davies, R.I.; Shimizu, T.T.; Lutz, D. An Accreting Supermassive Black Hole Irradiating Molecular Gas in NGC 2110. Astrophys. J. Lett. 2019, 875, L8. [Google Scholar] [CrossRef]
- Feruglio, C.; Fabbiano, G.; Bischetti, M.; Elvis, M.; Travascio, A.; Fiore, F. Multiphase Gas Flows in the Nearby Seyfert Galaxy ESO428-G014. Paper I. Astrophys. J. 2020, 890, 29. [Google Scholar] [CrossRef]
- Bessiere, P.S.; Ramos Almeida, C. Spatially resolved evidence of the impact of quasar-driven outflows on recent star formation: The case of Mrk 34. Mon. Not. R. Astron. Soc. Lett. 2022, 512, L54–L59. [Google Scholar] [CrossRef]
- Hervella Seoane, K.; Ramos Almeida, C.; Acosta-Pulido, J.A.; Speranza, G.; Tadhunter, C.N.; Bessiere, P.S. Investigating the impact of quasar-driven outflows on galaxies at z∼0.3–0.4. Astron. Astrophys. 2023, 680, A71. [Google Scholar] [CrossRef]
- Whittle, M. The narrow line region of active galaxies–I. Nuclear [O III] profiles. Mon. Not. R. Astron. Soc. 1985, 213, 1–31. [Google Scholar] [CrossRef]
- Speranza, G.; Balmaverde, B.; Capetti, A.; Massaro, F.; Tremblay, G.; Marconi, A.; Venturi, G.; Chiaberge, M.; Baldi, R.; Baum, S.; et al. The MURALES survey-IV. Searching for nuclear outflows in 3C radio galaxies at z < 0.3 with MUSE observations. Astron. Astrophys. 2021, 653, A150. [Google Scholar]
- Audibert, A.; Combes, F.; García-Burillo, S.; Hunt, L.; Eckart, A.; Aalto, S.; Casasola, V.; Boone, F.; Krips, M.; Viti, S.; et al. ALMA captures feeding and feedback from the active galactic nucleus in NGC 613. Astron. Astrophys. 2019, 632, A33. [Google Scholar] [CrossRef]
- Domínguez-Fernández, A.J.; Alonso-Herrero, A.; García-Burillo, S.; Davies, R.I.; Usero, A.; Labiano, A.; Levenson, N.A.; Pereira-Santaella, M.; Imanishi, M.; Ramos Almeida, C.; et al. Searching for molecular gas inflows and outflows in the nuclear regions of five Seyfert galaxies. Astron. Astrophys. 2020, 643, A127. [Google Scholar] [CrossRef]
- Husemann, B.; Scharwächter, J.; Bennert, V.N.; Mainieri, V.; Woo, J.H.; Kakkad, D. Large-scale outflows in luminous QSOs revisited. The impact of beam smearing on AGN feedback efficiencies. Astron. Astrophys. 2016, 594, A44. [Google Scholar] [CrossRef]
- Lutz, D.; Sturm, E.; Janssen, A.; Veilleux, S.; Aalto, S.; Cicone, C.; Contursi, A.; Davies, R.I.; Feruglio, C.; Fischer, J.; et al. Molecular outflows in local galaxies: Method comparison and a role of intermittent AGN driving. Astron. Astrophys. 2020, 633, A134. [Google Scholar] [CrossRef]
- Bolatto, A.D.; Wolfire, M.; Leroy, A.K. The CO-to-H2 Conversion Factor. Annu. Rev. Astron. Astrophys. 2013, 51, 207–268. [Google Scholar] [CrossRef]
- Netzer, H. Bolometric correction factors for active galactic nuclei. Mon. Not. R. Astron. Soc. 2019, 488, 5185–5191. [Google Scholar] [CrossRef]
- Merloni, A.; Heinz, S. Measuring the kinetic power of active galactic nuclei in the radio mode. Mon. Not. R. Astron. Soc. 2007, 381, 589–601. [Google Scholar] [CrossRef]
- Bîrzan, L.; McNamara, B.R.; Nulsen, P.E.J.; Carilli, C.L.; Wise, M.W. Radiative Efficiency and Content of Extragalactic Radio Sources: Toward a Universal Scaling Relation between Jet Power and Radio Power. Astrophys. J. 2008, 686, 859–880. [Google Scholar] [CrossRef]
- Cavagnolo, K.W.; McNamara, B.R.; Nulsen, P.E.J.; Carilli, C.L.; Jones, C.; Bîrzan, L. A Relationship Between AGN Jet Power and Radio Power. Astrophys. J. 2010, 720, 1066–1072. [Google Scholar] [CrossRef]
- Kokotanekov, G.; Wise, M.; Heald, G.H.; McKean, J.P.; Bîrzan, L.; Rafferty, D.A.; Godfrey, L.E.H.; de Vries, M.; Intema, H.T.; Broderick, J.W.; et al. LOFAR MSSS: The scaling relation between AGN cavity power and radio luminosity at low radio frequencies. Astron. Astrophys. 2017, 605, A48. [Google Scholar] [CrossRef]
- Croston, J.H.; Ineson, J.; Hardcastle, M.J. Particle content, radio-galaxy morphology, and jet power: All radio-loud AGN are not equal. Mon. Not. R. Astron. Soc. 2018, 476, 1614–1623. [Google Scholar] [CrossRef]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 2005, 433, 604–607. [Google Scholar] [CrossRef]
- Crain, R.A.; Schaye, J.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE simulations of galaxy formation: Calibration of subgrid physics and model variations. Mon. Not. R. Astron. Soc. 2015, 450, 1937–1961. [Google Scholar] [CrossRef]
- Silk, J.; Begelman, M.C.; Norman, C.; Nusser, A.; Wyse, R.F.G. Which Came First: Supermassive Black Holes or Galaxies? Insights from JWST. Astrophys. J. Lett. 2024, 961, L39. [Google Scholar] [CrossRef]
- Bruzual, G.; Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 2003, 344, 1000–1028. [Google Scholar] [CrossRef]
- Peeters, E.; Spoon, H.W.W.; Tielens, A.G.G.M. Polycyclic Aromatic Hydrocarbons as a Tracer of Star Formation? Astrophys. J. 2004, 613, 986–1003. [Google Scholar] [CrossRef]
- Stanley, F.; Harrison, C.M.; Alexander, D.M.; Simpson, J.; Knudsen, K.K.; Mullaney, J.R.; Rosario, D.J.; Scholtz, J. Deep ALMA photometry of distant X-ray AGN: Improvements in star formation rate constraints, and AGN identification. Mon. Not. R. Astron. Soc. 2018, 478, 3721–3739. [Google Scholar] [CrossRef]
- Scholtz, J.; Harrison, C.M.; Rosario, D.J.; Alexander, D.M.; Knudsen, K.K.; Stanley, F.; Chen, C.C.; Kakkad, D.; Mainieri, V.; Mullaney, J. The impact of ionized outflows from z 2.5 quasars is not through instantaneous in situ quenching: The evidence from ALMA and VLT/SINFONI. Mon. Not. R. Astron. Soc. 2021, 505, 5469–5487. [Google Scholar] [CrossRef]
- Lamperti, I.; Harrison, C.M.; Mainieri, V.; Kakkad, D.; Perna, M.; Circosta, C.; Scholtz, J.; Carniani, S.; Cicone, C.; Alexander, D.M.; et al. SUPER. V. ALMA continuum observations of z∼2 AGN and the elusive evidence of outflows influencing star formation. Astron. Astrophys. 2021, 654, A90. [Google Scholar] [CrossRef]
- Howell, J.H.; Mazzarella, J.M.; Chan, B.H.P.; Lord, S.; Surace, J.A.; Frayer, D.T.; Appleton, P.N.; Armus, L.; Evans, A.S.; Bothun, G.; et al. Tracing Polycyclic Aromatic Hydrocarbons and Warm Dust Emission in the Seyfert Galaxy NGC 1068. Astron. J. 2007, 134, 2086–2097. [Google Scholar] [CrossRef]
- Jensen, J.J.; Hönig, S.F.; Rakshit, S.; Alonso-Herrero, A.; Asmus, D.; Gandhi, P.; Kishimoto, M.; Smette, A.; Tristram, K.R.W. PAH features within few hundred parsecs of active galactic nuclei. Mon. Not. R. Astron. Soc. 2017, 470, 3071–3094. [Google Scholar] [CrossRef]
- Bessiere, P.S.; Tadhunter, C.N.; Ramos Almeida, C.; Villar Martín, M.; Cabrera-Lavers, A. Young stellar populations in type II quasars: Timing the onset of star formation and nuclear activity. Mon. Not. R. Astron. Soc. 2017, 466, 3887–3917. [Google Scholar] [CrossRef]
- Dickson, R.; Tadhunter, C.; Shaw, M.; Clark, N.; Morganti, R. The nebular contribution to the extended UV continua of powerful radio galaxies. Mon. Not. R. Astron. Soc. 1995, 273, L29–L33. [Google Scholar] [CrossRef]
- Zakamska, N.L.; Gómez, L.; Strauss, M.A.; Krolik, J.H. Mid-Infrared Spectra of Optically-Selected Type 2 Quasars. Astron. J. 2008, 136, 1607–1622. [Google Scholar] [CrossRef]
- Deo, R.P.; Richards, G.T.; Crenshaw, D.M.; Kraemer, S.B. The Mid-Infrared Continua of Seyfert Galaxies. Astrophys. J. 2009, 705, 14–31. [Google Scholar] [CrossRef]
- Diamond-Stanic, A.M.; Rieke, G.H. The Relationship between Black Hole Growth and Star Formation in Seyfert Galaxies. Astrophys. J. 2012, 746, 168. [Google Scholar] [CrossRef]
- Sales, D.A.; Pastoriza, M.G.; Riffel, R.; Winge, C. Polycyclic aromatic hydrocarbon in the central region of the Seyfert 2 galaxy NGC 1808. Mon. Not. R. Astron. Soc. 2013, 429, 2634–2642. [Google Scholar] [CrossRef]
- Alonso-Herrero, A.; Ramos Almeida, C.; Esquej, P.; Roche, P.F.; Hernán-Caballero, A.; Hönig, S.F.; González-Martín, O.; Aretxaga, I.; Mason, R.E.; Packham, C.; et al. Nuclear 11.3 μm PAH emission in local active galactic nuclei. Mon. Not. R. Astron. Soc. 2014, 443, 2766–2782. [Google Scholar] [CrossRef]
- Esquej, P.; Alonso-Herrero, A.; González-Martín, O.; Hönig, S.F.; Hernán-Caballero, A.; Roche, P.; Ramos Almeida, C.; Mason, R.E.; Díaz-Santos, T.; Levenson, N.A.; et al. Nuclear Star Formation Activity and Black Hole Accretion in Nearby Seyfert Galaxies. Astrophys. J. 2014, 780, 86. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Alonso-Herrero, A.; Esquej, P.; González-Martín, O.; Riffel, R.A.; García-Bernete, I.; Rodríguez Espinosa, J.M.; Packham, C.; Levenson, N.A.; Roche, P.; et al. A mid-infrared view of the inner parsecs of the Seyfert galaxy Mrk 1066 using CanariCam/GTC. Mon. Not. R. Astron. Soc. 2014, 445, 1130–1143. [Google Scholar] [CrossRef]
- Esparza-Arredondo, D.; González-Martín, O.; Dultzin, D.; Alonso-Herrero, A.; Ramos Almeida, C.; Díaz-Santos, T.; García-Bernete, I.; Martinez-Paredes, M.; Rodríguez-Espinosa, J.M. Circumnuclear Star Formation and AGN Activity: Clues from Surface Brightness Radial Profile of PAHs and [S IV]. Astrophys. J. 2018, 859, 124. [Google Scholar] [CrossRef]
- Smith, J.D.T.; Draine, B.T.; Dale, D.A.; Moustakas, J.; Kennicutt, R.C.J.; Helou, G.; Armus, L.; Roussel, H.; Sheth, K.; Bendo, G.J.; et al. The Mid-Infrared Spectrum of Star-forming Galaxies: Global Properties of Polycyclic Aromatic Hydrocarbon Emission. Astrophys. J. 2007, 656, 770–791. [Google Scholar] [CrossRef]
- Diamond-Stanic, A.M.; Rieke, G.H. The Effect of Active Galactic Nuclei on the Mid-infrared Aromatic Features. Astrophys. J. 2010, 724, 140–153. [Google Scholar] [CrossRef]
- García-Bernete, I.; Rigopoulou, D.; Alonso-Herrero, A.; Pereira-Santaella, M.; Roche, P.F.; Kerkeni, B. Polycyclic aromatic hydrocarbons in Seyfert and star-forming galaxies. Mon. Not. R. Astron. Soc. 2022, 509, 4256–4275. [Google Scholar] [CrossRef]
- Martínez-Paredes, M.; Aretxaga, I.; González-Martín, O.; Alonso-Herrero, A.; Levenson, N.A.; Ramos Almeida, C.; López-Rodríguez, E. Quantifying Star Formation Activity in the Inner 1 kpc of Local MIR Bright QSOs. Astrophys. J. 2019, 871, 190. [Google Scholar] [CrossRef]
- Xie, Y.; Ho, L.C. The Ionization and Destruction of Polycyclic Aromatic Hydrocarbons in Powerful Quasars. Astrophys. J. 2022, 925, 218. [Google Scholar] [CrossRef]
- Ramos Almeida, C.; Esparza-Arredondo, D.; González-Martín, O.; García-Bernete, I.; Pereira-Santaella, M.; Alonso-Herrero, A.; Acosta-Pulido, J.A.; Bessiere, P.S.; Levenson, N.A.; Tadhunter, C.N.; et al. Absence of nuclear polycyclic aromatic hydrocarbon emission from a compact starburst: The case of the type-2 quasar Mrk 477. Astron. Astrophys. 2023, 669, L5. [Google Scholar] [CrossRef]
- García-Bernete, I.; Rigopoulou, D.; Alonso-Herrero, A.; Donnan, F.R.; Roche, P.F.; Pereira-Santaella, M.; Labiano, A.; Peralta de Arriba, L.; Izumi, T.; Ramos Almeida, C.; et al. A high angular resolution view of the PAH emission in Seyfert galaxies using JWST/MRS data. Astron. Astrophys. 2022, 666, L5. [Google Scholar] [CrossRef]
- Lai, T.S.Y.; Armus, L.; U, V.; Díaz-Santos, T.; Larson, K.L.; Evans, A.; Malkan, M.A.; Appleton, P.; Rich, J.; Müller-Sánchez, F.; et al. GOALS-JWST: Tracing AGN Feedback on the Star-forming Interstellar Medium in NGC 7469. Astrophys. J. Lett. 2022, 941, L36. [Google Scholar] [CrossRef]
- Lai, T.S.Y.; Armus, L.; Bianchin, M.; Díaz-Santos, T.; Linden, S.T.; Privon, G.C.; Inami, H.; U, V.; Bohn, T.; Evans, A.S.; et al. GOALS-JWST: Small Neutral Grains and Enhanced 3.3 μm PAH Emission in the Seyfert Galaxy NGC 7469. Astrophys. J. Lett. 2023, 957, L26. [Google Scholar] [CrossRef]
- Silk, J. Unleashing Positive Feedback: Linking the Rates of Star Formation, Supermassive Black Hole Accretion, and Outflows in Distant Galaxies. Astrophys. J. 2013, 772, 112. [Google Scholar] [CrossRef]
- Zubovas, K.; Bourne, M.A. Do AGN outflows quench or enhance star formation? Mon. Not. R. Astron. Soc. 2017, 468, 4956–4967. [Google Scholar] [CrossRef]
- Raouf, M.; Viti, S.; García-Burillo, S.; Richings, A.J.; Schaye, J.; Bemis, A.; Nobels, F.S.J.; Guainazzi, M.; Huang, K.Y.; Schaller, M.; et al. Hydrodynamic simulations of the disc of gas around supermassive black holes (HDGAS) - I. Molecular gas dynamics. Mon. Not. R. Astron. Soc. 2023, 524, 786–800. [Google Scholar] [CrossRef]
- Cresci, G.; Marconi, A.; Zibetti, S.; Risaliti, G.; Carniani, S.; Mannucci, F.; Gallazzi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; et al. The MAGNUM survey: Positive feedback in the nuclear region of NGC 5643 suggested by MUSE. Astron. Astrophys. 2015, 582, A63. [Google Scholar] [CrossRef]
- Salomé, Q.; Salomé, P.; Miville-Deschênes, M.A.; Combes, F.; Hamer, S. Inefficient jet-induced star formation in Centaurus A. High resolution ALMA observations of the northern filaments. Astron. Astrophys. 2017, 608, A98. [Google Scholar] [CrossRef]
- Carniani, S.; Marconi, A.; Maiolino, R.; Balmaverde, B.; Brusa, M.; Cano-Díaz, M.; Cicone, C.; Comastri, A.; Cresci, G.; Fiore, F.; et al. Fast outflows and star formation quenching in quasar host galaxies. Astron. Astrophys. 2016, 591, A28. [Google Scholar] [CrossRef]
- Shin, J.; Woo, J.H.; Chung, A.; Baek, J.; Cho, K.; Kang, D.; Bae, H.J. Positive and Negative Feedback of AGN Outflows in NGC 5728. Astrophys. J. 2019, 881, 147. [Google Scholar] [CrossRef]
- Torrey, P.; Hopkins, P.F.; Faucher-Giguère, C.A.; Anglés-Alcázar, D.; Quataert, E.; Ma, X.; Feldmann, R.; Keres, D.; Murray, N. The impact of AGN wind feedback in simulations of isolated galaxies with a multiphase ISM. Mon. Not. R. Astron. Soc. 2020, 497, 5292–5308. [Google Scholar] [CrossRef]
- Sánchez, S.F.; Avila-Reese, V.; Hernandez-Toledo, H.; Cortes-Suárez, E.; Rodríguez-Puebla, A.; Ibarra-Medel, H.; Cano-Díaz, M.; Barrera-Ballesteros, J.K.; Negrete, C.A.; Calette, A.R.; et al. SDSS IV MaNGA - Properties of AGN Host Galaxies. Rev. Mex. Astron. Astrofis. 2018, 54, 217–260. [Google Scholar] [CrossRef]
- Ellison, S.L.; Wong, T.; Sánchez, S.F.; Colombo, D.; Bolatto, A.; Barrera-Ballesteros, J.; García-Benito, R.; Kalinova, V.; Luo, Y.; Rubio, M.; et al. The EDGE-CALIFA survey: Central molecular gas depletion in AGN host galaxies—A smoking gun for quenching? Mon. Not. R. Astron. Soc. 2021, 505, L46–L51. [Google Scholar] [CrossRef]
- Lammers, C.; Iyer, K.G.; Ibarra-Medel, H.; Pacifici, C.; Sánchez, S.F.; Tacchella, S.; Woo, J. Active Galactic Nuclei Feedback in SDSS-IV MaNGA: AGNs Have Suppressed Central Star Formation Rates. Astrophys. J. 2023, 953, 26. [Google Scholar] [CrossRef]
- García-Burillo, S.; Combes, F.; Ramos Almeida, C.; Usero, A.; Alonso-Herrero, A.; Hunt, L.K.; Rouan, D.; Aalto, S.; Querejeta, M.; Viti, S.; et al. ALMA images the many faces of the NGC 1068 torus and its surroundings. Astron. Astrophys. 2019, 632, A61. [Google Scholar] [CrossRef]
- Ruffa, I.; Prandoni, I.; Davis, T.A.; Laing, R.A.; Paladino, R.; Casasola, V.; Parma, P.; Bureau, M. The AGN fuelling/feedback cycle in nearby radio galaxies—IV. Molecular gas conditions and jet-ISM interaction in NGC 3100. Mon. Not. R. Astron. Soc. 2022, 510, 4485–4503. [Google Scholar] [CrossRef]
- García-Bernete, I.; Alonso-Herrero, A.; García-Burillo, S.; Pereira-Santaella, M.; García-Lorenzo, B.; Carrera, F.J.; Rigopoulou, D.; Ramos Almeida, C.; Villar Martín, M.; González-Martín, O.; et al. Multiphase feedback processes in the Sy2 galaxy NGC 5643. Astron. Astrophys. 2021, 645, A21. [Google Scholar] [CrossRef]
- Tripodi, R.; D’Eugenio, F.; Maiolino, R.; Curti, M.; Scholtz, J.; Tacchella, S.; Bunker, A.J.; Trussler, J.A.A.; Cameron, A.J.; Arribas, S.; et al. Spatially resolved emission lines in galaxies at 4 ≤ z < 10 from the JADES survey: Evidence for enhanced central star formation. arXiv 2024, arXiv:2403.08431. [Google Scholar] [CrossRef]
- Übler, H.; D’Eugenio, F.; Perna, M.; Arribas, S.; Jones, G.C.; Bunker, A.J.; Carniani, S.; Charlot, S.; Maiolino, R.; Rodríguez del Pino, B.; et al. GA-NIFS: NIRSpec reveals evidence for non-circular motions and AGN feedback in GN20. arXiv 2024, arXiv:2403.03192. [Google Scholar] [CrossRef]
- Boehringer, H.; Voges, W.; Fabian, A.C.; Edge, A.C.; Neumann, D.M. A ROSAT HRI study of the interaction of the X-ray emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 1993, 264, L25–L28. [Google Scholar] [CrossRef]
- Hlavacek-Larrondo, J.; Li, Y.; Churazov, E. AGN Feedback in Groups and Clusters of Galaxies. In Handbook of X-ray and Gamma-ray Astrophysics; Springer: Berlin/Heidelberg, Germany, 2022; p. 5. [Google Scholar] [CrossRef]
- Best, P.N.; Kaiser, C.R.; Heckman, T.M.; Kauffmann, G. AGN-controlled cooling in elliptical galaxies. Mon. Not. R. Astron. Soc. 2006, 368, L67–L71. [Google Scholar] [CrossRef]
- Danielson, A.L.R.; Lehmer, B.D.; Alexander, D.M.; Brandt, W.N.; Luo, B.; Miller, N.; Xue, Y.Q.; Stott, J.P. The cosmic history of hot gas cooling and radio active galactic nucleus activity in massive early-type galaxies. Mon. Not. R. Astron. Soc. 2012, 422, 494–509. [Google Scholar] [CrossRef]
- Hlavacek-Larrondo, J.; McDonald, M.; Benson, B.A.; Forman, W.R.; Allen, S.W.; Bleem, L.E.; Ashby, M.L.N.; Bocquet, S.; Brodwin, M.; Dietrich, J.P.; et al. X-ray Cavities in a Sample of 83 SPT-selected Clusters of Galaxies: Tracing the Evolution of AGN Feedback in Clusters of Galaxies out to z = 1.2. Astrophys. J. 2015, 805, 35. [Google Scholar] [CrossRef]
- Smolčić, V.; Novak, M.; Delvecchio, I.; Ceraj, L.; Bondi, M.; Delhaize, J.; Marchesi, S.; Murphy, E.; Schinnerer, E.; Vardoulaki, E.; et al. The VLA-COSMOS 3 GHz Large Project: Cosmic evolution of radio AGN and implications for radio-mode feedback since z 5. Astron. Astrophys. 2017, 602, A6. [Google Scholar] [CrossRef]
- McDonald, M.; Gaspari, M.; McNamara, B.R.; Tremblay, G.R. Revisiting the Cooling Flow Problem in Galaxies, Groups, and Clusters of Galaxies. Astrophys. J. 2018, 858, 45. [Google Scholar] [CrossRef]
- Hardcastle, M.J.; Williams, W.L.; Best, P.N.; Croston, J.H.; Duncan, K.J.; Röttgering, H.J.A.; Sabater, J.; Shimwell, T.W.; Tasse, C.; Callingham, J.R.; et al. Radio-loud AGN in the first LoTSS data release. The lifetimes and environmental impact of jet-driven sources. Astron. Astrophys. 2019, 622, A12. [Google Scholar] [CrossRef]
- Bîrzan, L.; Rafferty, D.A.; Brüggen, M.; Intema, H.T. A study of high-redshift AGN feedback in SZ cluster samples. Mon. Not. R. Astron. Soc. 2017, 471, 1766–1787. [Google Scholar] [CrossRef]
- Werner, N.; McNamara, B.R.; Churazov, E.; Scannapieco, E. Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: A Topical Perspective. Space Sci. Rev. 2019, 215, 5. [Google Scholar] [CrossRef]
- McCarthy, I.G.; Schaye, J.; Bower, R.G.; Ponman, T.J.; Booth, C.M.; Dalla Vecchia, C.; Springel, V. Gas expulsion by quasar-driven winds as a solution to the overcooling problem in galaxy groups and clusters. Mon. Not. R. Astron. Soc. 2011, 412, 1965–1984. [Google Scholar] [CrossRef]
- Zinger, E.; Pillepich, A.; Nelson, D.; Weinberger, R.; Pakmor, R.; Springel, V.; Hernquist, L.; Marinacci, F.; Vogelsberger, M. Ejective and preventative: The IllustrisTNG black hole feedback and its effects on the thermodynamics of the gas within and around galaxies. Mon. Not. R. Astron. Soc. 2020, 499, 768–792. [Google Scholar] [CrossRef]
- Ward, S.R.; Harrison, C.M.; Costa, T.; Mainieri, V. Cosmological simulations predict that AGN preferentially live in gas-rich, star-forming galaxies despite effective feedback. Mon. Not. R. Astron. Soc. 2022, 514, 2936–2957. [Google Scholar] [CrossRef]
- Kirkpatrick, A.; Sharon, C.; Keller, E.; Pope, A. CO Emission in Infrared-selected Active Galactic Nuclei. Astrophys. J. 2019, 879, 41. [Google Scholar] [CrossRef]
- Circosta, C.; Mainieri, V.; Lamperti, I.; Padovani, P.; Bischetti, M.; Harrison, C.M.; Kakkad, D.; Zanella, A.; Vietri, G.; Lanzuisi, G.; et al. SUPER. IV. CO(J = 3-2) properties of active galactic nucleus hosts at cosmic noon revealed by ALMA. Astron. Astrophys. 2021, 646, A96. [Google Scholar] [CrossRef]
- Bischetti, M.; Feruglio, C.; Piconcelli, E.; Duras, F.; Pérez-Torres, M.; Herrero, R.; Venturi, G.; Carniani, S.; Bruni, G.; Gavignaud, I.; et al. The WISSH quasars project—IX. Cold gas content and environment of luminous QSOs at z 4–4.7. Astron. Astrophys. 2021, 645, A33. [Google Scholar] [CrossRef]
- Molyneux, S.J.; Calistro Rivera, G.; De Breuck, C.; Harrison, C.M.; Mainieri, V.; Lundgren, A.; Kakkad, D.; Circosta, C.; Girdhar, A.; Costa, T.; et al. The Quasar Feedback Survey: Characterizing CO excitation in quasar host galaxies. Mon. Not. R. Astron. Soc. 2024, 527, 4420–4439. [Google Scholar] [CrossRef]
- Rosario, D.J.; Santini, P.; Lutz, D.; Netzer, H.; Bauer, F.E.; Berta, S.; Magnelli, B.; Popesso, P.; Alexander, D.M.; Brandt, W.N.; et al. Nuclear activity is more prevalent in star-forming galaxies. Astrophys. J. 2013, 771, 63. [Google Scholar] [CrossRef]
- Stanley, F.; Harrison, C.M.; Alexander, D.M.; Swinbank, A.M.; Aird, J.A.; Moro, A.D.; Hickox, R.C.; Mullaney, J.R. A remarkably flat relationship between the average star formation rate and AGN luminosity for distant X-ray AGN. Mon. Not. R. Astron. Soc. 2015, 453, 591–604. [Google Scholar] [CrossRef]
- Balmaverde, B.; Marconi, A.; Brusa, M.; Carniani, S.; Cresci, G.; Lusso, E.; Maiolino, R.; Mannucci, F.; Nagao, T. Is there any evidence that ionized outflows quench star formation in type 1 quasars at z < 1? Astron. Astrophys. 2016, 585, A148. [Google Scholar] [CrossRef]
- Woo, J.H.; Son, D.; Bae, H.J. Delayed or No Feedback? Gas Outflows in Type 2 AGNs. III. Astrophys. J. 2017, 839, 120. [Google Scholar] [CrossRef]
- Stanley, F.; Alexander, D.M.; Harrison, C.M.; Rosario, D.J.; Wang, L.; Aird, J.A.; Bourne, N.; Dunne, L.; Dye, S.; Eales, S.; et al. The mean star formation rates of unobscured QSOs: Searching for evidence of suppressed or enhanced star formation. Mon. Not. R. Astron. Soc. 2017, 472, 2221–2240. [Google Scholar] [CrossRef]
- Wylezalek, D.; Morganti, R. Questions and challenges of what powers galactic outflows in active galactic nuclei. Nat. Astron. 2018, 2, 181–182. [Google Scholar] [CrossRef]
- Shangguan, J.; Ho, L.C. Testing the Evolutionary Link between Type 1 and Type 2 Quasars with Measurements of the Interstellar Medium. Astrophys. J. 2019, 873, 90. [Google Scholar] [CrossRef]
- Zhuang, M.Y.; Ho, L.C.; Shangguan, J. Black Hole Accretion Correlates with Star Formation Rate and Star Formation Efficiency in Nearby Luminous Type 1 Active Galaxies. Astrophys. J. 2021, 906, 38. [Google Scholar] [CrossRef]
- Kim, C.; Woo, J.H.; Jadhav, Y.; Chung, A.; Baek, J.; Lee, J.A.; Shin, J.; Hwang, H.S.; Luo, R.; Son, D.; et al. Determining Star Formation Rates of Active Galactic Nucleus Host Galaxies Based on SED Fitting with Submillimeter Data. Astrophys. J. 2022, 928, 73. [Google Scholar] [CrossRef]
- Perna, M.; Sargent, M.T.; Brusa, M.; Daddi, E.; Feruglio, C.; Cresci, G.; Lanzuisi, G.; Lusso, E.; Comastri, A.; Coogan, R.T.; et al. Molecular gas content in obscured AGN at z > 1. Astron. Astrophys. 2018, 619, A90. [Google Scholar] [CrossRef]
- Aird, J.; Coil, A.L.; Georgakakis, A. X-rays across the galaxy population—III. The incidence of AGN as a function of star formation rate. Mon. Not. R. Astron. Soc. 2019, 484, 4360–4378. [Google Scholar] [CrossRef]
- Grimmett, L.P.; Mullaney, J.R.; Bernhard, E.P.; Harrison, C.M.; Alexander, D.M.; Stanley, F.; Masoura, V.A.; Walters, K. A binning-free method reveals a continuous relationship between galaxies’ AGN power and offset from main sequence. Mon. Not. R. Astron. Soc. 2020, 495, 1392–1402. [Google Scholar] [CrossRef]
- Miraghaei, H.; Best, P.N. The nuclear properties and extended morphologies of powerful radio galaxies: The roles of host galaxy and environment. Mon. Not. R. Astron. Soc. 2017, 466, 4346–4363. [Google Scholar] [CrossRef]
- Piotrowska, J.M.; Bluck, A.F.L.; Maiolino, R.; Peng, Y. On the quenching of star formation in observed and simulated central galaxies: Evidence for the role of integrated AGN feedback. Mon. Not. R. Astron. Soc. 2022, 512, 1052–1090. [Google Scholar] [CrossRef]
- Bluck, A.F.L.; Piotrowska, J.M.; Maiolino, R. The Fundamental Signature of Star Formation Quenching from AGN Feedback: A Critical Dependence of Quiescence on Supermassive Black Hole Mass, Not Accretion Rate. Astrophys. J. 2023, 944, 108. [Google Scholar] [CrossRef]
- Bluck, A.F.L.; Conselice, C.J.; Ormerod, K.; Piotrowska, J.M.; Adams, N.; Austin, D.; Caruana, J.; Duncan, K.J.; Ferreira, L.; Goubert, P.; et al. Galaxy quenching at the high redshift frontier: A fundamental test of cosmological models in the early universe with JWST-CEERS. arXiv 2023, arXiv:2311.02526. [Google Scholar] [CrossRef]
- Martín-Navarro, I.; Brodie, J.P.; Romanowsky, A.J.; Ruiz-Lara, T.; van de Ven, G. Black-hole-regulated star formation in massive galaxies. Nature 2018, 553, 307–309. [Google Scholar] [CrossRef]
- Martín-Navarro, I.; Pillepich, A.; Nelson, D.; Rodriguez-Gomez, V.; Donnari, M.; Hernquist, L.; Springel, V. Anisotropic satellite galaxy quenching modulated by black hole activity. Nature 2021, 594, 187–190. [Google Scholar] [CrossRef]
- Terrazas, B.A.; Bell, E.F.; Henriques, B.M.B.; White, S.D.M.; Cattaneo, A.; Woo, J. Quiescence Correlates Strongly with Directly Measured Black Hole Mass in Central Galaxies. Astrophys. J. Lett. 2016, 830, L12. [Google Scholar] [CrossRef]
- Voit, G.M.; Oppenheimer, B.D.; Bell, E.F.; Terrazas, B.; Donahue, M. Black Hole Growth, Baryon Lifting, Star Formation, and IllustrisTNG. Astrophys. J. 2024, 960, 28. [Google Scholar] [CrossRef]
- Chen, Z.; Faber, S.M.; Koo, D.C.; Somerville, R.S.; Primack, J.R.; Dekel, A.; Rodríguez-Puebla, A.; Guo, Y.; Barro, G.; Kocevski, D.D.; et al. Quenching as a Contest between Galaxy Halos and Their Central Black Holes. Astrophys. J. 2020, 897, 102. [Google Scholar] [CrossRef]
- Habouzit, M.; Li, Y.; Somerville, R.S.; Genel, S.; Pillepich, A.; Volonteri, M.; Davé, R.; Rosas-Guevara, Y.; McAlpine, S.; Peirani, S.; et al. Supermassive black holes in cosmological simulations I: MBH - M★ relation and black hole mass function. Mon. Not. R. Astron. Soc. 2021, 503, 1940–1975. [Google Scholar] [CrossRef]
- Kondapally, R.; Best, P.N.; Raouf, M.; Thomas, N.L.; Davé, R.; Shabala, S.S.; Röttgering, H.J.A.; Hardcastle, M.J.; Bonato, M.; Cochrane, R.K.; et al. Cosmic evolution of radio-AGN feedback: Confronting models with data. Mon. Not. R. Astron. Soc. 2023, 523, 5292–5305. [Google Scholar] [CrossRef]
- Bluck, A.F.L.; Maiolino, R.; Piotrowska, J.M.; Trussler, J.; Ellison, S.L.; Sánchez, S.F.; Thorp, M.D.; Teimoorinia, H.; Moreno, J.; Conselice, C.J. How do central and satellite galaxies quench?—Insights from spatially resolved spectroscopy in the MaNGA survey. Mon. Not. R. Astron. Soc. 2020, 499, 230–268. [Google Scholar] [CrossRef]
- Khaire, V.; Hu, T.; Hennawi, J.F.; Burchett, J.N.; Walther, M.; Davies, F. Searching for the Imprints of AGN Feedback on the Lyman Alpha Forest Around Luminous Red Galaxies. arXiv 2023, arXiv:2311.08470. [Google Scholar] [CrossRef]
- Wright, R.J.; Somerville, R.S.; Lagos, C.d.P.; Schaller, M.; Davé, R.; Anglés-Alcázar, D.; Genel, S. The baryon cycle in modern cosmological hydrodynamical simulations. arXiv 2024, arXiv:2402.08408. [Google Scholar] [CrossRef]
- Davis, F.; Kaviraj, S.; Hardcastle, M.J.; Martin, G.; Jackson, R.A.; Kraljic, K.; Malek, K.; Peirani, S.; Smith, D.J.B.; Volonteri, M.; et al. Radio AGN in nearby dwarf galaxies: The important role of AGN in dwarf galaxy evolution. Mon. Not. R. Astron. Soc. 2022, 511, 4109–4122. [Google Scholar] [CrossRef]
- Bohn, T.; Canalizo, G.; Veilleux, S.; Liu, W. Near-infrared Coronal Line Observations of Dwarf Galaxies Hosting AGN-driven Outflows. Astrophys. J. 2021, 911, 70. [Google Scholar] [CrossRef]
- Koudmani, S.; Sijacki, D.; Smith, M.C. Two can play at that game: Constraining the role of supernova and AGN feedback in dwarf galaxies with cosmological zoom-in simulations. Mon. Not. R. Astron. Soc. 2022, 516, 2112–2141. [Google Scholar] [CrossRef]
- Arjona-Galvez, E.; Di Cintio, A.; Grand, R.J.J. The role of AGN feedback on the evolution of dwarf galaxies from cosmological simulations: SMBHs suppress star formation in low-mass galaxies. arXiv 2024, arXiv:2402.00929. [Google Scholar] [CrossRef]
- Carniani, S.; Venturi, G.; Parlanti, E.; de Graaff, A.; Maiolino, R.; Arribas, S.; Bonaventura, N.; Boyett, K.; Bunker, A.J.; Cameron, A.J.; et al. JADES: The incidence rate and properties of galactic outflows in low-mass galaxies across 3 < z < 9. arXiv 2023, arXiv:2306.11801. [Google Scholar] [CrossRef]
- Dutta, R.; Sharma, P.; Sarkar, K.C.; Stone, J.M. Dissipation of AGN jets in a clumpy interstellar medium. arXiv 2023, arXiv:2401.00446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harrison, C.M.; Ramos Almeida, C. Observational Tests of Active Galactic Nuclei Feedback: An Overview of Approaches and Interpretation. Galaxies 2024, 12, 17. https://doi.org/10.3390/galaxies12020017
Harrison CM, Ramos Almeida C. Observational Tests of Active Galactic Nuclei Feedback: An Overview of Approaches and Interpretation. Galaxies. 2024; 12(2):17. https://doi.org/10.3390/galaxies12020017
Chicago/Turabian StyleHarrison, Chris M., and Cristina Ramos Almeida. 2024. "Observational Tests of Active Galactic Nuclei Feedback: An Overview of Approaches and Interpretation" Galaxies 12, no. 2: 17. https://doi.org/10.3390/galaxies12020017