CHANG-ES XXXI—A Decade of CHANG-ES: What We Have Learned from Radio Observations of Edge-on Galaxies
Abstract
:1. Introduction
2. Technical Aspects of the Survey and New Advances in Techniques
2.1. Technical Overview
2.2. Improved Techniques
2.2.1. In-Band Spectral Indices
2.2.2. Thermal/Nonthermal Separation in Edge-on Disks
2.2.3. New Techniques in Image Display
2.3. Public Data Release Website
3. CHANG-ES Science Highlights
3.1. Into the Core—Active Galactic Nuclei
3.2. Discrete Sources in and around the Disks
3.3. Cosmic Ray Propagation—Outflows and Winds
3.3.1. Advective and Diffusive Halos
3.3.2. Calorimetry of Galaxy Disks and Halos
3.4. Magnetic Fields and Their Orientation
3.4.1. Large-Scale Ordered Magnetic Fields in CHANG-ES Galaxies
- 1.
- Disk-halo type, where the disk field and the halo field are both observed. This results in classical X-shape type magnetic field structures that can be seen in individual galaxies (NGC 891, NGC 4217, NGC 4631, and NGC 5775). In some cases of close-by galaxies, polarization appears in flocculent patches (NGC 891 and NGC 3556). Due to higher linear resolution, we observe more detail, while the large-scale emission is harder to detect.
- 2.
- Disk-type, where the disk field is predominant. These galaxies show little or no polarization originating from the halo, and the observed polarization is mainly parallel to the disk (NGC 3628, NGC 4013, NGC 4192, NGC 4302, NGC 4565 and NGC 5907).
- 3.
- Halo-type with a predominant halo magnetic field structure and weak observed parallel disk field. Halo-type magnetic field structures are observed as a dominant vertical field. The vertical structure is either accompanied by large scale structures (NGC 3044) or, again, by showing flocculent polarization patches with vertical fields (NGC 4631).
- 4.
- Large-scale ordered fields that are related to huge outflows from a nuclear region with strong star-formation activity (NGC 3079 and NGC 4388).
- 5.
- No large-scale ordered magnetic fields were observed in five of the twenty-one galaxies. In a few galaxies, this is probably a detection bias, where we just did not observe long enough to see the low polarized emission. It would be interesting to investigate if a non-detection could be due to turbulent magnetic fields in the galaxy. This could be analyzed further with deeper observations.
3.4.2. Asymmetry of Polarized Intensity between the Advancing/Receding Sides
3.4.3. Large-Scale Regular Magnetic Field Patterns in Galaxy Halos
3.4.4. Large-Scale Regular Magnetic Field Patterns in Galaxy Disks
3.5. The Observational Three-Dimensional Magnetized Galaxy
3.6. The Theoretical Three-Dimensional Magnetized Galaxy
4. Ongoing Activities and New Opportunities
4.1. The S-Band CHANG-ES Extension—Filling the Gap
4.2. Faraday Tomography of Edge-on Galaxies
4.3. Toward Understanding Galactic Ecosystems of Star-Forming Galaxies
4.4. Ongoing CHANG-ES Companion Projects—Probing Deeper into the Galaxies and Exploring the Multi-Phase CGM
4.5. Green Bank Telescope (GBT) Observations and Joint VLA-GBT Deconvolution
4.6. Lagging Extraplanar Gas and Nonthermal Radial Pressure Gradients
5. Summary and Open Questions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | Formerly known as the Expanded Very Large Array, or EVLA. |
2 | A charming 3-minute video for the technically minded can be found at https://www.youtube.com/watch?v=jwMfNKEsCmE (accessed on 4 May 2024) |
3 | Data reduction uses the Common Astronomy Software Applications (CASA) package at http://casa.nrao.edu (accessed on 4 May 2024) which employs these sophisticated algorithms. |
4 | https://projects.canfar.net/changes/wp-content/uploads/2019/04/N3079_B8.jpg (accessed on 4 May 2024) |
5 | The deprecated website was https://queensu.ca/changes. |
6 | The normalization, however, is different because of the extra extinction in edge-on galaxies. |
7 | |
8 | This was the very faint galaxy NGC 4244. |
References
- Irwin, J.; Damas-Segovia, A.; Krause, M.; Miskolczi, A.; Li, J.; Stein, Y.; English, J.; Henriksen, R.; Beck, R.; Wiegert, T.; et al. CHANG-ES: XVIII—The CHANG-ES Survey and Selected Results. Galaxies 2019, 7, 42. [Google Scholar] [CrossRef]
- Tully, R.B. Nearby Galaxies Catalog; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Li, J.T.; Beck, R.; Dettmar, R.J.; Heald, G.; Irwin, J.; Johnson, M.; Kepley, A.A.; Krause, M.; Murphy, E.J.; Orlando, E.; et al. CHANG-ES–VI. Probing Supernova energy deposition in spiral galaxies through multiwavelength relationships. Mon. Not. R. Astron. Soc. 2016, 456, 1723–1738. [Google Scholar] [CrossRef]
- Wiegert, T.; Irwin, J.; Miskolczi, A.; Schmidt, P.; Mora, S.C.; Damas-Segovia, A.; Stein, Y.; English, J.; Rand, R.J.; Santistevan, I.; et al. CHANG-ES. IV. Radio Continuum Emission of 35 Edge-on Galaxies Observed with the Karl G. Jansky Very Large Array in D Configuration—Data Release 1. Astron. J 2015, 150, 81. [Google Scholar] [CrossRef]
- Vargas, C.J.; Walterbos, R.A.M.; Rand, R.J.; Stil, J.; Krause, M.; Li, J.T.; Irwin, J.; Dettmar, R.J. CHANG-ES. XVII. Hα Imaging of Nearby Edge-on Galaxies, New SFRs, and an Extreme Star Formation Region—Data Release 2. Astrophys. J. 2019, 881, 26. [Google Scholar] [CrossRef]
- Vargas, C.J.; Mora-Partiarroyo, S.C.; Schmidt, P.; Rand, R.J.; Stein, Y.; Walterbos, R.A.M.; Wang, Q.D.; Basu, A.; Patterson, M.; Kepley, A.; et al. CHANG-ES X: Spatially Resolved Separation of Thermal Contribution from Radio Continuum Emission in Edge-on Galaxies. Astrophys. J. 2018, 853, 128. [Google Scholar] [CrossRef]
- Kouroumpatzakis, K.; Zezas, A.; Maragkoudakis, A.; Willner, S.P.; Bonfini, P.; Ashby, M.L.N.; Sell, P.H.; Jarrett, T.H. The Star Formation Reference Survey–V. The effect of extinction, stellar mass, metallicity, and nuclear activity on star-formation rates based on H α emission. Mon. Not. R. Astron. Soc. 2021, 506, 3079–3097. [Google Scholar] [CrossRef]
- English, J. The Yin and Yang of the Visible and Invisible in Spiral Galaxies. 2021. Available online: https://illuminateduniverse.org/2021/01/27/the-yin-and-yang-of-the-visible-and-invisible-in-spiral-galaxies/ (accessed on 24 January 2024).
- Stein, Y.; Dettmar, R.J.; Irwin, J.; Beck, R.; Weżgowiec, M.; Miskolczi, A.; Krause, M.; Heesen, V.; Wiegert, T.; Heald, G.; et al. CHANG-ES. XIII. Transport processes and the magnetic fields of NGC 4666: Indication of a reversing disk magnetic field. Astron. Astrophys. 2019, 623, A33. [Google Scholar] [CrossRef]
- Silk, J.; Mamon, G.A. The current status of galaxy formation. Res. Astron. Astrophys. 2012, 12, 917–946. [Google Scholar] [CrossRef]
- Irwin, J.; Beck, R.; Benjamin, R.A.; Dettmar, R.J.; English, J.; Heald, G.; Henriksen, R.N.; Johnson, M.; Krause, M.; Li, J.T.; et al. Continuum Halos in Nearby Galaxies: An EVLA Survey (CHANG-ES). I. Introduction to the Survey. Astron. J 2012, 144, 43. [Google Scholar] [CrossRef]
- Sault, R.J.; Wieringa, M.H. Multi-frequency synthesis techniques in radio interferometric imaging. Astron. Astrophys. Supp. 1994, 108, 585–594. [Google Scholar]
- Rau, U.; Cornwell, T.J. A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry. Astron. Astrophys. 2011, 532, A71. [Google Scholar] [CrossRef]
- Brentjens, M.A.; de Bruyn, A.G. Faraday rotation measure synthesis. Astron. Astrophys. 2005, 441, 1217–1228. [Google Scholar] [CrossRef]
- Pratley, L.; Johnston-Hollitt, M. Wide-band Rotation Measure Synthesis. Astrophys. J. 2020, 894, 38. [Google Scholar] [CrossRef]
- Irwin, J.A.; Henriksen, R.N.; Krause, M.; Wang, Q.D.; Wiegert, T.; Murphy, E.J.; Heald, G.; Perlman, E. CHANG-ES V: Nuclear Outflow in a Virgo Cluster Spiral after a Tidal Disruption Event. Astrophys. J. 2015, 809, 172. [Google Scholar] [CrossRef]
- Irwin, J.; Beck, R.; Benjamin, R.A.; Dettmar, R.J.; English, J.; Heald, G.; Henriksen, R.N.; Johnson, M.; Krause, M.; Li, J.T.; et al. Continuum Halos in Nearby Galaxies: An EVLA Survey (CHANG-ES). II. First Results on NGC 4631. Astron. J 2012, 144, 44. [Google Scholar] [CrossRef]
- Schmidt, P.; Krause, M.; Heesen, V.; Basu, A.; Beck, R.; Wiegert, T.; Irwin, J.A.; Heald, G.; Rand, R.J.; Li, J.T.; et al. CHANG-ES. XVI. An in-depth view of the cosmic-ray transport in the edge-on spiral galaxies NGC 891 and NGC 4565. Astron. Astrophys. 2019, 632, A12. [Google Scholar] [CrossRef]
- Stein, Y.; Dettmar, R.J.; Beck, R.; Irwin, J.; Wiegert, T.; Miskolczi, A.; Wang, Q.D.; English, J.; Henriksen, R.; Radica, M.; et al. CHANG-ES. XXI. Transport processes and the X-shaped magnetic field of NGC 4217: Off-center superbubble structure. Astron. Astrophys. 2020, 639, A111. [Google Scholar] [CrossRef]
- Tabatabaei, F.S.; Beck, R.; Krügel, E.; Krause, M.; Berkhuijsen, E.M.; Gordon, K.D.; Menten, K.M. High-resolution radio continuum survey of M 33. II. Thermal and nonthermal emission. Astron. Astrophys. 2007, 475, 133–143. [Google Scholar] [CrossRef]
- Calzetti, D.; Kennicutt, R.C.; Engelbracht, C.W.; Leitherer, C.; Draine, B.T.; Kewley, L.; Moustakas, J.; Sosey, M.; Dale, D.A.; Gordon, K.D.; et al. The Calibration of Mid-Infrared Star Formation Rate Indicators. Astrophys. J. 2007, 666, 870–895. [Google Scholar] [CrossRef]
- Cabral, B.; Leedom, L.C. Imaging vector fields using line integral convolution. In Proceedings of the 20th annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 2–6 August 1993; ACM: New York, NY, USA, 1993. SIGGRAPH ’93. pp. 263–270. [Google Scholar] [CrossRef]
- English, J.; Richardson, M.L.A.; Ferrand, G.; Deg, N. CosmosCanvas: Useful Color Maps for Different Astrophysical Properties. Astrophysics Source Code Library. Available online: https://ascl.net/2401.005 (accessed on 4 May 2024).
- Irwin, J.; Wiegert, T.; Merritt, A.; Weżgowiec, M.; Hunt, L.; Woodfinden, A.; Stein, Y.; Damas-Segovia, A.; Li, J.; Wang, Q.D.; et al. CHANG-ES. XX. High-resolution Radio Continuum Images of Edge-on Galaxies and Their AGNs: Data Release 3. Astron. J 2019, 158, 21. [Google Scholar] [CrossRef]
- Kluyver, T.; Ragan-Kelley, B.; Pérez, F.; Granger, B.; Bussonnier, M.; Frederic, J.; Kelley, K.; Hamrick, J.; Grout, J.; Corlay, S.; et al. Jupyter Notebooks—A publishing format for reproducible computational workflows. In Proceedings of the Positioning and Power in Academic Publishing: Players, Agents and Agendas, Göttingen, Germany, 7–9 June 2016; Loizides, F., Schmidt, B., Eds.; IOS Press: Amsterdam, The Netherlands, 2016; pp. 87–90. Available online: https://ebooks.iospress.nl/publication/42900 (accessed on 4 May 2024).
- GitHub. 2020. Available online: https://github.com (accessed on 4 May 2024).
- Walterbos, R.; et al. [CHANG-ES] C-Array Data Release. 2025; in prep. [Google Scholar]
- Merritt, A. Analysis of Radio Spectral Indices in the CHANG-ES Galaxy Sample. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 2019. Available online: https://qspace.library.queensu.ca/items/a27d311a-f59b-4fa5-9fa0-6f85a833b627 (accessed on 4 May 2024).
- Krause, M.; Irwin, J.; Schmidt, P.; Stein, Y.; Miskolczi, A.; Carolina Mora-Partiarroyo, S.; Wiegert, T.; Beck, R.; Stil, J.M.; Heald, G.; et al. CHANG-ES. XXII. Coherent magnetic fields in the halos of spiral galaxies. Astron. Astrophys. 2020, 639, A112. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Irwin, J.; English, J.; Ma, Q.; Wang, R.; Wang, K.; Wang, Q.D.; Krause, M.; Randriamampandry, T.H.; et al. CHANG-ES XXV: H I imaging of nearby edge-on galaxies–Data Release 4. Mon. Not. R. Astron. Soc. 2022, 513, 1329–1353. [Google Scholar] [CrossRef]
- Irwin, J.; Dyer, J.; Drake, L.; Wang, Q.D.; Stil, J.; Stein, Y.; English, J.; Wiegert, T. CHANG-ES - XXVII. A radio/X-ray catalogue of compact sources in and around edge-on galaxies. Mon. Not. R. Astron. Soc. 2022, 512, 5755–5770. [Google Scholar] [CrossRef]
- King, A. How big can a black hole grow? Mon. Not. R. Astron. Soc. 2016, 456, L109–L112. [Google Scholar] [CrossRef]
- Sebastian, B.; Kharb, P.; O’Dea, C.P.; Gallimore, J.F.; Baum, S.A. A radio polarimetric study to disentangle AGN activity and star formation in Seyfert galaxies. Mon. Not. R. Astron. Soc. 2020, 499, 334–354. [Google Scholar] [CrossRef]
- Ho, L.C.; Filippenko, A.V.; Sargent, W.L.W. A Search for “Dwarf” Seyfert Nuclei. III. Spectroscopic Parameters and Properties of the Host Galaxies. Astrophys. J. Suppl. 1997, 112, 315–390. [Google Scholar] [CrossRef]
- Ho, L.C. Radiatively Inefficient Accretion in Nearby Galaxies. Astrophys. J. 2009, 699, 626–637. [Google Scholar] [CrossRef]
- Irwin, J.A.; Henriksen, R.N.; Weżgowiec, M.; Damas-Segovia, A.; Wang, Q.D.; Krause, M.; Heald, G.; Dettmar, R.J.; Li, J.T.; Wiegert, T.; et al. CHANG-ES-XI. Circular polarization in the cores of nearby galaxies. Mon. Not. R. Astron. Soc. 2018, 476, 5057–5074. [Google Scholar] [CrossRef]
- Lee, S.W.; Irwin, J.A.; Dettmar, R.J.; Cunningham, C.T.; Golla, G.; Wang, Q.D. NGC 5775: Anatomy of a disk-halo interface. Astron. Astrophys. 2001, 377, 759–777. [Google Scholar] [CrossRef]
- Irwin, J.A.; Schmidt, P.; Damas-Segovia, A.; Beck, R.; English, J.; Heald, G.; Henriksen, R.N.; Krause, M.; Li, J.T.; Rand, R.J.; et al. CHANG-ES–VIII. Uncovering hidden AGN activity in radio polarization. Mon. Not. R. Astron. Soc. 2017, 464, 1333–1346. [Google Scholar] [CrossRef]
- Yang, Y.; Irwin, J.; Li, J.; Wiegert, T.; Wang, Q.D.; Sun, W.; Damas-Segovia, A.; Li, Z.; Shen, Z.; Walterbos, R.A.M.; et al. CHANG-ES. XXIV. First Detection of a Radio Nuclear Ring and Potential LLAGN in NGC 5792. Astrophys. J. 2022, 927, 4. [Google Scholar] [CrossRef]
- Heesen, V. The radio continuum perspective on cosmic-ray transport in external galaxies. Astrophys. Space Sci. 2021, 366, 117. [Google Scholar] [CrossRef]
- Allen, R.J.; Baldwin, J.E.; Sancisi, R. Radio continuum observations of the edge-on disc galaxy NGC 891. Astron. Astrophys. 1978, 62, 397–409. [Google Scholar]
- Strong, A.W.; Porter, T.A.; Digel, S.W.; Jóhannesson, G.; Martin, P.; Moskalenko, I.V.; Murphy, E.J.; Orlando, E. Global Cosmic-ray-related Luminosity and Energy Budget of the Milky Way. Astrophys. J. Lett. 2010, 722, L58–L63. [Google Scholar] [CrossRef]
- Heesen, V.; Dettmar, R.J.; Krause, M.; Beck, R.; Stein, Y. Advective and diffusive cosmic ray transport in galactic haloes. Mon. Not. R. Astron. Soc. 2016, 458, 332–353. [Google Scholar] [CrossRef]
- Krause, M.; Irwin, J.; Wiegert, T.; Miskolczi, A.; Damas-Segovia, A.; Beck, R.; Li, J.T.; Heald, G.; Müller, P.; Stein, Y.; et al. CHANG-ES. IX. Radio scale heights and scale lengths of a consistent sample of 13 spiral galaxies seen edge-on and their correlations. Astron. Astrophys. 2018, 611, A72. [Google Scholar] [CrossRef]
- Heesen, V.; Whitler, L.; Schmidt, P.; Miskolczi, A.; Sridhar, S.S.; Horellou, C.; Beck, R.; Gürkan, G.; Scannapieco, E.; Brüggen, M.; et al. Warped diffusive radio halo around the quiescent spiral edge-on galaxy NGC 4565. Astron. Astrophys. 2019, 628, L3. [Google Scholar] [CrossRef]
- Heesen, V.; de Gasperin, F.; Schulz, S.; Basu, A.; Beck, R.; Brüggen, M.; Dettmar, R.J.; Stein, M.; Gajović, L.; Tabatabaei, F.S.; et al. Diffusion of cosmic-ray electrons in M 51 observed with LOFAR at 54 MHz. Astron. Astrophys. 2023, 672, A21. [Google Scholar] [CrossRef]
- Stein, M.; Heesen, V.; Dettmar, R.J.; Stein, Y.; Brüggen, M.; Beck, R.; Adebahr, B.; Wiegert, T.; Vargas, C.J.; Bomans, D.J.; et al. CHANG-ES. XXVI. Insights into cosmic-ray transport from radio halos in edge-on galaxies. Astron. Astrophys. 2023, 670, A158. [Google Scholar] [CrossRef]
- Miskolczi, A.; Heesen, V.; Horellou, C.; Bomans, D.J.; Beck, R.; Heald, G.; Dettmar, R.J.; Blex, S.; Nikiel-Wroczyński, B.; Chyży, K.T.; et al. CHANG-ES XII. A LOFAR and VLA view of the edge-on star-forming galaxy NGC 3556. Astron. Astrophys. 2019, 622, A9. [Google Scholar] [CrossRef]
- Heald, G.H.; Heesen, V.; Sridhar, S.S.; Beck, R.; Bomans, D.J.; Brüggen, M.; Chyży, K.T.; Damas-Segovia, A.; Dettmar, R.J.; English, J.; et al. CHANG-ES XXIII: Influence of a galactic wind in NGC 5775. Mon. Not. R. Astron. Soc. 2022, 509, 658–684. [Google Scholar] [CrossRef]
- Heesen, V.; Rafferty, D.A.; Horneffer, A.; Beck, R.; Basu, A.; Westcott, J.; Hindson, L.; Brinks, E.; ChyŻy, K.T.; Scaife, A.M.M.; et al. Exploring the making of a galactic wind in the starbursting dwarf irregular galaxy IC 10 with LOFAR. Mon. Not. R. Astron. Soc. 2018, 476, 1756–1764. [Google Scholar] [CrossRef]
- Heesen, V.; Krause, M.; Beck, R.; Adebahr, B.; Bomans, D.J.; Carretti, E.; Dumke, M.; Heald, G.; Irwin, J.; Koribalski, B.S.; et al. Radio haloes in nearby galaxies modelled with 1D cosmic ray transport using SPINNAKER. Mon. Not. R. Astron. Soc. 2018, 476, 158–183. [Google Scholar] [CrossRef]
- Stein, Y.; Dettmar, R.J.; Weżgowiec, M.; Irwin, J.; Beck, R.; Wiegert, T.; Krause, M.; Li, J.T.; Heesen, V.; Miskolczi, A.; et al. CHANG-ES. XIX. Galaxy NGC 4013: A diffusion-dominated radio halo with plane-parallel disk and vertical halo magnetic fields. Astron. Astrophys. 2019, 632, A13. [Google Scholar] [CrossRef]
- Voelk, H.J. The correlation between radio and far-infrared emission for disk galaxies: A calorimeter theory. Astron. Astrophys. 1989, 218, 67–70. [Google Scholar]
- Niklas, S.; Beck, R. A new approach to the radio-far infrared correlation for non-calorimeter galaxies. Astron. Astrophys. 1997, 320, 54–64. [Google Scholar]
- Krause, M. Magnetic Fields and Star Formation in Spiral Galaxies. In Proceedings of the Revista Mexicana de Astronomia y Astrofisica Conference Series; Instituto de Astronomía, Universidad Nacional Autónoma de México: Mexico City, Mexico, 2009; Volume 36, pp. 25–29. [Google Scholar] [CrossRef]
- Cook, T. New Radio Observations of Edge-on Galaxies, NGC 2683 and NGC 3044. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 2023. Available online: https://qspace.library.queensu.ca/items/30c1cbec-f2ad-4db2-be02-95c118433054/ (accessed on 4 May 2024).
- Beck, R. Magnetic fields in spiral galaxies. Astron. Astrophys. Rev. 2015, 24, 4. [Google Scholar] [CrossRef]
- Beck, R.; Chamandy, L.; Elson, E.; Blackman, E.G. Synthesizing Observations and Theory to Understand Galactic Magnetic Fields: Progress and Challenges. Galaxies 2019, 8, 4. [Google Scholar] [CrossRef]
- Takahashi, K. Introduction to Faraday tomography and its future prospects. Publ. Astron. Soc. Jpn. 2023, 75, S50–S84. [Google Scholar] [CrossRef]
- Braun, R.; Heald, G.; Beck, R. The Westerbork SINGS survey. III. Global magnetic field topology. Astron. Astrophys. 2010, 514, A42. [Google Scholar] [CrossRef]
- Soida, M. Can we observe the poloidal magnetic field? In Proceedings of the The Magnetized Plasma in Galaxy Evolution, Kraków, Poland, 27 September–1 October 2004; Chyzy, K.T., Otmianowska-Mazur, K., Soida, M., Dettmar, R.J., Eds.; Jagiellonian University: Cracow, Poland, 2005; pp. 185–190. [Google Scholar]
- Henriksen, R.N. Magnetic spiral arms in galaxy haloes. Mon. Not. R. Astron. Soc. 2017, 469, 4806–4830. [Google Scholar] [CrossRef]
- Henriksen, R.N.; Woodfinden, A.; Irwin, J.A. Exact axially symmetric galactic dynamos. Mon. Not. R. Astron. Soc. 2018, 476, 635–645. [Google Scholar] [CrossRef]
- Beck, R.; Brandenburg, A.; Moss, D.; Shukurov, A.; Sokoloff, D. Galactic Magnetism: Recent Developments and Perspectives. Annu. Rev. Astron. Astrophys. 1996, 34, 155–206. [Google Scholar] [CrossRef]
- Mora-Partiarroyo, S.C.; Krause, M.; Basu, A.; Beck, R.; Wiegert, T.; Irwin, J.; Henriksen, R.; Stein, Y.; Vargas, C.J.; Heesen, V.; et al. CHANG-ES. XV. Large-scale magnetic field reversals in the radio halo of NGC 4631. Astron. Astrophys. 2019, 632, A11. [Google Scholar] [CrossRef]
- Damas-Segovia, A.; Beck, R.; Vollmer, B.; Wiegert, T.; Krause, M.; Irwin, J.; Weżgowiec, M.; Li, J.; Dettmar, R.J.; English, J.; et al. CHANG-ES. VII. Magnetic Outflows from the Virgo Cluster Galaxy NGC 4388. Astrophys. J. 2016, 824, 30. [Google Scholar] [CrossRef]
- Damas-Segovia, A.; et al. CHANG-ES XXVIII: Precession of Nuclear Outflows in the Virgo Seyfert Galaxy, NGC 4388. in prep.
- Brown, J.C.; Haverkorn, M.; Gaensler, B.M.; Taylor, A.R.; Bizunok, N.S.; McClure-Griffiths, N.M.; Dickey, J.M.; Green, A.J. Rotation Measures of Extragalactic Sources behind the Southern Galactic Plane: New Insights into the Large-Scale Magnetic Field of the Inner Milky Way. Astrophys. J. 2007, 663, 258–266. [Google Scholar] [CrossRef]
- Kierdorf, M.; Mao, S.A.; Beck, R.; Basu, A.; Fletcher, A.; Horellou, C.; Tabatabaei, F.; Ott, J.; Haverkorn, M. The magnetized disk-halo transition region of M 51. Astron. Astrophys. 2020, 642, A118. [Google Scholar] [CrossRef]
- Brandenburg, A.; Donner, K.J.; Moss, D.; Shukurov, A.; Sokoloff, D.D.; Tuominen, I. Vertical magnetic fields above the discs of spiral galaxies. Astron. Astrophys. 1993, 271, 36–50. [Google Scholar]
- Moss, D.; Sokoloff, D.; Beck, R.; Krause, M. Galactic winds and the symmetry properties of galactic magnetic fields. Astron. Astrophys. 2010, 512, A61. [Google Scholar] [CrossRef]
- Klein, U.; Fletcher, A. Galactic and Intergalactic Magnetic Fields; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Henriksen, R.N.; Irwin, J. Turbulent Magnetic Dynamos with Halo Lags, Winds, and Jets. Astrophys. J. 2021, 920, 133. [Google Scholar] [CrossRef]
- Woodfinden, A.; Henriksen, R.N.; Irwin, J.; Mora-Partiarroyo, S.C. Evolving galactic dynamos and fits to the reversing rotation measures in the halo of NGC 4631. Mon. Not. R. Astron. Soc. 2019, 487, 1498–1516. [Google Scholar] [CrossRef]
- West, J.L.; Henriksen, R.N.; Ferrière, K.; Woodfinden, A.; Jaffe, T.; Gaensler, B.M.; Irwin, J.A. Helicity in the large-scale Galactic magnetic field. Mon. Not. R. Astron. Soc. 2020, 499, 3673–3689. [Google Scholar] [CrossRef]
- Brunetti, G.; Lazarian, A. Stochastic reacceleration of relativistic electrons by turbulent reconnection: A mechanism for cluster-scale radio emission? Mon. Not. R. Astron. Soc. 2016, 458, 2584–2595. [Google Scholar] [CrossRef]
- ZuHone, J.A.; Markevitch, M.; Brunetti, G.; Giacintucci, S. Turbulence and Radio Mini-halos in the Sloshing Cores of Galaxy Clusters. Astrophys. J. 2013, 762, 78. [Google Scholar] [CrossRef]
- Heald, G.; Braun, R.; Edmonds, R. The Westerbork SINGS survey. II Polarization, Faraday rotation, and magnetic fields. Astron. Astrophys. 2009, 503, 409–435. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Irwin, J.; Daniel Wang, Q.; Li, J.; English, J.; Ma, Q.; Wang, R.; Wang, K.; Krause, M.; et al. H I Vertical Structure of Nearby Edge-on Galaxies from CHANG-ES. Res. Astron. Astrophys. 2022, 22, 085004. [Google Scholar] [CrossRef]
- Li, J.T.; Wang, Q.D. Chandra survey of nearby highly inclined disc galaxies - I. X-ray measurements of galactic coronae. Mon. Not. R. Astron. Soc. 2013, 428, 2085–2108. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, J.T.; Gao, Y.; Bregmany, J.N.; Ji, L.; Jiang, X.; Tan, Q.; Wang, J.; Wang, Q.D.; Yang, Y. CO-CHANGES II: Spatially resolved IRAM 30m CO line observations of 24 nearby edge-on spiral galaxies. 2024; in prep. [Google Scholar]
- Jiang, Y.; Li, J.T.; Gao, Y.; Bregmany, J.N.; Ji, L.; Jiang, X.; Tan, Q.; Wang, J.; Wang, Q.D.; Yang, Y. CO-CHANGES I: IRAM 30m CO Observations of Molecular Gas in the Sombrero Galaxy. Mon. Not. R. Astron. Soc. 2023, 528, 4160–4175. [Google Scholar] [CrossRef]
- Li, J.T.; Lu, L.Y.; Qu, Z.; Benjamin, R.A.; Bregman, J.N.; Dettmar, R.-J.; English, J.; Fang, T.; Irwin, J.A.; Jiang, Y.; et al. eDIG-CHANGES II: Project Design and Initial Results on NGC 3556. arXiv 2024, arXiv:2404.05628. [Google Scholar]
- Lu, L.Y.; Li, J.T.; Vargas, C.J.; Fang, T.; Bregman, J.N.; Dettmar, R.J.; Heald, G.H.; Walterbos, R.A.M.; Wang, Q.D. CHANG-ES M.eDIG-CHANGES III: Multi-slit Spectroscopy of the eDIG around NGC 891. 2024; in prep. [Google Scholar]
- Rau, U.; Naik, N.; Braun, T. A Joint Deconvolution Algorithm to Combine Single-dish and Interferometer Data for Wideband Multiterm and Mosaic Imaging. Astron. J. 2019, 158, 3. [Google Scholar] [CrossRef]
- Collins, J.A.; Benjamin, R.A.; Rand, R.J. Kinematics of Diffuse Ionized Gas Halos: A Ballistic Model of Halo Rotation. Astrophys. J. 2002, 578, 98–108. [Google Scholar] [CrossRef]
- Fraternali, F.; Binney, J.J. A dynamical model for the extraplanar gas in spiral galaxies. Mon. Not. R. Astron. Soc. 2006, 366, 449–466. [Google Scholar] [CrossRef]
- Zschaechner, L.K.; Rand, R.J. The H I Kinematics of NGC 4013: A Steep and Radially Shallowing Extra-planar Rotational Lag. Astrophys. J. 2015, 808, 153. [Google Scholar] [CrossRef]
- Marinacci, F.; Fraternali, F.; Nipoti, C.; Binney, J.; Ciotti, L.; Londrillo, P. Galactic fountains and the rotation of disc-galaxy coronae. Mon. Not. R. Astron. Soc. 2011, 415, 1534–1542. [Google Scholar] [CrossRef]
- Benjamin, R.A. The Interstellar Disk-Halo Connection: The Rotation of Extra-planar Gas. In Proceedings of the Seeing through the Dust: The Detection of HI and the Exploration of the ISM in Galaxies; Taylor, A.R., Landecker, T.L., Willis, A.G., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2002; Volume 276, p. 201. [Google Scholar]
- Braun, T.T.; Rau, U.; Rand, R.J.; Kepley, A. Using VLA/GBT Data Combined with a New Interferometer and Single-Dish Joint Deconvolution Technique to Model Radio Halos of Galaxies. In Proceedings of the American Astronomical Society Meeting Abstracts #233, Seattle, WA, USA, 6–10 January 2019; Volume 233, p. 260.04. [Google Scholar]
- DeForest, C.E.; Howard, T.A.; McComas, D.J. Inbound Waves in the Solar Corona: A Direct Indicator of Alfvén Surface Location. Astrophys. J. 2014, 787, 124. [Google Scholar] [CrossRef]
Galaxy | Distance b | SFR c |
---|---|---|
Mpc | ||
N 660 | 12.3 | 3.31 ± 0.32 |
N 891 | 9.1 | 1.88 ± 0.18 |
N 2613 | 23.4 | 3.36 ± 0.35 |
N 2683 | 6.27 | 0.25 ± 0.03 |
N 2820 | 26.5 | 1.35 ± 0.14 |
N 2992 | 34 | 5.91 ± 0.54 |
N 3003 | 25.4 | 1.56 ± 0.16 |
N 3044 | 20.3 | 1.75 ± 0.16 |
N 3079 | 20.6 | 5.08 ± 0.45 |
N 3432 | 9.42 | 0.51 ± 0.06 |
N 3448 | 24.5 | 1.78 ± 0.18 |
N 3556 | 14.09 | 3.57 ± 0.30 |
N 3628 | 8.5 | 1.41 ± 0.12 |
N 3735 | 42 | 6.23 ± 0.57 |
N 3877 | 17.7 | 1.35 ± 0.12 |
N 4013 | 16 | 0.71 ± 0.07 |
N 4096 | 10.32 | 0.71 ± 0.08 |
N 4157 | 15.6 | 1.76 ± 0.18 |
N 4192 | 13.55 | 0.78 ± 0.07 |
N 4217 | 20.6 | 1.89 ± 0.18 |
N 4244 | 4.4 | 0.06 ± 0.01 |
N 4302 | 19.41 | 0.92 ± 0.08 |
N 4388 | 16.6 | 2.42 ± 0.23 |
N 4438 d | 10.39 | 0.14 ± 0.04 |
N 4565 | 11.9 | 0.96 ± 0.09 |
N 4594 | 12.7 | 0.43 ± 0.04 |
N 4631 | 7.4 | 2.62 ± 0.22 |
N 4666 | 27.5 | 10.5 ± 0.92 |
N 4845 | 16.98 | 0.62 ± 0.06 |
N 5084 e | 23.4 | 0.12 ± 0.03 |
N 5297 | 40.4 | 3.00 ± 0.33 |
N 5775 | 28.9 | 7.56 ± 0.65 |
N 5792 | 31.7 | 4.41 ± 0.37 |
N 5907 | 16.8 | 2.21 ± 0.19 |
U 10288 | 34.1 | 0.66 ± 0.07 |
Type of Observation | No. of Galaxies | Ref |
---|---|---|
Radio Images | ||
D-array L-band | ||
Total Intensity a,b | 35 | [4] |
Linearly Polarized Intensity a,b | 35 | [4] |
Polarization Angle a | 35 | [4] |
In-band spectral Index c | 35 | [4] |
Spectral Index Error maps c | 35 | [4] |
D-array C-band | ||
Total Intensity a,b | 35 | [4] |
Linearly Polarized Intensity a,b | 35 | [4] |
Polarization Angle a | 35 | [4] |
In-band spectral Index c | 35 | [4] |
Spectral Index Error maps c | 35 | [4] |
C-array L-band | ||
Total Intensity a,b | 35 | [27] |
Linearly Polarized Intensity a,b | 35 | [27] |
Polarization Angle a | 35 | [27] |
C-array C-band | ||
Total Intensity a,b | 35 | [27] |
Linearly Polarized Intensity a,b | 35 | [27] |
Polarization Angle a | 35 | [27] |
B/L to C/C spectral Index d | 35 | [28] |
Spectral Index Error maps c | 35 | [27] |
B-array L-band | 35 | [24] |
Total Intensity a,b | 35 | [24] |
Linearly Polarized Intensity a,b | 35 | [24] |
Polarization Angle a | 35 | [24] |
B/L to C/C spectral Index d | 35 | [28] |
Spectral Index Error maps c | 35 | [24] |
L-band (all arrays, RM corrected) | 21 | [29] |
C-band (all arrays, RM corrected) | 21 | [29] |
H Images | 27 e | [5] |
H I Images | 19 | [30] |
Galaxy | Distance | Freq. | Model a | Velocity | Ref | |
---|---|---|---|---|---|---|
IC 10 | 0.8 | Adv. | - | [50] | ||
NGC 55 | 1.9 | Adv. | - | [51] | ||
NGC 253 | 3.9 | Adv. | - | [51] | ||
NGC 891 | 9.1 | Adv. | - | [18] | ||
Adv. flux tube | - | b | [47] | |||
NGC 3044 | 4.4 | Adv. | - | [51] | ||
NGC 3079 | 7.7 | Adv. | - | [51] | ||
NGC 3556 | 14.09 | Adv. with acc. | - | 340 | [48] | |
NGC 3628 | 14.8 | Adv. | - | [51] | ||
NGC 4013 | 16.0 | Diff. | - | [52] | ||
Diff. | - | [47] | ||||
NGC 4157 | 15.6 | Adv. flux tube | - | b | [47] | |
NGC 4217 | 20.6 | Adv. | - | [19] | ||
NGC 4565 | 11.9 | Diff. () | - | [51] | ||
Diff. () | - | [18] | ||||
NGC 4631 | 6.9 | Adv. | - | [51] | ||
7.4 | Adv. flux tube | - | b | [47] | ||
NGC 4666 | 26.6 | Adv. | - | [9] | ||
NGC 5775 | 26.9 | Adv. | - | [51] | ||
Adv. flux tube | - | b | [49] | |||
NGC 7090 | 10.6 | Adv. | - | [51] | ||
NGC 7462 | 13.6 | Diff. | - | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irwin, J.; Beck, R.; Cook, T.; Dettmar, R.-J.; English, J.; Heesen, V.; Henriksen, R.; Jiang, Y.; Li, J.-T.; Lu, L.-Y.; et al. CHANG-ES XXXI—A Decade of CHANG-ES: What We Have Learned from Radio Observations of Edge-on Galaxies. Galaxies 2024, 12, 22. https://doi.org/10.3390/galaxies12030022
Irwin J, Beck R, Cook T, Dettmar R-J, English J, Heesen V, Henriksen R, Jiang Y, Li J-T, Lu L-Y, et al. CHANG-ES XXXI—A Decade of CHANG-ES: What We Have Learned from Radio Observations of Edge-on Galaxies. Galaxies. 2024; 12(3):22. https://doi.org/10.3390/galaxies12030022
Chicago/Turabian StyleIrwin, Judith, Rainer Beck, Tanden Cook, Ralf-Jürgen Dettmar, Jayanne English, Volker Heesen, Richard Henriksen, Yan Jiang, Jiang-Tao Li, Li-Yuan Lu, and et al. 2024. "CHANG-ES XXXI—A Decade of CHANG-ES: What We Have Learned from Radio Observations of Edge-on Galaxies" Galaxies 12, no. 3: 22. https://doi.org/10.3390/galaxies12030022