Thermodynamic Relations for the Entropy and Temperature of Multi-Horizon Black Holes
Abstract
:1. Introduction
2. Thermodynamic Relations of Static (A)dS Black Holes
2.1. Thermodynamic Relations of Schwarzschild-(A)dS Black Holes
2.2. Thermodynamic Relations of Reissner–Nordström-(A)dS Black Holes
3. Thermodynamic Relation of Rotating Black Holes
3.1. Thermodynamic Relation of Kerr (and Newman) Black Holes
3.2. Thermodynamic Relation of a BTZ Black Hole
4. Thermodynamic Relations and Thermodynamic Bound
4.1. Thermodynamic Bound for a Schwarzschild-dS Black Hole
4.2. Thermodynamic Bound for Kerr Black Holes
5. Thermodynamic Relations and Thermodynamic Laws
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 1996, 379, 99–104. [Google Scholar] [CrossRef]
- Guica, M.; Hartman, T.; Song, W.; Strominger, A. The Kerr/CFT Correspondence. Phys. Rev. D 2009, 80, 124008. [Google Scholar] [CrossRef]
- Corda, C. Effective temperature, Hawking radiation and quasinormal modes. Int. J. Mod. Phys. D 2012, 21, 1242023. [Google Scholar] [CrossRef]
- Corda, C. Black hole quantum spectrum. Eur. Phys. J. C 2013, 73, 2665. [Google Scholar] [CrossRef]
- Corda, C. Time-Dependent Schrodinger Equation for Black Hole Evaporation: No Information Loss. Ann. Phys. 2015, 353, 71. [Google Scholar] [CrossRef]
- Corda, C.; Hendi, S.H.; Katebi, R.; Schmidt, N.O. Effective state, Hawking radiation and quasi-normal modes for Kerr black holes. J. High Energ. Phys. 2013, 1306, 008. [Google Scholar] [CrossRef]
- Cvetic, M.; Gibbons, G.W.; Pope, C.N. Universal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher Dimensions. Phys. Rev. Lett. 2011, 106, 121301. [Google Scholar] [CrossRef] [PubMed]
- Toldo, C.; Vandoren, S. Static nonextremal AdS4 black hole solutions. J. High Energ. Phys. 2012, 1209, 048. [Google Scholar] [CrossRef]
- Cvetic, M.; Lu, H.; Pope, C.N. Entropy-Product Rules for Charged Rotating Black Holes. Phys. Rev. D 2013, 88, 044046. [Google Scholar] [CrossRef]
- Lu, H.; Pang, Y.; Pope, C.N. AdS Dyonic Black Hole and its Thermodynamics. J. High Energ. Phys. 2013, 1311, 033. [Google Scholar] [CrossRef]
- Chow, D.D.K.; Compère, G. Seed for general rotating non-extremal black holes of N = 8 supergravity. Class. Quant. Grav. 2014, 31, 022001. [Google Scholar] [CrossRef]
- Detournay, S. Inner Mechanics of 3d Black Holes. Phys. Rev. Lett. 2012, 109, 031101. [Google Scholar] [CrossRef] [PubMed]
- Castro, A; Rodriguez, M.J. Universal properties and the first law of black hole inner mechanics. Phys. Rev. D 2012, 86, 024008. [Google Scholar]
- Visser, M. Quantization of area for event and Cauchy horizons of the Kerr-Newman black hole. J. High Energ. Phys. 2012, 1206, 023. [Google Scholar] [CrossRef]
- Chen, B.; Liu, S.-X.; Zhang, J.-J. Thermodynamics of Black Hole Horizons and Kerr/CFT Correspondence. J. High Energ. Phys. 2012, 1211, 017. [Google Scholar] [CrossRef]
- Castro, A.; Lapan, J.M.; Maloney, A.; Rodriguez, M.J. Black Hole Monodromy and Conformal Field Theory. Phys. Rev. D 2013, 88, 044003. [Google Scholar] [CrossRef]
- Visser, M. Area products for black hole horizons. Phys. Rev. D 2013, 88, 044014. [Google Scholar] [CrossRef]
- Abdolrahimi, S.; Shoom, A.A. Distorted Five-dimensional Electrically Charged Black Holes. Phys. Rev. D 2014, 89, 024040. [Google Scholar] [CrossRef]
- Pradhan, P. Area Products and Mass Formula for Kerr Newman Taub Nut Spacetime. 2013. [Google Scholar]
- Pradhan, P. Black Hole Interior Mass Formula. Eur. Phys. J. C 2014, 74, 2887. [Google Scholar] [CrossRef]
- Castro, A.; Dehmami, N.; Giribet, G.; Kastor, D. On the Universality of Inner Black Hole Mechanics and Higher Curvature Gravity. J. High Energ. Phys. 2013, 1307, 164. [Google Scholar] [CrossRef]
- Faraoni, V.; Moreno, A.F.Z. Are quantization rules for horizon areas universal? Phys. Rev. D 2013, 88, 044011. [Google Scholar] [CrossRef]
- Lu, H. Charged dilatonic ads black holes and magnetic AdSD−2 × R2 vacua. J. High Energ. Phys. 2013, 1309, 112. [Google Scholar] [CrossRef]
- Anacleto, M.A.; Brito, F.A.; Passos, E. Acoustic Black Holes and Universal Aspects of Area Products. 2013. [Google Scholar]
- Xu, W.; Wang, J.; Meng, X.-H. A Note on Entropy Relations of Black Hole Horizons. Int. J. Mod. Phys. A 2014, 29, 1450088. [Google Scholar]
- Wang, J.; Xu, W.; Meng, X.-H. The Entropy Relations of Black Holes with Multihorizons in Higher Dimensions. Phys. Rev. D 2014, 89, 044034. [Google Scholar] [CrossRef]
- Wang, J.; Xu, W.; Meng, X.-H. The “universal property” of horizon entropy sum of black holes in four dimensional asymptotical (anti-)de-Sitter spacetime background. J. High Energ. Phys. 2013, 1401, 031. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Meng, X.-H. The Entropy Sum of (A)dS Black Holes in Four and Higher Dimensions. Int. J. Mod. Phys. A 2014, 29, 1450172. [Google Scholar] [CrossRef]
- Du, Y.-Q.; Tian, Y. The Universal Property of the Entropy Sum of Black Holes in All Dimensions. Phys. Lett. B 2014, 739, 250–255. [Google Scholar] [CrossRef]
- Cvetic, M.; Larsen, F. General rotating black holes in string theory: Grey body factors and event horizons. Phys. Rev. D 1997, 56, 4994. [Google Scholar] [CrossRef]
- Cvetic, M.; Larsen, F. Grey body factors for rotating black holes in four-dimensions. Nucl. Phys. B 1997, 506, 107–120. [Google Scholar] [CrossRef]
- Cvetic, M.; Larsen, F. Greybody Factors and Charges in Kerr/CFT. J. High Energ. Phys. 2009, 09, 088. [Google Scholar] [CrossRef]
- Ansorg, M.; Hennig, J.; Cederbaum, C. Universal properties of distorted Kerr-Newman black holes. Gen. Rel. Grav 2011, 43, 1205–1210. [Google Scholar] [CrossRef]
- Hennig, J.; Ansorg, M. The Inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory: Study in terms of soliton methods. Ann. Henri Poincare 2009, 10, 1075–1095. [Google Scholar] [CrossRef]
- Ansorg, M.; Hennig, J. The Inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter in Einstein-Maxwell theory. Phys. Rev. Lett. 2009, 102, 221102. [Google Scholar] [CrossRef] [PubMed]
- Hennig, J.; Cederbaum, C.; Ansorg, M. A Universal inequality for axisymmetric and stationary black holes with surrounding matter in the Einstein-Maxwell theory. Commun. Math. Phys. 2010, 293, 449–467. [Google Scholar] [CrossRef]
- Ansorg, M.; Hennig, J. The Inner Cauchy horizon of axisymmetric and stationary black holes with surrounding matter. Class. Quant. Grav. 2008, 25, 222001. [Google Scholar] [CrossRef]
- Ansorg, M.; Pfister, H. A Universal constraint between charge and rotation rate for degenerate black holes surrounded by matter. Class. Quant. Grav. 2008, 25, 035009. [Google Scholar] [CrossRef]
- Jaramillo, J.L.; Vasset, N.; Ansorg, M. A Numerical study of Penrose-like inequalities in a family of axially symmetric initial data. 2007. [Google Scholar] [CrossRef]
- Booth, I.; Fairhurst, S. Extremality conditions for isolated and dynamical horizons. Phys. Rev. D 2008, 77, 084005. [Google Scholar] [CrossRef]
- Hennig, J.; Neugebauer, G. Non-existence of stationary two-black-hole configurations. 2010. [Google Scholar]
- Chen, B.; Zhang, J.-J. Holographic Descriptions of Black Rings. J. High Energ. Phys. 2012, 1211, 022. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, J.-J. RN/CFT Correspondence From Thermodynamics. J. High Energ. Phys. 2013, 1301, 155. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, J.-J. Electromagnetic Duality in Dyonic RN/CFT Correspondence. Phys. Rev. D 2013, 87, 081505. [Google Scholar] [CrossRef]
- Chen, B.; Xue, Z.; Zhang, J.-J. Note on Thermodynamic Method of Black Hole/CFT Correspondence. J. High Energ. Phys. 2013, 1303, 102. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, J.-J.; Zhang, J.-D.; Zhong, D.-L. Aspects of Warped AdS3/CFT2 Correspondence. J. High Energ. Phys. 2013, 1304, 055. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, J.-J. Thermodynamics in Black-hole/CFT Correspondence. Int. J. Mod. Phys. D 2013, 22, 1342012. [Google Scholar] [CrossRef]
- Okamoto, I.; Kaburaki, O. The ‘inner-horizon thermodynamics’ of Kerr black holes. Mon. Not. R. Astron. Soc. 1992, 255, 539–544. [Google Scholar] [CrossRef]
- Mars, M. Present status of the Penrose inequality. Class. Quant. Grav. 2009, 26, 193001. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and the second law. Lett. Nuovo Cim 1972, 4, 737–740. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–120, Erratum in 1976, 46, 206. [Google Scholar] [CrossRef]
- Banados, M.; Teitelboim, C.; Zanelli, J. The Black hole in three-dimensional space-time. Phys. Rev. Lett. 1992, 69, 1849. [Google Scholar] [CrossRef] [PubMed]
- Kastor, D.; Ray, S.; Traschen, J. Enthalpy and the Mechanics of AdS Black Holes. Class. Quant. Grav. 2009, 26, 195011. [Google Scholar] [CrossRef]
- Dolan, B.P. Pressure and volume in the first law of black hole thermodynamics. Class. Quant. Grav. 2011, 28, 235017. [Google Scholar] [CrossRef]
- Cvetic, M.; Gibbons, G.W.; Kubiznak, D.; Pope, C.N. Black Hole Enthalpy and an Entropy Inequality for the Thermodynamic Volume. Phys. Rev. D 2011, 84, 024037. [Google Scholar] [CrossRef]
- Dolan, B.P.; Kastor, D.; Kubiznak, D.; Mann, R.B.; Traschen, J. Thermodynamic Volumes and Isoperimetric Inequalities for de Sitter Black Holes. Phys. Rev. D 2013, 87, 104017. [Google Scholar] [CrossRef]
- Xu, W.; Xu, H.; Zhao, L. Gauss-Bonnet coupling constant as a free thermodynamical variable and the associated criticality. Eur. Phys. J. C 2014, 74, 2970. [Google Scholar] [CrossRef]
- Xu, H.; Xu, W.; Zhao, L. Extended phase space thermodynamics for third order Lovelock black holes in diverse dimensions. Eur. Phys. J. C 2014, 74, 3074. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, L. Critical phenomena of static charged AdS black holes in conformal gravity. Phys. Lett. B 2014, 736, 214–220. [Google Scholar] [CrossRef]
- Altamirano, N.; Kubiznak, D.; Mann, R.B.; Sherkatghanad, Z. Thermodynamics of rotating black holes and black rings: Phase transitions and thermodynamic volume. Galaxies 2014, 2, 89–159. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Wang, J.; Meng, X.-h. Thermodynamic Relations for the Entropy and Temperature of Multi-Horizon Black Holes. Galaxies 2015, 3, 53-71. https://doi.org/10.3390/galaxies3010053
Xu W, Wang J, Meng X-h. Thermodynamic Relations for the Entropy and Temperature of Multi-Horizon Black Holes. Galaxies. 2015; 3(1):53-71. https://doi.org/10.3390/galaxies3010053
Chicago/Turabian StyleXu, Wei, Jia Wang, and Xin-he Meng. 2015. "Thermodynamic Relations for the Entropy and Temperature of Multi-Horizon Black Holes" Galaxies 3, no. 1: 53-71. https://doi.org/10.3390/galaxies3010053
APA StyleXu, W., Wang, J., & Meng, X. -h. (2015). Thermodynamic Relations for the Entropy and Temperature of Multi-Horizon Black Holes. Galaxies, 3(1), 53-71. https://doi.org/10.3390/galaxies3010053