The Association between Anthropometric Variables, Functional Movement Screen Scores and 100 m Freestyle Swimming Performance in Youth Swimmers
Abstract
:1. Introduction
2. Method, Results, Discussion
2.1. Method
2.1.1. Participants
2.1.2. Anthropometry
2.1.3. Functional Movement Assessment
2.1.4. Measures of Swimming Performance
2.1.5. Statistical Analysis
2.2. Results
2.3. Discussion
Performance variable | Height (m) | Mass (kg) | Upper arm length (cm) | Lower arm length (cm) | Hand length (cm) | Upper leg length (cm) | Lower leg length (cm) | Foot length (cm) | Sum of skinfolds (mm) | Total FMS (0–21) |
---|---|---|---|---|---|---|---|---|---|---|
100 m freestyle timed swim | −0.654 ** | −0.543 ** | −0.561 ** | −0.483 ** | −0.626 ** | −0.350 * | −0.264 | −0.494 ** | 0.410 ** | −0.333 * |
Sample | Timed freestyle swim performance (s) | Height (cm) | Body mass (kg) | Upper arm length (cm) | Lower arm length (cm) | Hand length (cm) | Upper leg length (cm) | Lower leg length (cm) | Foot length (cm) | Sum of skinfolds (mm) | Total FMS (0–21) |
---|---|---|---|---|---|---|---|---|---|---|---|
Pooled data (n = 50) | 68.8 (1.0) | 164 (1.5) | 54.4 (1.4) | 32.2 (0.43) | 25.5 (0.59) | 18.4 (0.19) | 52.2 (0.62) | 49.2 (0.62) | 24.9 (0.32) | 94.2 (4.8) | 15.9 (1.4) |
Boys (n = 21) | 68.7 (1.1) | 169 (2.9) | 58.9 (2.7) | 32.9 (0.47) | 25.3 (0.68) | 18.8 (0.24) a | 52.9 (0.81) | 50.6 (0.86) b | 26.1 (0.31) c | 84.6 (6.3) | 15.2 (0.26) d |
Girls (n = 29) | 69.9 (0.93) | 161 (0.9) | 51.2 (1.2) | 31.6 (0.39) | 25.6 (0.61) | 18.1 (0.20) | 51.7 (0.70) | 47.8 (0.71) | 23.8 (0.38) | 98.3 (5.1) | 16.3 (0.22) |
Fast (n = 24) | 63.9 (0.9) | 169 (2.1) | 58.5 (2.2) | 32.8 (0.41) | 26.3 (0.53) | 18.9 (0.27) | 52.3 (0.77) | 49.2 (0.78) | 25.3 (0.33) | 77.7 (6.4) e | 16.4 (0.24) e |
Slow (n = 26) | 74.7 (1.1) | 161 (1.2) | 54.4 (1.0) | 31.4 (0.48) | 24.1 (0.61) | 18.0 (0.25) | 52.3 (0.82) | 49.7 (0.84) | 24.7 (0.36) | 106.4 (6.9) | 15.2 (0.27) |
Sample | Timed freestyle swim performance (s) | Height (cm) | Body mass (kg) | Upper arm length (cm) | Lower arm length (cm) | Hand length (cm) | Upper leg length (cm) | Lower leg length (cm) | Foot length (cm) | Sum of skinfolds (mm) | Total FMS (0–21) |
---|---|---|---|---|---|---|---|---|---|---|---|
Fast boys (n = 14) | 61.4 (1.3) | 176 (2.7) a,b,c | 64.2 (2.7) d,e,f | 35.3 (0.78) | 27 (0.49) | 19.8 (0.34) | 55.2 (0.99) | 52.7 (1.01) | 27.1 (0.51) | 73.0 (4.7) | 16.1 (0.51) |
Slow boys (n = 7) | 75.9 (1.9) | 157.5 (3.9) | 49.9 (3.8) | 30.4 (1.4) | 22.8 (1.0) | 18.1 (0.55) | 50.7 (1.8) | 48.9 (2.0) | 25.5 (0.89) | 114.9 (20.1) | 14.5 (0.429) |
Fast girls (n = 12) | 66.4 (1.4) | 162 (0.88) | 52.0 (1.6) | 31.6 (0.35) | 25.7 (0.81) | 18.4 (0.31) | 51.2 (1.2) | 47.1 (1.1) | 24.2 (0.5) | 87.6 (7.4) | 16.5 (0.26) |
Slow girls (n = 17) | 73.5 (1.2) | 158.3 (1.2) | 50.6 (1.8) | 30.7 (0.43) | 25.2 (0.67) | 17.6 (0.17) | 51.1 (0.74) | 48.0 (0.84) | 23.2 (0.29) | 107.9 (7.4) | 16.1 (0.23) |
3. Conclusions
Author Contributions
Conflicts of Interest
References
- Mevaloo, S.F.; Shahpar, F.M. Talent identification programmes. In Proceedings of the 17th FINA World Sport “Medicine Congress. Enhancing Performance: The Healthy Aquatic Athlete”, Manchester, UK, 7–8 April 2008.
- FINA: Federation Internationale De Natation. Talent Identification programmes. 2014. Available online: http://www.fina.org/ (accessed on 7 January 2015).
- Morais, J.E.; Jesus, S.; Lopes, V.; Garrido, N.; Silva, A.; Marinho, D.; Barbosa, T.M. Linking selected kinematic, anthropometric and hydrodynamic variables to young swimmer performance. Pediatr. Exerc. Sci. 2012, 24, 649–664. [Google Scholar] [PubMed]
- Jürimäe, J.; Haljaste, K.; Cicchella, A.; Lätt, E.; Purge, P.; Leppik, A.; Jürimäe, T. Analysis of swimming performance from physical, physiological and biomechanical parameters in young swimmers. Pediatr. Exerc. Sci. 2007, 19, 70–81. [Google Scholar] [PubMed]
- Lätt, E.; Jürimäe, J.; Haljaste, K.; Cicchella, A.; Purge, P.; Jürimäe, T. Longitudinal development of physical and performance parameters during biological maturation of young male swimmers. Percep. Mot. Skills 2009, 108, 297–307. [Google Scholar] [CrossRef]
- Zuniga, J.; Housh, T.J.; Mielke, M.; Hendrix, C.R.; Camic, C.L.; Johnson, G.O.; Housh, D.J.; Schmidt, R.J. Gender comparisons of anthropometric characteristics of young sprint swimmers. J. Strength Cond. Res. 2011, 25, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Geladas, N.D.; Nassis, G.P.; Pavlicevic, S. Somatic and physical traits affecting sprint swimming performance in young swimmers. Int. J. Sports Med. 2005, 26, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Kiesel, K.; Plisky, P.J.; Voight, M.L. Can serious injury in professional football be predicted by a preseason functional movement screen? N. Am. J. Sports Phys. Ther. 2007, 2, 147–158. [Google Scholar] [PubMed]
- Lisman, P.; OʼConnor, F.G.; Deuster, P.A.; Knapik, J.J. Functional movement screen and aerobic fitness predict injuries in military training. Med. Sci. Sports Exerc. 2013, 45, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Klusemann, M.J.; Pyne, D.B.; Fay, T.S.; Drinkwater, E.J. Online video-based resistance training improves the physical capacity of junior basketball athletes. J. Strength Cond. Res. 2012, 26, 2677–2684. [Google Scholar] [CrossRef] [PubMed]
- Paszkewicz, J.R.; McCarty, C.W.; VanLunen, B.L. Comparison of functional and static evaluation tools among adolescent athletes. J. Strength Cond. Res. 2013, 27, 2842–2850. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Kiesel, K. Movement: Functional Movement Systems: Screening, Assessment, Corrective Strategies; On Target Publications: London, UK, 2011. [Google Scholar]
- Chapman, R.F.; Laymon, A.S.; Arnold, T. Functional movement scores and longitudinal performance outcomes in elite track and field athletes. Int. J. Sports Physiol. Perf. 2014, 9, 203–211. [Google Scholar]
- Parchmann, C.J.; McBride, J.M. Relationship between functional movement screen and athletic performance. J. Strength Cond. Res. 2011, 25, 3378–3384. [Google Scholar] [CrossRef] [PubMed]
- Duncan, M.J.; Stanley, M. Functional movement is negatively associated with weight status and positively associated with physical activity in British primary school children. J. Obes. 2012, 697563, 2012. [Google Scholar]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; de Ridder, H. International Standards for Anthropometric Assessment; ISAK: Lower Hutt, New Zealand, 2011. [Google Scholar]
- Mirwald, R.L.; Baxter-Jones, A.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef] [PubMed]
- Cook, G.; Burton, L.; Hoogenboom, B. Pre-participation screening: The use of fundamental movements as an assessment of function—Part 2. N. Am. J. Sports Phys. Ther. 2006, 1, 132–139. [Google Scholar] [PubMed]
- Lätt, E.; Jürimäe, J.; Mäestu, J.; Purge, P.; Rämson, R.; Haljaste, K.; Keskinen, K.L.; Rodriguez, F.A.; Jürimäe, T. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers. J. Sports Sci. Med. 2010, 9, 398–404. [Google Scholar] [PubMed]
- Field, A. Discovering Statistics Using SPSS; SAGE: London, UK, 2008. [Google Scholar]
- Kjendlie, P.L.; Ingjer, F.; Madsan, O.; Stallman, R.K.; Stray-Gundersen, J. Differences in the energy cost between children and adults during front crawl swimming. Eur. J. Appl. Physiol. 2004, 91, 473–480. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.J.; Costa, A.M.; Oliveira, P.M.; Reis, V.M.; Saavedra, J.; Perl, J.; Rouboa, A.; Marinho, D.A. The use of neural network technology to model swimming performance. J. Sports Sci. Med. 2007, 6, 117–125. [Google Scholar] [PubMed]
- Toussaint, H.; Hollander, P. Energetics of competitive swimming: Implications for training programmes. Sports Med. 1994, 18, 384–405. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.M.; Escalante, Y.; Rodriguez, F.A. A multivariate analysis of performance in young swimmers. Pediatr. Exerc. Sci. 2010, 22, 135–151. [Google Scholar] [PubMed]
- Kiesel, K.; Plisky, P.J.; Butler, R. Functional movement test scores improve following a standardized off-season intervention program in professional football players. Scand. J. Med. Sci. Sports 2011, 21, 287–292. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bond, D.; Goodson, L.; Oxford, S.W.; Nevill, A.M.; Duncan, M.J. The Association between Anthropometric Variables, Functional Movement Screen Scores and 100 m Freestyle Swimming Performance in Youth Swimmers. Sports 2015, 3, 1-11. https://doi.org/10.3390/sports3010001
Bond D, Goodson L, Oxford SW, Nevill AM, Duncan MJ. The Association between Anthropometric Variables, Functional Movement Screen Scores and 100 m Freestyle Swimming Performance in Youth Swimmers. Sports. 2015; 3(1):1-11. https://doi.org/10.3390/sports3010001
Chicago/Turabian StyleBond, Daisy, Laura Goodson, Samuel W. Oxford, Alan M. Nevill, and Michael J. Duncan. 2015. "The Association between Anthropometric Variables, Functional Movement Screen Scores and 100 m Freestyle Swimming Performance in Youth Swimmers" Sports 3, no. 1: 1-11. https://doi.org/10.3390/sports3010001
APA StyleBond, D., Goodson, L., Oxford, S. W., Nevill, A. M., & Duncan, M. J. (2015). The Association between Anthropometric Variables, Functional Movement Screen Scores and 100 m Freestyle Swimming Performance in Youth Swimmers. Sports, 3(1), 1-11. https://doi.org/10.3390/sports3010001