Effect of Jump Direction on Joint Kinetics of Take-Off Legs in Double-Leg Rebound Jumps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedures
2.3. Data Analysis
2.4. Statistics
3. Results
4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Contact Time | Vertical Velocity | Horizontal Velocity | Ecc Torque | Con Torque | Negative Power | Positive Power | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ankle | Knee | Hip | Ankle | Knee | Hip | Ankle | Knee | Hip | Ankle | Knee | Hip | ||||
VDJ vs. 50% | 0.799 | <0.001 | 0.160 | 0.720 | 0.267 | 0.543 | 0.962 | 0.631 | 0.723 | 0.008 | 0.057 | 0.007 | 0.406 | 0.029 | 0.001 |
VDJ vs. 75% | 0.748 | <0.001 | 0.037 | 0.568 | 0.946 | 0.100 | 0.940 | 0.373 | 0.677 | 0.009 | 0.0098 | 0.010 | 0.537 | 0.008 | <0.001 |
VDJ vs. 100% | 0.889 | <0.001 | <0.001 | 0.258 | 0.261 | 0.015 | 0.571 | 0.139 | 0.319 | 0.413 | 0.003 | 0.004 | 0.982 | 0.0099 | <0.001 |
50% vs. 75% | 1.000 | <0.001 | 0.471 | 0.749 | 0.554 | 0.045 | 0.900 | 0.698 | 0.150 | 0.686 | 0.241 | 0.478 | 0.863 | 0.534 | 0.148 |
50% vs. 100% | 0.709 | <0.001 | <0.001 | 0.610 | 0.266 | 0.075 | 0.623 | 0.207 | 0.136 | 0.682 | 0.567 | 0.191 | 0.666 | 0.264 | 0.009 |
75% vs. 100% | 0.709 | <0.001 | <0.001 | 0.610 | 0.266 | 0.075 | 0.623 | 0.207 | 0.136 | 0.682 | 0.567 | 0.191 | 0.666 | 0.264 | 0.009 |
References
- Bobbert, M.F. Drop jumping as a training method for jumping ability. Sports Med. 1990, 9, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Potach, D.H.; Chu, D.A. Program design and technique for plyometric training. In Essential of Strength Training and Conditioning, 4th ed.; Haff, G.G., Triplett, N.T., Eds.; Human Kinetics: Champaign, IL, USA, 2015; pp. 471–520. [Google Scholar]
- Chamari, K.; Chaouachi, A.; Hambli, M.; Kaouech, F.; Wisløff, U.; Castagna, C. The five-jump test for distance as a field test to assess lower limb explosive power in soccer players. J. Strength Cond. Res. 2008, 22, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.A.; Myer, G.D. Part III application. In Plyometrics, 1st ed.; Chu, D.A., Myer, G.D., Eds.; Human Kinetics: Champaign, IL, USA, 2013; pp. 83–193. [Google Scholar]
- Reiman, M.P.; Manske, R.C. Strength and power testing. In Functional Testing in Human Performance; Reiman, M.P., Manske, R.C., Eds.; Human Kinetics: Champaign, IL, USA, 2009; pp. 131–190. [Google Scholar]
- Taube, W.; Leukel, C.; Lauber, B.; Gollhofer, A. The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training. Scand. J. Med. Sci. Sports 2012, 22, 671–683. [Google Scholar] [CrossRef] [PubMed]
- Young, W.B.; Wilson, G.J.; Byrne, C.A. Comparison of drop jump training methods: Effects on leg extensor strength qualities and jumping performance. Int. J. Sports Med. 1999, 20, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Arampatzis, A.; Schade, F.; Walsh, M.; Brüggemann, G.P. Influence of leg stiffness and its effect on myodynamic jumping performance. J. Electromyogr. Kinesiol. 2001, 11, 355–364. [Google Scholar] [CrossRef]
- Bobbert, M.F.; Huijing, P.A.; van Ingen Schenau, G.J. Drop jumping. I. The influence of jumping technique on the biomechanics of jumping. Med. Sci. Sports Exerc. 1987, 19, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.; Tauchi, K.; Takamatsu, K. Effect of ankle joint stiffness during eccentric phase in rebound jumps on ankle joint torque at midpoint. Int. J. Sports Med. 2007, 28, 66–71. [Google Scholar] [CrossRef]
- Cappa, D.F.; Behm, D.G. Neuromuscular characteristics of drop and hurdle jumps with different types of landings. J. Strength Cond. Res. 2013, 27, 3011–3020. [Google Scholar] [CrossRef]
- Kossow, A.J.; Ebben, W.P. Kinetic analysis of horizontal plyometric exercise intensity. J. Strength Cond. Res. 2018, 32, 1222–1229. [Google Scholar] [CrossRef]
- Smith, J.P.; Kernozek, T.W.; Kline, D.E.; Wright, G.A. Kinematic and kinetic variations among three depth jump conditions in male NCAA division III athletes. J. Strength Cond. Res. 2011, 25, 94–102. [Google Scholar] [CrossRef]
- Kariyama, Y.; Hobara, H.; Zushi, K. The effect of increasing jump steps on take-off leg joint kinetics in bounding. Int. J. Sports Med. 2018, 30, 661–667. [Google Scholar] [CrossRef]
- Fukashiro, S.; Besier, T.F.; Barrett, R.; Cochrane, J.; Nagano, A.; Lloyd, D.G. Direction control in standing horizontal and vertical jumps. Int. J. Sport Health Sci. 2005, 3, 272–279. [Google Scholar] [CrossRef]
- Jones, S.L.; Caldwell, G.E. Mono-and biarticular muscle activity during jumping in different directions. J. Appl. Biomech. 2003, 19, 205–222. [Google Scholar] [CrossRef]
- Robertson, D.G.; Fleming, D. Kinetics of standing broad and vertical jumping. Can. J. Sport Sci. 1987, 12, 19–23. [Google Scholar] [PubMed]
- Belli, A.; Kyröläinen, H.; Komi, P.V. Moment and power of lower limb joints in running. Int. J. Sports Med. 2002, 23, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Schache, A.G.; Blanch, P.D.; Dorn, T.W.; Brown, N.A.; Rosemond, D.; Pandy, M.G. Effect of running speed on lower limb joint kinetics. Med. Sci. Sports Exerc. 2011, 43, 1260–1271. [Google Scholar] [CrossRef] [PubMed]
- Ito, A.; Fukuda, K.; Kijima, K. Mid-phase movements of Tyson Gay and Asafa Powell in the 100 metres at the 2007 World Championships in Athletics. New Stud. Athlet. 2008, 23, 39–43. [Google Scholar]
- Nagahara, R.; Naito, H.; Miyashiro, K.; Morin, J.B.; Zushi, K. Traditional and ankle-specific vertical jumps as strength-power indicators for maximal sprint acceleration. J. Sports Med. Phys. Fitness 2014, 54, 691–699. [Google Scholar]
- Ae, M.; Tang, H.P.; Yokoi, T. Body segment inertia parameters for Japanese children and athletes. Jpn. J. Sports Sci. 1996, 15, 155–162. [Google Scholar]
- Wells, R.P.; Winter, D.A. Assessment of signal and noise in the kinematics of normal, pathological and sporting gaits. Hum. Locomot. 1980, 1, 92–93. [Google Scholar]
- Lloyd, R.S.; Oliver, J.L.; Hughes, M.G.; Williams, C.A. Reliability and validity of field-based measures of leg stiffness and reactive strength index in youths. J. Sports Sci. 2009, 27, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Young, W. Laboratory strength assessment of athletes. New Stud. Athlet. 1995, 10, 89–96. [Google Scholar] [CrossRef]
- Bosco, C.; Luhtanen, P.; Komi, P.V. A simple method for measurement of mechanical power in jumping. Eur. J. Appl. Physiol. Occup. Physiol. 1983, 50, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.J. An effect size primer: A guide for clinicians and researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef]
- Bezodis, I.N.; Kerwin, D.G.; Salo, A.I. Lower-limb mechanics during the support phase of maximum-velocity sprinting. Med. Sci. Sports Exerc. 2008, 40, 707–715. [Google Scholar] [CrossRef]
- Nagahara, R.; Matsubayashi, T.; Matsuo, A.; Zushi, K. Kinematics of transition during human accelerated sprinting. Biol. Open 2014, 3, 689–699. [Google Scholar] [CrossRef]
- Kariyama, Y.; Hobara, H.; Zushi, K. Differences in take-off leg kinetics between horizontal and vertical single-leg rebound jumps. Sports Biomech. 2017, 16, 187–200. [Google Scholar] [CrossRef]
- Cappa, D.F.; Behm, D.G. Training specificity of hurdle vs. countermovement jump training. J. Strength Cond. Res. 2011, 25, 2715–2720. [Google Scholar] [CrossRef]
Performance Variables | VDJ | 50% HDJ | 75% HDJ | 100% HDJ | Differences | Effect Size Partial η2 |
---|---|---|---|---|---|---|
Jump distance (m) | – | 1.11 ± 0.09 | 1.66 ± 0.13 | 2.21 ± 0.18 | – | – |
Contact time (s) | 0.147 ± 0.019 | 0.148 ± 0.009 | 0.148 ± 0.014 | 0.147 ± 0.016 | n.s. | 0.008 |
Vertical velocity (m/s) | 3.15 ± 0.20 | 3.06 ± 0.19 | 3.02 ± 0.21 | 2.70 ± 0.21 | VDJ,50%,75% > 100% | 0.682 |
Horizontal velocity (m/s) | −0.03 ± 0.18 | 1.56 ± 0.23 | 2.18 ± 0.30 | 3.11 ± 0.30 | VDJ < 50% < 75% < 100% | 0.990 |
Joint Kinetics | VDJ | 50% HDJ | 75% HDJ | 100% HDJ | Differences | Effect Size Partial η2 |
---|---|---|---|---|---|---|
Hip | ||||||
Ecc torque (N·m/kg) | 3.91 ± 1.88 | 3.67 ± 1.43 | 4.81 ± 2.05 | 5.91 ± 2.62 | n.s. | 0.356 |
Con torque (N·m/kg) | 1.38 ± 1.09 | 1.49 ± 0.55 | 1.26 ± 0.49 | 1.10 ± 0.57 | n.s. | 0.093 |
Negative power (W/kg) | −4.40 ± 4.25 | −0.83 ± 2.10 | −0.33 ± 0.83 | 0 ± 0 | VDJ > 50%,75%,100% | 0.422 |
Positive power (W/kg) | 4.19 ± 2.73 | 9.37 ± 2.89 | 11.15 ± 3.91 | 18.51 ± 9.83 | VDJ < 50%,75% < 100% | 0.588 |
Knee | ||||||
Ecc torque (N·m/kg) | 4.23 ± 1.31 | 3.91 ± 1.14 | 4.20 ± 1.21 | 3.76 ± 1.11 | n.s. | 0.016 |
Con torque (N·m/kg) | 4.00 ± 1.27 | 3.90 ± 1.01 | 3.84 ± 0.96 | 3.53 ± 1.19 | n.s. | 0.126 |
Negative power (W/kg) | −14.48 ± 7.67 | −18.98 ± 7.13 | −21.57 ± 8.54 | −23.34 ± 12.13 | VDJ < 75%,100% | 0.307 |
Positive power (W/kg) | 23.18 ± 9.01 | 18.83 ± 5.49 | 18.10 ± 5.77 | 16.27 ± 6.22 | VDJ > 75%,100% | 0.311 |
Ankle | ||||||
Ecc torque (N·m/kg) | 4.57 ± 1.32 | 4.47 ± 0.92 | 4.39 ± 1.08 | 4.17 ± 1.28 | n.s. | 0.048 |
Con torque (N·m/kg) | 4.38 ± 1.22 | 4.39 ± 0.88 | 4.36 ± 0.95 | 4.18 ± 1.08 | n.s. | 0.019 |
Negative power (W/kg) | −41.06 ± 12.66 | −35.93 ± 10.92 | −35.04 ± 11.17 | −37.12 ± 20.11 | VDJ > 50%,75% | 0.088 |
Positive power (W/kg) | 34.21 ± 12.20 | 32.23 ± 9.11 | 32.68 ± 9.34 | 34.29 ± 12.50 | n.s. | 0.022 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kariyama, Y. Effect of Jump Direction on Joint Kinetics of Take-Off Legs in Double-Leg Rebound Jumps. Sports 2019, 7, 183. https://doi.org/10.3390/sports7080183
Kariyama Y. Effect of Jump Direction on Joint Kinetics of Take-Off Legs in Double-Leg Rebound Jumps. Sports. 2019; 7(8):183. https://doi.org/10.3390/sports7080183
Chicago/Turabian StyleKariyama, Yasushi. 2019. "Effect of Jump Direction on Joint Kinetics of Take-Off Legs in Double-Leg Rebound Jumps" Sports 7, no. 8: 183. https://doi.org/10.3390/sports7080183