Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen
Abstract
:1. Introduction
2. Stainless Steel
2.1. Types of Stainless Steel Materials for Cryogenic Application
2.2. Hydrogen Embrittlement of Austenitic Stainless Steel
2.3. Cryogenic Mechanical Properties of Stainless Steel
3. Aluminum Alloy
3.1. Types of Aluminum Alloy for Liquid Hydrogen Storage and Transportation
3.2. Properties of Aluminum Alloy for Liquid Hydrogen Storage and Transportation
4. Titanium Alloy
5. Cryogenic Composites
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, X.; Gu, A.; Wu, X.; Zhou, J.; Liu, B.; Mao, Z. Prospect of high quality development of hydrogen energy industry in China. Sci. Technol. Rev. 2020, 38, 77–93. [Google Scholar]
- Zhang, J.; Meng, J.; Lv, K.; Wang, X. Development status and trend of hydrogen application in China. New Mater. Ind. 2021, 1, 36–39. [Google Scholar]
- Maniaci, D.C. Relative performance of a liquid hydrogen fueled commercial transport. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 7–10 January 2008. [Google Scholar]
- Park, W.S.; Yoo, S.W.; Kim, M.H.; Lee, J.M. Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments. Mater. Des. 2010, 31, 3630–3640. [Google Scholar] [CrossRef]
- DeSisto, T.S.; Carr, L.C. Low temperature mechanical properties of 300 series stainless steel and titanium. Adv. Cryog. Eng. 1961, 557, 577–586. [Google Scholar]
- Mansilla, C. Hydrogen applications: Overview of the key economic issues and perspectives. Hydrog. Supply Chain 2018, 271, 92. [Google Scholar]
- Lynch, S.P. Hydrogen embrittlement (HE) phenomena and mechanisms. Stress Corros. Crack. 2011, 30, 90–130. [Google Scholar]
- Bernstein, I. The role of hydrogen in the embrittlement of iron and steel. Mater. Sci. Eng. 1970, 6, 1–19. [Google Scholar] [CrossRef]
- McLellan, R.; Harkins, C. Hydrogen interactions with metals. Mater. Sci. Eng. 1975, 18, 5–35. [Google Scholar] [CrossRef]
- Hwang, J.-S.; Kim, J.-H.; Kim, S.-K. Effect of PTFE coating on enhancing hydrogen embrittlement resistance of stainless steel 304 for liquefied hydrogen storage system application. Int. J. Hydrogen Energy 2020, 45, 9149–9161. [Google Scholar] [CrossRef]
- Chen, B. Discussion on hydrogen induced brittle fracture of austenitic stainless steel. Metall. Mater. 2020, 40, 165–167. [Google Scholar]
- Lee, D.; Sun, B.; Lee, S.; Ponge, D.; Jägle, E.; Raabe, D. Comparative study of hydrogen embrittlement resistance between additively and conventionally manufactured 304L austenitic stainless steels. Mater. Sci. Eng. A 2021, 803, 140499. [Google Scholar] [CrossRef]
- Queiroga, L.R.; Marcolino, G.F.; Santos, M.; Rodrigues, G.; dos Santos, C.E.; Brito, P. Influence of machining parameters on surface roughness and susceptibility to hydrogen embrittlement of austenitic stainless steels. Int. J. Hydrogen Energy 2019, 44, 29027–29033. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, B.; Wang, J.; Han, E.-H.; Ke, W. Effect of grain refinement on the hydrogen embrittlement of 304 austenitic stainless steel. J. Mater. Sci. Technol. 2019, 35, 2213–2219. [Google Scholar] [CrossRef]
- Fan, Y.; Cui, F.; Lu, L.; Zhang, B. A nanotwinned austenite stainless steel with high hydrogen embrittlement resistance. J. Alloys Compd. 2019, 788, 1066–1075. [Google Scholar] [CrossRef]
- Ueki, S.; Oura, R.; Mine, Y.; Takashima, K. Micro-mechanical characterisation of hydrogen embrittlement in nano-twinned metastable austenitic stainless steel. Int. J. Hydrogen Energy 2020, 45, 27950–27957. [Google Scholar] [CrossRef]
- Huang, S.; Ma, D.; Sheng, J.; Agyenim-Boateng, E.; Zhao, J.; Zhou, J. Effects of laser peening on tensile properties and martensitic transformation of AISI 316L stainless steel in a hydrogen-rich environment. Mater. Sci. Eng. A 2020, 788, 139543. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, H.; Zhao, C.; Xu, L. Effect of Cathodic Protection Potentials on Susceptibility to Hydrogen Embrittlement of E550 Steel. Corros. Sci. Prot. Technol. 2016, 28, 144–148. [Google Scholar]
- Zhou, P.; Li, W.; Li, Y.; Jin, X. The Effect of MoS2 Content on the Protective Performance of Ni-MoS2 Composite Coatings against Hydrogen Embrittlement in High Strength Steel. J. Electrochem. Soc. 2016, 164, D23. [Google Scholar] [CrossRef]
- Xiuqing, X.; Junwei, A.; Chen, W.; Jing, N. Study on the hydrogen embrittlement susceptibility of AISI 321 stainless steel. Eng. Fail. Anal. 2021, 122, 105212. [Google Scholar] [CrossRef]
- Guo, Z.; Ju, Y. Status and problems of cryogenic liquid hydrogen storage. Cryog. Supercond. 2019, 47, 24–32. [Google Scholar]
- Qiu, Z.; Zhang, G.; Wu, Z. Low temperature steel and its application. Petrochem. Equip. Technol. 2004, 25, 43–46. [Google Scholar]
- Duthil, P. Material Properties at Low Temperature. arXiv 2015, arXiv:1501.07100. [Google Scholar]
- Chen, G. Cryogenic Engineering Materials; Zhejiang University Press: Hangzhou, China, 1998. [Google Scholar]
- Brewer, G.D. Hydrogen Aircraft Technology; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Verstraete, D.; Hendrick, P.; Pilidis, P.; Ramsden, K. Hydrogen fuel tanks for subsonic transport aircraft. Int. J. Hydrogen Energy 2010, 35, 11085–11098. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Li, Q.; Li, T. Selection of tank materials. New Technol. New Prod. China 2020, 4, 80–81. [Google Scholar]
- Wang, Z. Long March 5 rocket fuel tank made of aluminum alloy. Nonferrous Met. Process. 2017, 46, 6–9. [Google Scholar]
- Gong, B. The common welding crack and prevent methods in aluminium and aluminium alloy. Light Met. 2012, 9, 66–70. [Google Scholar]
- Jha, A.K.; Murty, S.N.; Diwakar, V.; Kumar, K.S. Metallurgical analysis of cracking in weldment of propellant tank. Eng. Fail. Anal. 2003, 10, 265–273. [Google Scholar] [CrossRef]
- Viswanath, V.; Asraff, A.K.; Jayesh, P.; Thomas, S.M.; Krishnakumar, R. Structural Integrity Assessment of a Propellant tank in Presence of Welding Residual Stresses. Proc. Struct. Integr. 2019, 14, 442–448. [Google Scholar] [CrossRef]
- Peet, M.; Stuwer, A.; Preuss, M.; Withers, P.J. Microstructure mechanical properties and residual stress as a function of welding speed in aluminum AA5083 friction stir welding. Acta Mater. 2003, 5, 4791–4801. [Google Scholar]
- Prabhuraj, P.; Rajakumar, S. Experimental Investigation on Corrosion Behavior of Friction Stir Welded AA7075-T651 Aluminium Alloy under 3.5% wt NaCl Environment; Elsevier BV: Amsterdam, The Netherlands, 2021; Volume 45, pp. 5878–5885. [Google Scholar]
- Jariyaboon, M.; Davenport, A.; Ambat, R.; Connolly, B.; Williams, S.; Price, D. The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024–T351. Corros. Sci. 2007, 49, 877–909. [Google Scholar] [CrossRef]
- Wadeson, D.; Zhou, X.; Thompson, G.; Skeldon, P.; Oosterkamp, L.D.; Scamans, G. Corrosion behaviour of friction stir welded AA7108 T79 aluminium alloy. Corros. Sci. 2006, 48, 887–897. [Google Scholar] [CrossRef]
- Entringer, J.; Meisnar, M.; Reimann, M.; Blawert, C.; Zheludkevich, M.; Dos Santos, J.F. The effect of grain boundary precipitates on stress corrosion cracking in a bobbin tool friction stir welded Al-Cu-Li alloy. Mater. Lett. X 2019, 2, 100014. [Google Scholar] [CrossRef]
- Wu, S.-D.; Cheng, W.-Y.; Yang, J.H.; Yang, C.H.; Liao, S.Y. The corrosion protection study on inner surface from welding of aluminum alloy 7075-T6 hydrogen storage bottle. Int. J. Hydrogen Energy 2016, 41, 570–596. [Google Scholar] [CrossRef]
- Jha, A.K.; Narayanan, P.R.; Sreekumar, K.; Sinha, P.P. Cracking of Al–4.5Zn–1.5Mg aluminium alloy propellant tank—A metallurgical investigation. Eng. Fail. Anal. 2010, 17, 562–570. [Google Scholar] [CrossRef]
- Yan, D.; Guo, Y.; Dong, M.; Wu, H.; Zhang, L. Research and Analysis on characteristics of 2A14 and 2219 aluminum alloys for tank structure. Missile Space Deliv. Technol. 2019, 102–107. [Google Scholar]
- Li, X.; Song, Y.; Lu, Z.; Sun, Y. High frequency energy coupling pulsed TIG welding process on 2219 aluminum alloy. Trans. China Weld. Inst. 2015, 36, 17–20. [Google Scholar]
- Moshtaghi, M.; Safyari, M.; Hojo, T. Effect of solution treatment temperature on grain boundary composition and environmental hydrogen embrittlement of an Al-Zn-Mg-Cu alloy. Vacuum 2021, 184, 109937. [Google Scholar] [CrossRef]
- Kuramoto, S.; Okahana, J.; Kanno, M. Hydrogen assisted intergranular crack propagation during environmental embrittlement in an Al-Zn-Mg-Cu Alloy. Mater. Transcation 2001, 42, 2140–2143. [Google Scholar] [CrossRef] [Green Version]
- Safyari, M.; Moshtaghi, M.; Kuramoto, S. Effect of strain rate on environmental hydrogen embrittlement susceptibility of a severely cold-rolled Al-Cu alloy. Vacuum 2020, 172, 109057. [Google Scholar] [CrossRef]
- Liu, W.; Du, Y. Research status of low temperature titanium alloy. Rare Met. Lett. 2007, 26, 6–10. [Google Scholar]
- Boyer, H. Atlas Of Stress-Strain Curves; ASM International: Materials Park, OH, USA, 2002. [Google Scholar]
- Nagai, K.; Ishikawa, K. Deformation and Fracture Characteristics of Titanium Alloys at Low Temperatures. Tetsu Hagane 1989, 75, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Xu, A.; Wan, H.; Liang, C. Application status and development trend of low temperature titanium alloy. J. Netshape Form. Eng. 2020, 12, 145–156. [Google Scholar]
- Qu, Y.; Yuan, X.; Xie, H.; Niu, Y.; Tao, Q.; Tang, Z. Research and application status and development trend of low temperature titanium alloy. Mech. Eng. Autom. 2009, 1, 189–191. [Google Scholar]
- Yu, Y.; Jiang, P.; Li, S. Development and application of low temperature titanium alloy at home and abroad. Dev. Appl. Mater. 2014, 29, 118–122. [Google Scholar]
- Sun, Q.Y.; Gu, H.C. Tensile and Low-cycle Fatigue Behavior of Commercially Pure Titanium and Ti-5Al2.5Sn Alloy at 293 and 77 K. Mater. Sci. Eng. A 2001, 316, 80–86. [Google Scholar] [CrossRef]
- Ghisi, A.; Mariani, S. Mechanical Characterization of Ti-5Al-2.5Sn ELI Alloy at Cryogenic and Room Temperatures. Int. J. Fract. 2007, 146, 61–77. [Google Scholar] [CrossRef]
- Singh, G.; Bajargan, G.; Datta, R.; Ramamurty, U. Deformation and Strength of Ti-6Al-4V Alloyed with B at Cryogenic Temperatures. Mater. Sci. Eng. A 2014, 611, 45–57. [Google Scholar] [CrossRef]
- Du, Y.; Cai, X.; Yang, G. Analysis of the Relationship between Strain Behavior and Microstructure of CT20 Titanium Alloy at 20 K. Titan Ind. Prog. 2005, 6, 20–23. [Google Scholar]
- Schutz, J.B. Properties of composite materials for cryogenic applications. Cryogenics 1998, 38, 3–12. [Google Scholar] [CrossRef]
- Ma, Z.; Xi, R. Low temperature properties of composite materials. Vac. Cryog. 1985, 2, 22–29. [Google Scholar]
- Liu, K.; Wang, R.; Shi, Y.; Gu, A. Low temperature properties of fiber reinforced polymer matrix composites. Cryog. Eng. 2006, 5, 35–44. [Google Scholar]
- Horiuchi, T.; Ooi, T. Cryogenic properties of composite materials. Cryogenics 1995, 35, 9. [Google Scholar] [CrossRef]
- Sethi, S.; Ray, B.C. Mechanical Behavior of Polymer Composites at Cryogenic Temperatures; Springer Science and Business Media LLC: Berlin, Germany, 2013; pp. 59–113. [Google Scholar]
- Yano, O.; Yamaoka, H. Cryogenic properties of polymers. Prog. Polym. Sci. 1995, 20, 585–613. [Google Scholar] [CrossRef]
- Hohe, J.; Neubrand, A.; Fliegener, S.; Beckmann, C.; Schober, M.; Weiss, K.P.; Appel, S. Performance of fiber reinforced materials under cryogenic conditions—A review. Compos. Part A Appl. Sci. Manuf. 2020, 141, 106226. [Google Scholar] [CrossRef]
- Slifka, A.J.; Smith, D.R. Thermal expansion of an E-glass/vinyl ester composite from 4 to 293 K. Int. J. Thermophys. 1997, 18, 1249–1256. [Google Scholar] [CrossRef]
- Sápi, Z.; Butler, R. Properties of cryogenic and low temperature composite materials—A review. Cryogenics 2020, 111, 103190. [Google Scholar] [CrossRef]
- Gomeza, A.; Smith, H. Liquid hydrogen fuel tanks for commercial aviation: Structural sizing and stress analysis. Aerosp. Sci. Technol. 2019, 95, 105438. [Google Scholar] [CrossRef]
- Sharke, P. H2 Tank Testing. Mech. Eng. Mag. 2004, 126, 20. [Google Scholar]
- Heydenreich, R. Cryotanks in future vehicles. Cryogenics 1998, 38, 125–130. [Google Scholar] [CrossRef]
Alloy Grade | Chemical Composition, % | |||||||
---|---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | Ni | P | S | Other | |
201 | 0.15 | 5.5–7.5 | 1.00 | 16.0–18.0 | 3.5–5.5 | 0.06 | 0.03 | 0.25N |
202 | 0.15 | 7.5–10.0 | 1.00 | 17.0–19.0 | 4.0–6.0 | 0.06 | 0.03 | 0.25N |
205 | 0.12–0.25 | 14.0–15.5 | 1.00 | 16.5–18.0 | 1.0–1.75 | 0.06 | 0.03 | 0.32–0.40N |
301 | 0.15 | 2.0 | 1.00 | 16.0–18.0 | 6.0–8.0 | 0.045 | 0.03 | |
302 | 0.15 | 2.0 | 1.00 | 17.0–19.0 | 8.0–10.0 | 0.045 | 0.03 | |
303 | 0.15 | 2.0 | 1.00 | 17.0–19.0 | 8.0–10.0 | 0.20 | 0.15 | 0.6Mo(b) |
304 | 0.08 | 2.0 | 1.00 | 18.0–20.0 | 8.0–10.5 | 0.045 | 0.03 | |
304L | 0.03 | 2.0 | 1.00 | 18.0–20.0 | 8.0–10.5 | 0.045 | 0.03 | |
304N | 0.08 | 2.0 | 1.00 | 18.0–20.0 | 8.0–10.5 | 0.045 | 0.03 | 0.10–0.16N |
316 | 0.08 | 2.0 | 1.00 | 16.0–18.0 | 10.0–14.0 | 0.045 | 0.03 | 2.0–3.0Mo |
316L | 0.03 | 2.0 | 1.00 | 16.0–18.0 | 10.0–14.0 | 0.045 | 0.03 | 2.0–3.0Mo |
310 | 0.25 | 2.0 | 1.50 | 24.0–26.0 | 19.0–22.0 | 0.045 | 0.03 | |
321 | 0.08 | 2.0 | 1.00 | 17.0–19.0 | 9.0–12.0 | 0.045 | 0.03 | 5 × %CminTi |
Alloy | Chemical Composition, % | |||||||
---|---|---|---|---|---|---|---|---|
Si | Fe | Cu | Mn | Mg | Zn | Cr | Ti | |
1100 | 0.95(Si + Fe) | 0.05–0.4 | 0.05 | |||||
2219 | 0.2 | 0.3 | 5.8–6.8 | 0.2–0.4 | 0.02 | 0.10 | 0.02–0.10 | |
2014 | 0.5–1.2 | 0.7 | 3.9–5.0 | 0.4–1.2 | 0.2–0.8 | 0.25 | 0.15 | |
3003 | 0.6 | 0.7 | 0.05–0.20 | 1.0–1.5 | 0.10 | |||
3004 | 0.3 | 0.7 | 0.25 | 1.0–1.5 | 0.8–1.3 | 0.25 | ||
5083 | 0.4 | 0.4 | 0.1 | 0.4–1.0 | 4.0–4.9 | 0.25 | 0.05–0.25 | 0.15 |
5086 | 0.4 | 0.5 | 0.1 | 0.2–0.7 | 3.5–4.5 | 0.25 | 0.05–0.25 | 0.15 |
5454 | 0.25 | 0.4 | 0.1 | 0.5–1.0 | 2.4–3.0 | 0.25 | 0.05–0.20 | 0.20 |
5456 | 0.25 | 0.4 | 0.1 | 0.5–1.0 | 4.7–5.5 | 0.25 | 0.05–0.20 | 0.20 |
6061 | 0.4–0.8 | 0.7 | 0.15–0.4 | 0.15 | 0.8–1.2 | 0.25 | 0.04–0.35 | 0.15 |
7005 | 0.35 | 0.40 | 0.1 | 0.2-0.7 | 1.0–1.8 | 4.5–5.0 | 0.06–0.20 | 0.01–0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Yang, H.; Tong, L.; Wang, L. Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen. Metals 2021, 11, 1101. https://doi.org/10.3390/met11071101
Qiu Y, Yang H, Tong L, Wang L. Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen. Metals. 2021; 11(7):1101. https://doi.org/10.3390/met11071101
Chicago/Turabian StyleQiu, Yinan, Huan Yang, Lige Tong, and Li Wang. 2021. "Research Progress of Cryogenic Materials for Storage and Transportation of Liquid Hydrogen" Metals 11, no. 7: 1101. https://doi.org/10.3390/met11071101