Viewpoints on Technological Aspects of Advanced High-Strength Bainitic Steels
Abstract
:1. Introduction
2. Medium/High-C Nanostructured Bainitic Steels from Isothermal Holding at Low Temperatures
3. Low/Medium C Content CFB Steels: Flat Products
3.1. A Brief Summary on AHSS for the Automotive Industry
- -
- UTS < 1000 MPa, with a high energy absorption potential, for dynamic loading occurring during car crashes or collisions;
- -
- UTS > 1200 MPa, with a high stiffness, anti-intrusion barrier for the protection of passengers.
- -
- A high-strength grade having 25% elongation and 1500 MPa tensile strength;
- -
- A high-ductility grade having 30% elongation at 1200 MPa tensile strength.
- -
- Prior intercritical treatment, leading to the presence of proeutectoid ferrite;
- -
- Prior quenching below the Ms temperature, leading to the presence of tempered martensite in the final microstructure.
3.2. Advanced High-Strength Bainitic Steels as Flat Products
4. Low/Medium C Content CFB Steels: Transformation on Continuous Cooling
5. Concluding Remarks and Future Trends
Funding
Acknowledgments
Conflicts of Interest
References
- Bhadeshia, H.K.D.H. Bainite in Steels, 2nd ed.; Institute of Materials, Maney Publishing: London, UK, 2001. [Google Scholar]
- Zhang, F.; Yang, Z. Development of and Perspective on High-Performance Nanostructured Bainitic Bearing Steel. Engineering 2019, 5, 319–328. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, F. Nanostructured Bainitic Bearing Steel. ISIJ Int. 2020, 60, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Bhadeshia, H.K.D.H. Steels for bearings. Prog. Mater. Sci. 2012, 57, 268–435. [Google Scholar] [CrossRef]
- Caballero, F.G.; Bhadeshia, H.; Mawella, K.J.A.; Jones, D.G.; Brown, P. Design of novel high strength bainitic steels: Part 2. Mater. Sci. Technol. 2001, 17, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.G.; Bhadeshia, H.; Mawella, K.J.A.; Jones, D.G.; Brown, P. Design of novel high strength bainitic steels: Part 1. Mater. Sci. Technol. 2001, 17, 512–516. [Google Scholar] [CrossRef]
- Caballero, F.G.; Bhadeshia, H.K.D.H.; Mawella, K.J.A.; Jones, D.G.; Brown, P. Very strong low temperature bainite. Mater. Sci. Technol. 2002, 18, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.G.; Bhadeshia, H.K.D.H. Very strong bainite. Curr. Opin. Solid State Mat. Sci. 2004, 8, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mateo, C.; Caballero, F.G.; Bhadeshia, H. Superbainite. A novel very strong bainitic microstructure. Rev. Metal. 2005, 41, 186–193. [Google Scholar]
- Garcia-Mateo, C.; Sourmail, T.; Caballero, F.G.; Smanio, V.; Kuntz, M.; Ziegler, C.; Leiro, A.; Vuorinen, E.; Elvira, R.; Teeri, T. Nanostructured steel industrialisation: Plausible reality. Mater. Sci. Technol. 2014, 30, 1071–1078. [Google Scholar] [CrossRef] [Green Version]
- Morales-Rivas, L.; Caballero, F.G.; Garcia-Mateo, C. Retained Austenite: Stability in a Nanostructured Bainitic Steel. In Encyclopedia of Iron, Steel and Their Alloys, 1st ed.; Rafael Colás, G.E.T., Ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Singh, S.B.; Bhadeshia, H.K.D.H. Estimation of bainite plate-thickness in low-alloy steels. Mater. Sci. Eng. A 1998, 245, 72–79. [Google Scholar] [CrossRef]
- Cornide, J.; Garcia-Mateo, C.; Capdevila, C.; Caballero, F.G. An assessment of the contributing factors to the nanoscale structural refinement of advanced bainitic steels. J. Alloy. Compd. 2013, 577, S43–S47. [Google Scholar] [CrossRef]
- Babu, S.S.; Vogel, S.; Garcia-Mateo, C.; Clausen, B.; Morales-Rivas, L.; Caballero, F.G. Microstructure evolution during tensile deformation of a nanostructured bainitic steel. Scr. Mater. 2013, 69, 777–780. [Google Scholar] [CrossRef] [Green Version]
- Morales-Rivas, L.; Garcia-Mateo, C.; Sourmail, T.; Kuntz, M.; Rementeria, R.; Caballero, F. Ductility of Nanostructured Bainite. Metals 2016, 6, 302. [Google Scholar] [CrossRef]
- Rementeria, R.; Jimenez, J.A.; Allain, S.Y.P.; Geandier, G.; Poplawsky, J.D.; Guo, W.; Urones-Garrote, E.; Garcia-Mateo, C.; Caballero, F.G. Quantitative assessment of carbon allocation anomalies in low temperature bainite. Acta Mater. 2017, 133, 333–345. [Google Scholar] [CrossRef]
- Morales-Rivas, L.; Roelofsb, H.; Hasler, S.; Garcia-Mateo, C.; Caballero, F.G. Detailed characterization of complex banding in air-cooled bainitic steels. J. Min. Metall. Sect. B Metall. 2015, 51, 25–32. [Google Scholar] [CrossRef]
- Rementeria, R.; Morales-Rivas, L.; Kuntz, M.; Garcia-Mateo, C.; Kerscher, E.; Sourmail, T.; Caballero, F.G. On the role of microstructure in governing the fatigue behaviour of nanostructured bainitic steels. Mater. Sci. Eng. A 2015, 630, 71–77. [Google Scholar] [CrossRef]
- Morales-Rivas, L.; Yen, H.W.; Huang, B.M.; Kuntz, M.; Caballero, F.G.; Yang, J.R.; Garcia-Mateo, C. Tensile Response of Two Nanoscale Bainite Composite-Like Structures. JOM 2015, 67, 2223–2235. [Google Scholar] [CrossRef]
- Leiro, A.; Vuorinen, E.; Sundin, K.G.; Prakash, B.; Sourmail, T.; Smanio, V.; Caballero, F.G.; Garcia-Mateo, C.; Elvira, R. Wear of nano-structured carbide-free bainitic steels under dry rolling–sliding conditions. Wear 2013, 298–299, 42–47. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Singh, A. Mechanical properties of nanostructured bainitic steels. Materialia 2021, 15, 101034. [Google Scholar] [CrossRef]
- Zheng, C.; Lv, B.; Zhang, F.; Yang, Z.; Kang, J.; She, L.; Wang, T. A novel microstructure of carbide-free bainitic medium carbon steel observed during rolling contact fatigue. Scr. Mater. 2016, 114, 13–16. [Google Scholar] [CrossRef]
- Zhang, F.C.; Wang, T.S.; Zhang, P.; Zheng, C.L.; Lv, B.; Zhang, M.; Zheng, Y.Z. A novel method for the development of a low-temperature bainitic microstructure in the surface layer of low-carbon steel. Scr. Mater. 2008, 59, 294–296. [Google Scholar] [CrossRef]
- Solano-Alvarez, W.; Pickering, E.J.; Bhadeshia, H.K.D.H. Degradation of nanostructured bainitic steel under rolling contact fatigue. Mater. Sci. Eng. A 2014, 617, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Qin, Y.; Li, X.; Yang, Z.; Zhang, F.; Guo, C.; Long, X.; You, L. Effect of Two-Step Austempering Process on Transformation Kinetics of Nanostructured Bainitic Steel. Materials 2019, 12, 166. [Google Scholar] [CrossRef] [Green Version]
- Eres-Castellanos, A.; Morales-Rivas, L.; Latz, A.; Caballero, F.G.; Garcia-Mateo, C. Effect of ausforming on the anisotropy of low temperature bainitic transformation. Mater. Charact. 2018, 145, 371–380. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Paul, G.; Somani, M.C.; Porter, D.A.; Bracke, L.; Latz, A.; de Andres, C.G.; Caballero, F.G. Transferring nanoscale bainite concept to lower C contents: A perspective. Metals 2017, 7, 159. [Google Scholar] [CrossRef] [Green Version]
- García Mateo, C.; Eres-Castellanos, A.; García Caballero, F.; Latz, A.; Schreiber, S.; Ray, A.; Bracke, L.; Somani, M.; Kaikkonen, P.; Pohjonen, A.; et al. Towards Industrial Applicability of (Medium C) Nanostructured Bainitic Steels (TIANOBAIN); Digital.CSIC. Unidad de Recursos de Información Científica para la Investigación: Madrid, Spain, 2020; Available online: http://hdl.handle.net/10261/217266 (accessed on 20 January 2022).
- Zhao, L.; Qian, L.; Zhou, Q.; Li, D.; Wang, T.; Jia, Z.; Zhang, F.; Meng, J. The combining effects of ausforming and below-Ms or above-Ms austempering on the transformation kinetics, microstructure and mechanical properties of low-carbon bainitic steel. Mater. Des. 2019, 183, 108123. [Google Scholar] [CrossRef]
- Hu, H.; Tian, J.; Xu, G.; Zurob, H.S. New insights into the effects of deformation below-MS on isothermal kinetics of bainitic transformation. J. Mater. Res. Technol. 2020, 9, 15750–15758. [Google Scholar] [CrossRef]
- Kirbiš, P.; Anžel, I.; Rudolf, R.; Brunčko, M. Novel Approach of Nanostructured Bainitic Steels’ Production with Improved Toughness and Strength. Materials 2020, 13, 1220. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.T.; Chang, H.T.; Huang, B.M.; Huang, C.Y.; Yang, J.R. Microstructural characterization of Charpy-impact-tested nanostructured bainite. Mater. Charact. 2015, 107, 63–69. [Google Scholar] [CrossRef]
- Galán, J.; Samek, L.; Verleysen, P.; Verbeken, K.; Houbaert, Y. Advanced high strength steels for automotive industry. Rev. Metal. 2012, 48, 118–131. [Google Scholar] [CrossRef]
- Pavlina, E.J.; Van Tyne, C.J. Correlation of Yield Strength and Tensile Strength with Hardness for Steels. J. Mater. Eng. Perform. 2008, 17, 888–893. [Google Scholar] [CrossRef]
- Cai, M.; Di, H. Advanced High Strength Steels and Their Processes. In Rolling of Advanced High Strength Steels. Theory, Simulation and Practice; Zhao, J., Jiang, Z., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Lee, Y.K.; Han, J. Current opinion in medium manganese steel. Mater. Sci. Technol. 2015, 31, 843–856. [Google Scholar] [CrossRef]
- WorldAutoSteel. Available online: https://www.worldautosteel.org (accessed on 20 January 2022).
- 3rd Generation Steels. Available online: https://ahssinsights.org/metallurgy/steel-grades/3rd-generation-steels/ (accessed on 20 January 2022).
- Murata, T.; Hamamoto, S.; Utsumi, Y.; Yamano, T.; Futamura, Y.; Kimura, T. Characteristics of 1180MPa Grade Cold-Rolled Steel Sheets with Excellent Formability; Kobelco Technology Review, No 35. Online edition; Kobelco: Kobe, Japan, 2017; ISSN 2188-0921. [Google Scholar]
- Hausmann, K.M.A. TRIP-Assisted Thin Sheet Steel with a Bainitic and/or Martensitic Matrix. Ph.D. Thesis, Technischen Universität München, Munich, Germany, 2015. [Google Scholar]
- Rementeria, R.; Caballero, F.G. Cold Rolling and Annealing of Advanced High Strength Steels. In Rolling of Advanced High Strength Steels. Theory, Simulation and Practice; Zhao, J., Jiang, Z., Eds.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Han, D.T.; Xu, Y.B.; Peng, F.; Zou, Y.; Misra, R.D.K. The determining role of pre-annealing on Mn partitioning behavior in medium-Mn-TRIP steel: Experimental and numerical simulation. J. Mater. Sci. 2020, 55, 4437–4452. [Google Scholar] [CrossRef]
- Speer, J.; Matlock, D.K.; De Cooman, B.C.; Schroth, J.G. Carbon partitioning into austenite after martensite transformation. Acta Mater. 2003, 51, 2611–2622. [Google Scholar] [CrossRef]
- Wang, L.; Speer, J.G. Quenching and Partitioning Steel Heat Treatment. Metallogr. Microstruct. Anal. 2013, 2, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Raabe, D.; Sun, B.; Kwiatkowski Da Silva, A.; Gault, B.; Yen, H.-W.; Sedighiani, K.; Thoudden Sukumar, P.; Souza Filho, I.R.; Katnagallu, S.; Jägle, E.; et al. Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels. Metall. Mater. Trans. A 2020, 51, 5517–5586. [Google Scholar] [CrossRef]
- Furukawa, T.; Huang, H.; Matsumura, O. Effects of carbon content on mechanical properties of 5%Mn steels exhibiting transformation induced plasticity. Mater. Sci. Technol. 1994, 10, 964–970. [Google Scholar] [CrossRef]
- Pan, L.; Xiong, J.; Zuo, Z.; Tan, W.; Wang, J.; Yu, W. Study of the stretch-flangeability improvement of dual phase steel. Procedia Manuf. 2020, 50, 761–764. [Google Scholar] [CrossRef]
- Xia, P.; Vercruysse, F.; Celada-Casero, C.; Verleysen, P.; Petrov, R.H.; Sabirov, I.; Molina-Aldareguia, J.M.; Smith, A.; Linke, B.; Thiessen, R.; et al. Effect of alloying and microstructure on formability of advanced high-strength steels processed via quenching and partitioning. Mater. Sci. Eng. A 2022, 831, 142217. [Google Scholar] [CrossRef]
- Morales-Rivas, L.; Gonzalez-Orive, A.; Garcia-Mateo, C.; Hernandez-Creus, A.; Caballero, F.G.; Vazquez, L. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM. Sci. Rep. 2015, 5, 17164. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.G.; Di, H.S.; Misra, R.D.K. Microstructure and mechanical property relationship in a high strength high-Al low-Si hot-dip galvanized steel under quenching and partitioning process. J. Mater. Res. Technol. 2020, 9, 14401–14411. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Y.; Liu, R.; Peng, F.; Gu, X.; Zhang, T.; Hou, X.; Sun, W. Microstructure evolution and mechanical behavior of a novel hot-galvanized Q&P steel subjected to high-temperature short-time overaging treatment. Mater. Sci. Eng. A 2020, 789, 139665. [Google Scholar] [CrossRef]
- Caballero, F.G.; Allain, S.; Puerta-velásquez, J.-D.; Garcia-mateo, C. Exploring Carbide-Free Bainitic Structures for Hot Dip Galvanizing Products. ISIJ Int. 2013, 53, 1253–1259. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Hu, J.; Shan, L.; Wang, C.; Zhao, X.; Xu, W. Characteristics of bainitic transformation and its effects on the mechanical properties in quenching and partitioning steels. Mater. Sci. Eng. A 2021, 803, 140706. [Google Scholar] [CrossRef]
- Gong, W.; Tomota, Y.; Harjo, S.; Su, Y.H.; Aizawa, K. Effect of prior martensite on bainite transformation in nanobainite steel. Acta Mater. 2015, 85, 243–249. [Google Scholar] [CrossRef]
- Zhao, L.; Qian, L.; Meng, J.; Zhou, Q.; Zhang, F. Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels. Scr. Mater. 2016, 112, 96–100. [Google Scholar] [CrossRef]
- Savic, V.; Hector, L.; Singh, H.; Paramasuwom, M.; Basu, U.; Basudhar, A.; Stander, N. Development of a Lightweight Third-Generation Advanced High-Strength Steel (3GAHSS) Vehicle Body Structure. SAE Int. J. Mater. Manuf. 2018, 11, 303–314. [Google Scholar] [CrossRef]
- Hernandez-Duran, E.; Corallo, L.; Ros-Yanez, T.; Castro-Cerda, F.; Petrov, R.H. The Effect of Different Annealing Strategies on the Microstructure Development and Mechanical Response of Austempered Steels. Metals 2021, 11, 1041. [Google Scholar] [CrossRef]
- El-Sherbiny, A.; El-Fawkhry, M.K.; Shash, A.Y.; El-Hossany, T. Replacement of silicon by aluminum with the aid of vanadium for galvanized TRIP steel. J. Mater. Res. Technol. 2020, 9, 3578–3589. [Google Scholar] [CrossRef]
- Hausmann, K.; Krizan, D.; Pichler, A.; Werner, E. Trip-aided bainitic-ferritic sheet steel: A critical assessment of alloy design and heat treatment. In Proceedings of the Materials Science and Technology Conference (MS&T), Montreal, QC, Canada, 27–31 October 2013. [Google Scholar]
- Seyed Mousavi, G.; McDermid, J.R. Selective Oxidation of a C-2Mn-1.3Si (Wt Pct) Advanced High-Strength Steel During Continuous Galvanizing Heat Treatments. Metall. Mater. Trans. A 2018, 49, 5546–5560. [Google Scholar] [CrossRef]
- Van De Putte, T.; Loison, D.; Penning, J.; Claessens, S. Selective Oxidation of a CMnSi Steel during Heating to 1000 °C: Reversible SiO2 Oxidation. Metall. Mater. Trans. A 2008, 39, 2875. [Google Scholar] [CrossRef]
- Speer, J.G.; De Moor, E.; Clarke, A.J. Critical Assessment 7: Quenching and partitioning. Mater. Sci. Technol. 2015, 31, 3–9. [Google Scholar] [CrossRef]
- Buchmayr, B. Critical Assessment 22: Bainitic forging steels. Mater. Sci. Technol. 2016, 32, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Merkel, C.; Engineer, S.; Wewers, B. EZM Mark 20MnCrMo7—A New High-Strength Bainitic Steel. 2014. Available online: https://www.ezm-mark.de/181/EZM-Neuer-Stahl-20MnCrMo7 (accessed on 20 January 2022).
- Sourmail, T.; Smanio, V. Optimisation of the mechanical properties of air cooled bainitic steel components through tailoring of the transformation kinetics. Mater. Sci. Eng. A 2013, 582, 257–261. [Google Scholar] [CrossRef]
- Gramlich, A.; Middleton, A.; Schmidt, R.; Krupp, U. On the Influence of Vanadium on Air-Hardening Medium Manganese Steels for Sustainable Forging Products. Steel Res. Int. 2021, 92, 2000592. [Google Scholar] [CrossRef]
- Silveira, A.C.; Bevilaqua, W.L.; Dias, V.W.; de Castro, P.J.; Epp, J.; Rocha, A.D. Influence of Hot Forging Parameters on a Low Carbon Continuous Cooling Bainitic Steel Microstructure. Metals 2020, 10, 601. [Google Scholar] [CrossRef]
- Królicka, A.; Lesiuk, G.; Radwański, K.; Kuziak, R.; Janik, A.; Mech, R.; Zygmunt, T. Comparison of fatigue crack growth rate: Pearlitic rail versus bainitic rail. Int. J. Fatigue 2021, 149, 106280. [Google Scholar] [CrossRef]
- Das, S.; Haldar, A. Continuously Cooled Ultrafine Bainitic Steel with Excellent Strength–Elongation Combination. Metall. Mater. Trans. A 2014, 45, 1844–1854. [Google Scholar] [CrossRef]
- Xu, F.-Y.; Wang, Y.-W.; Bai, B.-Z.; Fang, H.-S. CCT Curves of Low-Carbon Mn-Si Steels and Development of Water-Cooled Bainitic Steels. J. Iron Steel Res. Int. 2010, 17, 46–50. [Google Scholar] [CrossRef]
- Hasler, S.; Roelofs, H.; Lembke, M.; Caballero, F.G. New air cooled steels with outstanding impact toughness. In Proceedings of the 3rd International Conference on Steels in Cars and Trucks, Salzburg, Austria, 5–9 June 2011. [Google Scholar]
- Sourmail, T.; Otter, L.; Collin, S.; Billet, M.; Philippot, A.; Cristofari, F.; Secordel, P. Direct and indirect decomposition of retained austenite in continuously cooled bainitic steels: Influence of vanadium. Mater. Charact. 2021, 173, 110922. [Google Scholar] [CrossRef]
- Bansal, G.K.; Srivastava, V.C.; Ghosh Chowdhury, S. Role of solute Nb in altering phase transformations during continuous cooling of a low-carbon steel. Mater. Sci. Eng. A 2019, 767, 138416. [Google Scholar] [CrossRef]
- Feng, C.; Fang, H.-S.; Zheng, Y.-K.; Bai, B.-Z. Mn-Series Low-Carbon Air-Cooled Bainitic Steel Containing Niobium of 0.02%. J. Iron Steel Res. Int. 2010, 17, 53–58. [Google Scholar] [CrossRef]
- Chen, X.; Wang, F.; Li, C.; Zhang, J. Dynamic continuous cooling transformation, microstructure and mechanical properties of medium-carbon carbide-free bainitic steel. High Temp. Mater. Processes 2020, 39, 304–316. [Google Scholar] [CrossRef]
- Feng, C.; Bai, B.Z.; Zheng, Y.K.; Fang, H.S. Mn-Series Low Carbon Air Cooling Bainitic Steels Containing Niobium. Mater. Sci. Forum 2010, 638–642, 3038–3043. [Google Scholar] [CrossRef]
- Huang, B.M.; Yang, J.R.; Yen, H.W.; Hsu, C.H.; Huang, C.Y.; Mohrbacher, H. Secondary hardened bainite. Mater. Sci. Technol. 2014, 30, 1014–1023. [Google Scholar] [CrossRef]
- Garcia-Mateo, C.; Morales-Rivas, L.; Caballero, F.G.; Milbourn, D.; Sourmail, T. Vanadium Effect on a Medium Carbon Forging Steel. Metals 2016, 6, 130. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.R.; Gu, H.C. Microstructure and properties of carbide free bainite railway wheels produced by programmed quenching. Mater. Sci. Technol. 2007, 23, 970–974. [Google Scholar] [CrossRef]
- Zhang, M.R.; Gu, H.C. Fracture toughness of nanostructured railway wheels. Eng. Fract. Mech. 2008, 75, 5113–5121. [Google Scholar] [CrossRef]
- Królicka, A.; Żak, A.M.; Caballero, F.G. Enhancing technological prospect of nanostructured bainitic steels by the control of thermal stability of austenite. Mater. Des. 2021, 211, 110143. [Google Scholar] [CrossRef]
- Ruiz-Jimenez, V.; Kuntz, M.; Sourmail, T.; Caballero, F.G.; Jimenez, J.A.; Garcia-Mateo, C. Retained Austenite Destabilization during Tempering of Low-Temperature Bainite. Appl. Sci. 2020, 10, 8901. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Rivas, L. Viewpoints on Technological Aspects of Advanced High-Strength Bainitic Steels. Metals 2022, 12, 195. https://doi.org/10.3390/met12020195
Morales-Rivas L. Viewpoints on Technological Aspects of Advanced High-Strength Bainitic Steels. Metals. 2022; 12(2):195. https://doi.org/10.3390/met12020195
Chicago/Turabian StyleMorales-Rivas, Lucia. 2022. "Viewpoints on Technological Aspects of Advanced High-Strength Bainitic Steels" Metals 12, no. 2: 195. https://doi.org/10.3390/met12020195