Effect of Cu Content on Atomic Positions of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations
Abstract
:1. Introduction
2. Computation Methodology
Alloy | Phase | a (Å) | b (Å) | c (Å) | β (°) | Ref. |
---|---|---|---|---|---|---|
Ti50Ni50 | BCO (Comp.) | 2.94 | 3.997 | 4.936 | 107.0 | [21] |
Ti50Ni50 | B19′-Monoclinic (Exp.) | 2.89 | 4.12 | 4.62 | 96.5 | [27,28] |
Ti50Ni30Cu20 | B19-Orthorhombic (Exp.) | 2.88 | 4.28 | 4.52 | - | [27,28] |
3. Results and Discussion
Alloys | Atomic Coordinate (Ni/Cu) | Atomic Coordinate (Ti) | ||||
---|---|---|---|---|---|---|
x | y | z | x | y | z | |
Ti50Ni50 (Exp.) | 0.0525 | 0.25 | 0.693 | 0.4726 | 0.25 | 0.221 |
Ti50Ni50 (Comp.) | 0.0898 | 0.25 | 0.671 | 0.3518 | 0.25 | 0.215 |
Ti50Ni45Cu5—VCM | 0.0639 | 0.25 | 0.670 | 0.3870 | 0.25 | 0.215 |
Ti50Ni45Cu5—SM | 0.0660 | 0.25 | 0.669 | 0.3851 | 0.25 | 0.228 |
Ti50Ni37.5Cu12.5—VCM | 0.0471 | 0.25 | 0.669 | 0.4026 | 0.25 | 0.213 |
Ti50Ni37.5Cu12.5—SM | 0.0469 | 0.25 | 0.691 | 0.4188 | 0.25 | 0.215 |
Ti50Ni35Cu15—VCM | 0.0349 | 0.25 | 0.671 | 0.4166 | 0.25 | 0.212 |
Ti50Ni35Cu15—SM | 0.0325 | 0.25 | 0.683 | 0.4396 | 0.25 | 0.208 |
Ti50Ni31.25Cu18.75—VCM | 0.0126 | 0.25 | 0.677 | 0.4608 | 0.25 | 0.213 |
Ti50Ni31.25Cu18.75—SM | 0.0117 | 0.25 | 0.679 | 0.4627 | 0.25 | 0.216 |
Ti50Ni30Cu20—VCM | 0.0116 | 0.25 | 0.677 | 0.4620 | 0.25 | 0.212 |
Ti50Ni30Cu20—SM | 0.0057 | 0.25 | 0.684 | 0.4780 | 0.25 | 0.213 |
Ti50Ni25Cu25—VCM | −0.0019 | 0.25 | 0.679 | 0.5064 | 0.25 | 0.212 |
Ti50Ni25Cu25—SM | −0.0002 | 0.25 | 0.682 | 0.5003 | 0.25 | 0.213 |
4. Conclusions
- As a result of Cu addition to TiNi, the shifting of Ti and Ni/Cu atoms along the x-axis is clearly evident, but is minimal along the y and z axes. With increasing Cu content, the distance between two Ni/Cu atoms increases along the x-axis while the Ti atoms become closer, which is responsible for the rotation of the (100) plane, leading to a decrease in the monoclinic angle.
- Due to the similar sizes of Ni and Cu atoms, by introduction of Cu into TiNi, the displacements of both Ti and Ni/Cu atoms along the x-axis are progressive, indicating no dramatic change in TiNiCu martensite crystal structures, but the monoclinic angle decreases gradually until the orthorhombic structure is formed.
- With increasing Cu content, the charge transfer between Ti and Ni/Cu atoms is suggested to be responsible for the observed atomic displacement. The increase of bond length between the Ni/Cu(A) and Ti(B) atoms leads to an increase of lattice parameter b.
- Through revealing the pathway of crystal structure change due to Cu-addition it might help to provide some useful information for understanding the drastic change in transformation hysteresis in TiNiCu alloys and for adjusting the transformation hysteresis through adjusting the chemical content of particular SMAs of interest.
- The results obtained from this research suggest a plausible approach for investigating the effect of alloying on the crystal structure change in SMAs apart from the traditional experimental approach and provide reasonable predictions.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Otsuka, K.; Ren, X. Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 2005, 50, 511–678. [Google Scholar] [CrossRef]
- Frick, C.P.; Ortega, A.M.; Tyber, J.; Gall, K.; Maier, H.J. Multiscale structure and properties of cast and deformation processed polycrystalline NiTi shape-memory alloys. Metall. Mater. Trans. A 2004, 35, 2013–2025. [Google Scholar] [CrossRef]
- Chang, S.-H.; Chiu, W.C. Selective leaching and surface properties of Ti50Ni50−xCux (x = 0–20 at. %) shape memory alloys for biomedical applications. Appl. Surf. Sci. 2015, 324, 106–113. [Google Scholar] [CrossRef]
- Es-Souni, M.; Es-Souni, M.; Fischer-Brandies, H. Assessing the biocompatibility of NiTi shape memory alloys used for medical applications. Anal. Bioanal. Chem. 2005, 381, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Grossmann, C.; Frenzel, J.; Sampath, V.; Depka, T.; Eggeler, G. Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall. Mater. Trans. A 2009, 40, 2530–2544. [Google Scholar] [CrossRef]
- Massalski, T.B.; Murray, J.L.; Bennet, L.H.; Baker, H. Binary Alloy Phase Diagrams; ASM International: Materials Park, OH, USA, 1986. [Google Scholar]
- Saburi, T.; Watanabe, Y.; Nenno, S. Morphological characteristics of the orthorhombic martensite in a shape memory Ti–Ni–Cu alloy. ISIJ Int. 1989, 29, 405–411. [Google Scholar] [CrossRef]
- Nam, T.H.; Saburi, T.; Shimizu, K. Cu-content dependence of shape memory characteristics in Ti–Ni–Cu alloys. Mater. Trans. JIM 1990, 31, 959–967. [Google Scholar] [CrossRef]
- Lin, K.N.; Wu, S.K. Multi-stage transformation in annealed Ni-rich Ti49Ni41Cu10 shape memory alloy. Intermetallics 2010, 18, 87–91. [Google Scholar] [CrossRef]
- Otsuka, K.; Ren, X. Recent developments in the research of shape memory alloys. Intermetallics 1999, 7, 511–528. [Google Scholar] [CrossRef]
- Tang, W.; Sandström, R.; Wei, Z.; Miyazaki, S. Experimental investigation and thermodynamic calculation of the Ti–Ni–Cu shape memory alloys. Metall. Mater. Trans. A 2000, 31, 2423–2430. [Google Scholar] [CrossRef]
- Tadaki, T.; Wayman, C. Electron microscopy studies of martensitic transformations in Ti50Ni50−xCux alloys. Part I. Compositional dependence of one-third reflections from the matrix phase. Metallography 1982, 15, 233–245. [Google Scholar] [CrossRef]
- Strnadel, B.; Ohashi, S.; Ohtsuka, H.; Ishihara, T.; Miyazaki, S. Cyclic stress-strain characteristics of TiNi and TiNiCu shape memory alloys. Mater. Sci. Eng. A 1995, 202, 148–156. [Google Scholar] [CrossRef]
- Strnadel, B.; Ohashi, S.; Ohtsuka, H.; Miyazaki, S.; Ishihara, T. Effect of mechanical cycling on the pseudoelasticity characteristics of TiNi and TiNiCu alloys. Mater. Sci. Eng. A 1995, 203, 187–196. [Google Scholar] [CrossRef]
- Miyazaki, S.; Mizukoshi, K.; Ueki, T.; Sakuma, T.; Liu, Y. Fatigue life of Ti–50 at. % Ni and Ti–40Ni–10Cu (at. %) shape memory alloy wires. Mater. Sci. Eng. A 1999, 273, 658–663. [Google Scholar] [CrossRef]
- Grossmann, C.; Frenzel, J.; Sampath, V.; Depka, T.; Oppenkowski, A.; Somsen, C.; Neuking, K.; Theisen, W.; Eggeler, G. Processing and property assessment of NiTi and NiTiCu shape memory actuator springs. Mater. Werkst. 2008, 39, 499–510. [Google Scholar] [CrossRef]
- Nam, T.H.; Saburi, T.; Kawamura, Y.; Shimizu, K.I. Shape Memory Characteristics Associated With the B2→B19 and B19→B19′ Transformations in a Ti–40Ni–10Cu (at. %) Alloy. Mater. Trans. JIM 1990, 31, 262–269. [Google Scholar] [CrossRef]
- Koch, W.; Holthausen, M.C. A Chemist’s Guide to Density Functional Theory; Wiley-Vch: Weinheim, Germany, 2001. [Google Scholar]
- Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965. [Google Scholar] [CrossRef]
- Huang, X.; Ackland, G.J.; Rabe, K.M. Crystal structures and shape-memory behaviour of NiTi. Nat. Mater. 2003, 2, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Guda, V.; Strachan, K.A. Phase stability and transformations in NiTi from density functional theory calculations. Acta Mater. 2010, 58, 745–752. [Google Scholar] [CrossRef]
- Stott, A.C.; Abel, P.B.; DellaCorte, C.; Pepper, S.V.; Dixon, D.A. Computational Studies of the NiTi Alloy System: Bulk, Supercell, and Surface Calculations. MRS Proc. 2011, 1295, 15–20. [Google Scholar] [CrossRef]
- Stott, A.C.; Brauer, J.I.; Garg, A.; Pepper, S.V.; Abel, P.B.; DellaCorte, C.; Noebe, R.D.; Glennon, G.; Bylaska, E.; Dixon, D.A. Bonding and Microstructural Stability in Ni55Ti45 Studied by Experimental and Theoretical Methods. J. Phys. Chem. C 2010, 114, 19704–19713. [Google Scholar] [CrossRef]
- Gou, L.; Liu, Y.; Ng, T.Y. An investigation on the crystal structures of Ti50Ni50−xCux shape memory alloys based on density functional theory calculations. Intermetallics 2014, 53, 20–25. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.; Joannopoulos, J. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. 2005, 220, 567–570. [Google Scholar]
- Nam, T.H.; Saburi, T.; Nakata, Y.; Shimizu, K. Shape memory characteristics and lattice deformation in Ti–Ni–Cu alloys. Mater. Trans. JIM 1990, 31, 1050–1056. [Google Scholar] [CrossRef]
- Bricknell, R.; Melton, K.; Mercier, O. The structure of NiTiCu shape memory alloys. Metall. Mater. Trans. A 1979, 10, 693–697. [Google Scholar] [CrossRef]
- Rösner, H.; Schloßmacher, P.; Shelyakov, A.; Glezer, A. The influence of coherent ticu plate-like precipitates on the thermoelastic martensitic transformation in melt-spun Ti50Ni25Cu25 shape memory alloys. Acta Mater. 2001, 49, 1541–1548. [Google Scholar] [CrossRef]
- Xie, Z.; Cheng, G.; Liu, Y. Microstructure and texture development in Ti50Ni25Cu25 melt-spun ribbon. Acta Mater. 2007, 55, 361–369. [Google Scholar] [CrossRef]
- Tong, Y.; Liu, Y.; Xie, Z.; Zarinejad, M. Effect of precipitation on the shape memory effect of Ti50Ni25Cu25 melt-spun ribbon. Acta Mater. 2008, 56, 1721–1732. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, Z. Twinning and detwinning of <011> type II twin in shape memory alloy. Acta Mater. 2003, 51, 5529–5543. [Google Scholar] [CrossRef]
- Jhi, S.H.; Ihm, J.; Louie, S.G.; Cohen, M.L. Electronic mechanism of hardness enhancement in transition-metal carbonitrides. Nature 1999, 399, 132–134. [Google Scholar] [CrossRef]
- Zarinejad, M.; Liu, Y.; White, T.J. The crystal chemistry of martensite in NiTiHf shape memory alloys. Intermetallics 2008, 16, 876–883. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gou, L.; Liu, Y.; Ng, T.Y. Effect of Cu Content on Atomic Positions of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations. Metals 2015, 5, 2222-2235. https://doi.org/10.3390/met5042222
Gou L, Liu Y, Ng TY. Effect of Cu Content on Atomic Positions of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations. Metals. 2015; 5(4):2222-2235. https://doi.org/10.3390/met5042222
Chicago/Turabian StyleGou, Liangliang, Yong Liu, and Teng Yong Ng. 2015. "Effect of Cu Content on Atomic Positions of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations" Metals 5, no. 4: 2222-2235. https://doi.org/10.3390/met5042222
APA StyleGou, L., Liu, Y., & Ng, T. Y. (2015). Effect of Cu Content on Atomic Positions of Ti50Ni50−xCux Shape Memory Alloys Based on Density Functional Theory Calculations. Metals, 5(4), 2222-2235. https://doi.org/10.3390/met5042222