Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process
Abstract
:1. Introduction
2. Experiment and Results
3. Discussion
3.1. Discussion on the Influence of Magnetic Force between Reversely Magnetized Micro Metal Particles in Microwave Sintering
3.2. Effect Parameters of the Magnetic Force Influence
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Luo, S.D.; Yang, Y.F.; Schaffer, G.B.; Qian, M. Novel fabrication of titanium by pure microwave radiation of titanium hydride powder. Scr. Mater. 2013, 69, 69–72. [Google Scholar] [CrossRef]
- Demirskyi, D.; Cheng, J.; Agrawal, D.; Ragulya, A. Densification and grain growth during microwave sintering of titanium diboride. Scr. Mater. 2013, 69, 610–613. [Google Scholar] [CrossRef]
- Thuault, A.; Savary, E.; Hornez, J.C.; Moreau, G.; Descamps, M.; Marinel, S.; Leriche, A. Improvement of the hydroxyapatite mechanical properties by direct microwave sintering in single mode cavity. J. Eur. Ceram. Soc. 2014, 34, 1865–1871. [Google Scholar] [CrossRef]
- Upadhyaya, A.; Tiwari, S.K.; Mishra, P. Microwave sintering of W–Ni–Fe alloy. Scr. Mater. 2007, 56, 5–8. [Google Scholar] [CrossRef]
- Roy, R.; Agrawal, D.; Cheng, J.; Gedevanishvili, S. Full sintering of powdered-metal bodies in a microwave field. Nature 1999, 399, 668–670. [Google Scholar]
- Savary, E.; Marinel, S.; Gascoin, F.; Kinemuchi, Y.; Pansiot, J.; Retoux, R. Peculiar effects of microwave sintering on ZnO based varistors properties. J. Alloy. Compd. 2011, 509, 6163–6169. [Google Scholar] [CrossRef]
- Rybakov, K.I.; Semenov, V.E.; Link, G.; Thumm, M. Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field. J. Appl. Phys. 2007, 101, 084915. [Google Scholar] [CrossRef]
- Janney, M.A.; Kimrey, H.D.; Allen, W.R.; Kiggans, J.O. Enhanced diffusion in sapphire during microwave heating. J. Mater. Sci. 1997, 32, 1347–1355. [Google Scholar] [CrossRef]
- Asoka-Kumar, P.; O′brien, K.; Lynn, K.G.; Simpson, P.J.; Rodbell, K.P. Detection of current-induced vacancies in thin aluminum-copper lines using positrons. Appl. Phys. Lett. 1996, 68, 406–408. [Google Scholar] [CrossRef]
- Xu, F.; Xiao, Y.; Hu, X.F.; Li, Y.C.; Liu, W.C.; Dong, B. In situ investigation of Al–Ti mixed metal system microwave sintering by synchrotron radiation computed tomography. J. Instrum. 2016, 11, C02074. [Google Scholar] [CrossRef]
- Ahn, J.H.; Lee, J.N.; Kim, Y.C.; Ahn, B.T. Microwave-induced low-temperature crystallization of amorphous Si thin films. Curr. Appl. Phys. 2002, 2, 135–139. [Google Scholar] [CrossRef]
- Birnboim, A.; Calame, J.P.; Carmel, Y. Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing. J. Appl. Phys. 1999, 85, 478–482. [Google Scholar] [CrossRef]
- Rybakov, K.I.; Olevsky, E.A.; Semenov, V.E. The microwave ponderomotive effect on ceramic sintering. Scr. Mater. 2012, 66, 1049–1052. [Google Scholar] [CrossRef]
- Xu, F.; Dong, B.; Hu, X.F.; Wang, Y.; Liu, W.; Li, Y. Discussion on magnetic-induced polarization Ampere’s force by in situ observing the special particle growth of alumina during microwave sintering. Ceram. Int. 2016, 42, 8296–8302. [Google Scholar] [CrossRef]
- Badev, A.; Heuguet, R.; Marinel, S. Induced electromagnetic pressure during microwave sintering of ZnO in magnetic field. J. Eur. Ceram. Soc. 2013, 33, 1185–1194. [Google Scholar] [CrossRef]
- Grupp, R.; Nöthe, M.; Kieback, B.; Banhart, J. Cooperative material transport during the early stage of sintering. Nat. Commun. 2011, 2, 298. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, Y.C.; Hu, X.F.; Niu, Y.; Zhao, J.; Zhang, Z. In situ investigation of metal’s microwave sintering. Mater. Lett. 2012, 67, 162–164. [Google Scholar] [CrossRef]
- Xu, F.; Dong, B.; Hu, X.; Xiao, Y.; Wang, Y. In situ investigation on rapid microstructure evolution in extreme complex environment by developing a new AFBP-TVM sparse tomography algorithm from original CS-XPCMT. Opt. Lasers Eng. 2016. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using Matlab; Publishing House of Electronics Industry: Beijing, China, 2005; pp. 315–317. [Google Scholar]
- Edward, M.P.; David, J.M. Electricity and Magnetism, 3rd ed.; Cambridge University Press: New York, NY, USA, 2013; pp. 536–550. [Google Scholar]
- Yan, M.; Peng, X.L. Magnetism Fundamental and Magnetic Materials; Zhejiang University Press: Hangzhou, China, 2006; pp. 7–8. [Google Scholar]
Region | Curvature/Pixel | Neck Growth/Pixel |
---|---|---|
A1 | 12 | 23 |
A2 | 353 | 50 |
B1 | 14 | 24 |
B2 | 391 | 73 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Xu, F.; Dong, B.; Liu, W.; Hu, X. Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process. Metals 2017, 7, 47. https://doi.org/10.3390/met7020047
Xiao Y, Xu F, Dong B, Liu W, Hu X. Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process. Metals. 2017; 7(2):47. https://doi.org/10.3390/met7020047
Chicago/Turabian StyleXiao, Yu, Feng Xu, Bo Dong, Wenchao Liu, and Xiaofang Hu. 2017. "Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process" Metals 7, no. 2: 47. https://doi.org/10.3390/met7020047
APA StyleXiao, Y., Xu, F., Dong, B., Liu, W., & Hu, X. (2017). Discussion on the Local Magnetic Force between Reversely Magnetized Micro Metal Particles in the Microwave Sintering Process. Metals, 7(2), 47. https://doi.org/10.3390/met7020047