Hydrogen Evolution Reaction Property in Alkaline Solution of Molybdenum Disulfide Modified by Surface Anchor of Nickel–Phosphorus Coating
Abstract
:1. Introduction
2. Experimental Details
2.1. Material
2.2. Preparation and Pretreatment of MoS2
2.3. Synthesis of Ni–P/MoS2 Composites
2.4. Characterization
2.5. Electrochemical Measurements
3. Results and Discussion
3.1. Characterizations of Ni–P/MoS2 Composites
3.1.1. X-ray Diffraction (XRD) Analysis
3.1.2. Scanning Electron Microscope (SEM) and Energy Dispersive Spectrometry (EDS)
3.1.3. X-ray Photoelectron Spectroscopy (XPS)
3.2. Hydrogen Evolution Reaction (HER) Performance of the Ni–P/MoS2 Composite
3.2.1. Linear Sweep Voltammetry (LSV)
3.2.2. Tafel Polarization
3.2.3. Cycle Voltammograms (CV)
3.2.4. Electrochemical Impedance Spectroscopy (EIS)
3.3. HER Stability of the Ni–P/MoS2 Hybrid Composites
4. Conclusions
- (1)
- The mixed crystal features for both Ni–LP/MoS2 and Ni–MP/MoS2, and the amorphous characteristic for Ni–HP/MoS2 are validated. The phosphorous content of Ni–P coating shows a remarkable influence on the crystallinity and the morphology of the Ni–P/MoS2 composite. The anchor of Ni–P coatings on the surface of MoS2 is helpful in the enhancement of its HER property, the fabricated Ni–P/MoS2 composite shows a more remarkable HER activity than the pure MoS2.
- (2)
- Among the three Ni–P/MoS2 composites, the HER performance of Ni–MP/MoS2 sample is higher than those of other two samples, which is validated by positive onset potential (~320 mV), large cathodic current (100 mA/cm2 at η = −70 mV vs. RHE), and small Tafel slope (~57 mV/decade).
- (3)
- The excellent HER property of Ni–MP/MoS2 composite can be due to the excellent conductivity of Ni–MP coating, as well as the coexistence of some nickel phosphides.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Wang, D.Z.; Pan, Z.; Wu, Z.Z.; Wang, Z.P.; Liu, Z.H. Hydrothermal synthesis of MoS2 nanoflowers as highly efficient hydrogen evolution reaction catalysts. J. Power Sources 2014, 264, 229–234. [Google Scholar] [CrossRef]
- Liu, N.; Yang, L.C.; Wang, S.N.; Zhong, Z.W.; He, S.N.; Yang, X.Y.; Gao, Q.S.; Tang, Y. Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution. J. Power Sources 2015, 275, 588–594. [Google Scholar] [CrossRef]
- Min, S.X.; Lu, G.X. Sites for high efficient photocatalytic hydrogen evolution on a limited-layered MoS2 cocatalyst confined on graphene sheets-the role of graphene. J. Phys. Chem. C 2012, 116, 25415–25424. [Google Scholar] [CrossRef]
- Dang, H.F.; Qiu, Y.F.; Cheng, Z.Y.; Yang, W.; Wu, H.Y.; Fan, H.B.; Dong, X.F. Hydrothermal preparation and characterization of nanostructured CNTs/ZnFe2O4 composites for solar water splitting application. Ceram. Int. 2016, 42, 10520–10525. [Google Scholar] [CrossRef]
- Komova, O.V.; Kayl, N.L.; Odegova, G.V.; Netskina, O.V.; Simagina, V.I. Destabilization of NH3BH3 by water during hydrothermolysis as a key factor in the high hydrogen evolution rates. Int. J. Hydrog. Energy 2016, 41, 17484–17495. [Google Scholar] [CrossRef]
- Frame, F.A.; Osterloh, F.E. CdSe–MoS2: A quantum size-confined photocatalyst for hydrogen evolution from water under visible light. J. Phys. Chem. C 2010, 114, 10628–10633. [Google Scholar] [CrossRef]
- Cheng, R.L.; Zhang, L.X.; Fan, X.Q.; Shi, J.L. One-step construction of FeOx modified g–C3N4 for largely enhanced visible-light photocatalytic hydrogen evolution. Carbon 2016, 101, 62–70. [Google Scholar] [CrossRef]
- Popczun, E.J.; McKone, J.R.; Read, C.G.; Read, C.G.; Biacchi, A.J.; Wiltrout, A.M.; Lewis, N.S.; Schaak, R.E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270. [Google Scholar] [CrossRef] [PubMed]
- Voiry, D.; Yamaguchi, H.; Li, J.W.; Silva, R.; Alves, D.C.; Fujita, T.; Chen, M.W.; Asefa, T.; Shenoy, V.B.; Eda, G.; et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.L.; Xu, J.B.; Yan, K.Y.; Wang, H.; Wang, Z.L.; Yang, S.H. Space-confined growth of MoS2 nanosheets within graphite: The layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction. Chem. Mater. 2014, 26, 2344–2353. [Google Scholar] [CrossRef]
- Liu, Y.R.; Hu, W.H.; Li, X.; Dong, B.; Shang, X.; Han, G.Q.; Chai, Y.M.; Liu, Y.Q.; Liu, C.G. Facile one-pot synthesis of CoS2–MoS2/CNTs as efficient electrocatalyst for hydrogen evolution reaction. Appl. Surf. Sci. 2016, 384, 51–57. [Google Scholar] [CrossRef]
- Tsai, C.; Abild-Pedersen, F.; Nørskov, J.K. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014, 14, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Jing, Y.; Ortiz-Quiles, E.O.; Cabrera, C.R.; Chen, Z.F.; Zhou, Z. Layer-by-layer hybrids of MoS2 and reduced graphene oxide for lithium ion batteries. Electrochim. Acta 2014, 147, 392–400. [Google Scholar] [CrossRef]
- Liang, T.; Sawyer, W.G.; Perry, S.S.; Sinnott, S.B.; Phillpot, S.R. Energetics of oxidation in MoS2 nanoparticles by density functional theory. J. Phys. Chem. C 2011, 115, 10606–10616. [Google Scholar] [CrossRef]
- Xie, J.F.; Zhang, J.J.; Li, S.; Grote, F.B.; Zhang, X.D.; Zhang, H.; Wang, R.X.; Lei, Y.; Pan, B.C.; Xie, Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135, 17881–17888. [Google Scholar] [CrossRef] [PubMed]
- Lukowski, M.A.; Daniel, A.S.; Meng, F.; Forticaux, A.; Li, L.S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277. [Google Scholar] [CrossRef] [PubMed]
- Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M.; Asefa, T. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.Z.; Fang, B.Z.; Wang, Z.P.; Wang, C.L.; Liu, Z.H.; Liu, F.Y.; Wang, W.; Alfantazi, A.; Wang, D.Z.; Wilkinson, D.P. MoS2 nanosheets: A designed structure with high active site density for the hydrogen evolution reaction. ACS Catal. 2013, 3, 2101–2107. [Google Scholar] [CrossRef]
- Wang, H.T.; Lu, Z.Y.; Kong, D.S.; Sun, J.; Hymel, T.M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947. [Google Scholar] [CrossRef] [PubMed]
- Bian, X.J.; Zhu, J.; Liao, L.; Scanlon, M.D.; Ge, P.Y.; Ji, C.; Girault, H.H.; Liu, B.H. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochem. Commun. 2012, 22, 128–132. [Google Scholar] [CrossRef]
- Chen, Z.B.; Cummins, D.; Reinecke, B.N.; Clark, E.; Sunkara, M.K.; Jaramillo, T.F. Core-shell MoO3–MoS2 nanowires for hydrogen evolution: A functional design for electrocatalytic materials. Nano Lett. 2011, 11, 4168–4175. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.G.; Wang, H.L.; Xie, L.M.; Liang, Y.Y.; Hong, G.S.; Dai, H.J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296–7299. [Google Scholar] [CrossRef] [PubMed]
- Li, X.D.; Yu, S.; Wu, S.Q.; Wen, Y.H.; Zhou, S.; Zhu, Z.Z. Structural and electronic properties of superlattice composed of graphene and monolayer MoS2. J. Phys. Chem. C 2013, 117, 15347–15353. [Google Scholar] [CrossRef]
- Zhang, J.M.; Zhao, L.; Liu, A.P.; Li, X.Y.; Wu, H.P.; Lu, C.D. Three-dimensional MoS2/rGO hydrogel with extremely high double-layer capacitance as active catalyst for hydrogen evolution reaction. Electrochim. Acta 2015, 182, 652–658. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, N.; Chen, Y.J.; Lin, Y.; Li, Y.P.; Liu, Y.Q.; Liu, C.G. Nickel phosphide nanoparticles-nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity. J. Power Sources 2015, 297, 45–52. [Google Scholar] [CrossRef]
- Song, L.Z.; Wang, X.L.; Wen, F.S.; Niu, L.J.; Shi, X.M.; Yan, J.Y. Hydrogen evolution reaction performance of the molybdenum disulfide/nickel–phosphorus composites in alkaline solution. Int. J. Hydrog. Energy 2016, 41, 18942–18952. [Google Scholar] [CrossRef]
- Liu, Q.; Gu, S.; Li, C.M. Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water. J. Power Sources 2015, 299, 342–346. [Google Scholar] [CrossRef]
- Yu, Q.Y.; Zeng, Z.X.; Zhao, W.J.; Ma, Y.C.; Wu, X.D.; Xue, Q.J. Patterned Ni–P alloy films prepared by “Reducing-Discharging” process and the hydrophobic property. ACS Appl. Mater. Interfaces 2014, 6, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Skeldon, P.; Thompson, G.E. XPS studies of MoS2 formation from ammonium tetrathiomolybdate solutions. Surf. Coat. Technol. 1997, 91, 200–207. [Google Scholar] [CrossRef]
- Koroteev, V.O.; Bulusheva, L.G.; Asanov, I.P.; Shlyakhova, E.V.; Vyalikh, D.V.; Okotrub, A.V. Charge transfer in the MoS2/carbon nanotube composite. J. Phys. Chem. C 2011, 115, 21199–21204. [Google Scholar] [CrossRef]
- Benck, J.D.; Chen, Z.B.; Kuritzky, L.Y.; Forman, A.J.; Jaramillo, T.F. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal. 2012, 2, 1916–1923. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Wik, S.D.; Cavell, R.G.; Mar, A. Examination of the bonding in binary transition-metal monophosphides MP (M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy. Inorg. Chem. 2005, 44, 8988–8998. [Google Scholar] [CrossRef] [PubMed]
- Cecilia, J.A.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Jiménez-López, A. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene. J. Catal. 2009, 263, 4–15. [Google Scholar] [CrossRef]
- Liu, Y.R.; Hu, W.H.; Li, X.; Dong, B.; Shang, X.; Han, G.Q.; Chai, Y.M.; Liu, Y.Q.; Liu, C.G. One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction. Appl. Surf. Sci. 2016, 383, 276–282. [Google Scholar] [CrossRef]
- Mech, K.; Żabiński, P.; Kowalik, R.; Tokarski, T.; Fitzner, K. Electrodeposition of Co–Pd alloys from ammonia solutions and their catalytic activity for hydrogen evolution reaction. J. Appl. Electrochem. 2014, 44, 97–103. [Google Scholar] [CrossRef]
- Paseka, I. Hydrogen evolution reaction on Ni–P alloys: The internal stress and the activities of electrodes. Electrochim. Acta 2008, 53, 4537–4543. [Google Scholar] [CrossRef]
- Manazoğlu, M.; Hapçı, G.; Orhan, G. Effect of electrolysis parameters of Ni–Mo alloy on the electrocatalytic activity for hydrogen evaluation and their stability in alkali medium. J. Appl. Electrochem. 2016, 46, 191–204. [Google Scholar] [CrossRef]
Samples | OVP/(mV) | b/(mV/decade) | β | n/(×10−8 mol/cm2) |
---|---|---|---|---|
MoS2 | −320 | 144 | 0.41 | 0.97 |
20 wt % Pt/C | 360 | 52 | 1.14 | 16.8 |
Ni–LP/MoS2 | −155 | 108 | 0.55 | 1.94 |
Ni–MP/MoS2 | 320 | 57 | 1.04 | 2.69 |
Ni–HP/MoS2 | 300 | 70 | 0.84 | 2.28 |
Samples | Rs/(Ω·cm2) | Rct/(Ω·cm2) | m | Cdl/(×10−4·F/cm2) | j0/(×10−5·A/cm2) |
---|---|---|---|---|---|
MoS2 | 0.46 | 3042 | 0.850 | 2.84 | 0.84 |
Pt/C | 0.42 | 19.2 | 0.849 | 51.2 | 133 |
Ni–LP/MoS2 | 0.43 | 2758 | 0.845 | 6.41 | 0.93 |
Ni–MP/MoS2 | 0.60 | 43.2 | 0.871 | 46.0 | 59.4 |
Ni–HP/MoS2 | 0.50 | 239.3 | 0.835 | 7.85 | 8.75 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Song, L.; Yan, J.; Kang, N.; Zhang, Y.; Wang, W. Hydrogen Evolution Reaction Property in Alkaline Solution of Molybdenum Disulfide Modified by Surface Anchor of Nickel–Phosphorus Coating. Metals 2017, 7, 211. https://doi.org/10.3390/met7060211
He J, Song L, Yan J, Kang N, Zhang Y, Wang W. Hydrogen Evolution Reaction Property in Alkaline Solution of Molybdenum Disulfide Modified by Surface Anchor of Nickel–Phosphorus Coating. Metals. 2017; 7(6):211. https://doi.org/10.3390/met7060211
Chicago/Turabian StyleHe, Jun, Laizhou Song, Jiayun Yan, Ning Kang, Yingli Zhang, and Wei Wang. 2017. "Hydrogen Evolution Reaction Property in Alkaline Solution of Molybdenum Disulfide Modified by Surface Anchor of Nickel–Phosphorus Coating" Metals 7, no. 6: 211. https://doi.org/10.3390/met7060211
APA StyleHe, J., Song, L., Yan, J., Kang, N., Zhang, Y., & Wang, W. (2017). Hydrogen Evolution Reaction Property in Alkaline Solution of Molybdenum Disulfide Modified by Surface Anchor of Nickel–Phosphorus Coating. Metals, 7(6), 211. https://doi.org/10.3390/met7060211