Review: Improving the Impact of Plant Science on Urban Planning and Design
Abstract
:1. Introduction
1.1. Introduction to Biomimicry
1.2. Introduction to the Integration of Plant Science and Urban Design
2. How Can We Utilise Plants’ Adaptations for Light Capture, Use, and Avoidance in Urban Design?
2.1. Light Capture
2.2. Solar Tracking
2.3. Light Avoidance
2.4. Light Modelling
3. How Can We Use Plants Adaptations to Mitigate Undesirable Temperature Fluctuations?
3.1. Thermoregulation
3.2. Green Coverings and Thermoregulation
3.3. Passive Cooling and Urban Heat Island Mitigation
4. How Can We Utilise Plants to Improve the Management of Water in Urban Environments?
4.1. Sustainable Urban Drainage Systems (SuDs)—Building Coverings
4.2. SuDs—Ground Coverings
5. What Role Can Plants Play in Managing Greenhouse Gas Emissions in Urban Areas?
5.1. CO2 and Global Warming
5.2. Carbon Fixation in Urban Areas
5.3. Conversion of CO2 to Energy
6. Conclusions
- Further develop passive, adaptable smart surface (glass/panels) technologies based on the ability of plants to selectively absorb, focus, avoid, or scatter light.
- Learn from leaf angle and orientation to design fenestration to optimise light distribution in internal spaces throughout the day
- Adopt a co-modelling approach between urban modelling and functional structural plant modelling to map functional relationships between urban components in terms of light use.
- Identify the balance between solar heat gain and shading to manage the internal environment through building envelope greening in both summer and winter across a variety of climates.
- Understand the contributions of different elements of constructed ecosystems like green roofs (species, microbial interactions, nutrient cycling) to their ability to maintain vegetative coverage.
- Quantify the contribution of plant parameters, particularly leaf area index, vertical canopy thickness, and total canopy coverage to the thermal properties of green infrastructure in the urban environment.
- Develop a better understanding of the vegetative structures that result in the most effective interception and evapotranspiration of water in urban landscapes.
- Further innovation in the collection and storage of water on buildings, either within vegetated systems, for use by them, or to slow down storm water run-off.
- Optimise plant species for SuDs schema, including permeable grassed surfaces and specifically designed drainage areas, and the effective contribution of different green infrastructure elements under different storm water scenarios for urban water planning.
- Better understand how plants are affected by elevated CO2 (present in urban environments) through the study of naturally insensitive species such as pine and beech, in response to climate change projections.
- Develop more standardised methods for valuing the contribution of urban trees and plants to carbon stocks, and their fluctuations, to design low maintenance spaces to maximise carbon fixation and storage. Couple empirical measurement with technology (i.e., LIDAR).
- Further develop biomaterials for the capture and storage of carbon in building structures.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision, Highlights; United Nations: New York, NY, USA, 2014. [Google Scholar]
- Dunn, A.D. Siting green infrastructure: Legal and policy solutions to alleviate urban poverty and promote healthy communities. Boston Coll. Environ. Aff. Law Rev. 2010, 37, 41. [Google Scholar]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Hahs, A.K. The future of urban biodiversity research: Moving beyond the ‘low-hanging fruit’. Urban Ecosyst. 2013, 16, 397–409. [Google Scholar] [CrossRef]
- Turrini, T.; Knop, E. A landscape ecology approach identifies important drivers of urban biodiversity. Glob. Chang. Biol. 2015, 21, 1652–1667. [Google Scholar] [CrossRef] [PubMed]
- Beninde, J.; Veith, M.; Hochkirch, A. Biodiversity in cities needs space: A meta-analysis of factors determining intra-urban biodiversity variation. Ecol. Lett. 2015, 18, 581–592. [Google Scholar] [CrossRef] [PubMed]
- Tzoulas, K.; James, P. Making biodiversity measures accessible to non-specialists: An innovative method for rapid assessment of urban biodiversity. Urban Ecosyst. 2009, 13, 113–127. [Google Scholar] [CrossRef]
- Cameron, R.W.; Blanuša, T. Green infrastructure and ecosystem services—Is the devil in the detail? Ann. Bot. 2016. [Google Scholar] [CrossRef] [PubMed]
- Benyus, J.M. Biomimicry; William Morrow: New York, NY, USA, 1997. [Google Scholar]
- Pawlyn, M. Biomimicry in Architecture; Riba Publishing: London, UK, 2011. [Google Scholar]
- Aziz, M.S. Biomimicry as an approach for bio-inspired structure with the aid of computation. Alex. Eng. J. 2015, 55, 707–714. [Google Scholar] [CrossRef]
- Flynn, A.; Yu, L.; Feindt, P.; Chen, C. Eco-cities, governance and sustainable lifestyles: The case of the sino-singapore tianjin eco-city. Habitat Int. 2016, 53, 78–86. [Google Scholar] [CrossRef]
- Rapoport, E. Utopian visions and real estate dreams: The eco-city past, present and future. Geogr. Compass 2014, 8, 137–149. [Google Scholar] [CrossRef]
- Calfapietra, C.; Peñuelas, J.; Niinemets, Ü. Urban plant physiology: Adaptation-mitigation strategies under permanent stress. Trends Plant Sci. 2015, 20, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.S.; Hahs, A.K.; Vesk, P.A. Urbanisation, plant traits and the composition of urban floras. Perspect. Plant Ecol. Evol. Syst. 2015, 17, 78–86. [Google Scholar] [CrossRef]
- Zari, M.P. Biomimetic approaches to architectural design for increased sustainability. Available online: http://www.cmnzl.co.nz/assets/sm/2338/61/16300MaibrittPedersenZari.pdf (accessed on 10 November 2016).
- Hopfe, C.J.; McLeod, R.S. The Passivhaus Designer’s Manual: A Technical Guide to Low and Zero Energy Buildings; Routledge: Abingdon, UK, 2015. [Google Scholar]
- Francis, A.; Wheeler, J. One Planet Living in the Suburbs; WWF: Godalming, UK, 2006. [Google Scholar]
- Steemers, K. Energy and the city: Density, buildings and transport. Energy Build. 2003, 35, 3–14. [Google Scholar] [CrossRef]
- Bunster-Ossa, I.F. Sponge city. In Resilience in Ecology and Urban Design; Springer: Berlin/Heidelberg, Germany, 2013; pp. 301–306. [Google Scholar]
- Freedman, J. Crowding and Behavior: The Psychology of High-Density Living; Viking: New York, NY, USA, 1975. [Google Scholar]
- Hui, S.C. Low energy building design in high density urban cities. Renew. Energy 2001, 24, 627–640. [Google Scholar] [CrossRef]
- Pieterse, C.M.J.; Dicke, M. Plant interactions with microbes and insects: From molecular mechanisms to ecology. Trends Plant Sci. 2007, 12, 564–569. [Google Scholar] [CrossRef] [PubMed]
- Saikkonen, K.; Wäli, P.; Helander, M.; Faeth, S.H. Evolution of endophyte-plant symbioses. Trends Plant Sci. 2004, 9, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Heil, M.; McKey, D. Protective ant-plant interactions as model systems in ecological and evolutionary research. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 425–453. [Google Scholar] [CrossRef]
- Heil, M.; Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 2010, 25, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Grimmond, C.S.B.; Grossman-Clarke, S.; Loridan, T.; Manning, K.W.; Martilli, A.; Miao, S.; et al. The integrated wrf/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Hallé, F.; Oldeman, R.A.; Tomlinson, P.B. Opportunistic Tree Architecture; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- See, L.; Perger, C.; Duerauer, M.; Fritz, S.; Bechtel, B.; Ching, J.; Alexander, P.; Mills, G.; Foley, M.; O’Connor, M. Developing a community-based worldwide urban morphology and materials database (wudapt) using remote sensing and crowdsourcing for improved urban climate modelling. In Proceedings of the IEEE 2015 Joint Urban Remote Sensing Event (JURSE), Lausanne, Switzerland, 30 March–1 April 2015; pp. 1–4.
- Feddema, J.; Mills, G.; Ching, J. Demonstrating the added value of wudapt for urban modelling. In Proceedings of the ICUC9, Meteo France, Toulouse, France, 20–24 July 2015.
- Eames, M.; Dixon, T.; May, T.; Hunt, M. City futures: Exploring urban retrofit and sustainable transitions. Build. Res. Inf. 2013, 41, 504–516. [Google Scholar] [CrossRef]
- Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M.; Lindholm, D. A solar irradiance climate data record. Bull. Am. Meteorol. Soc. 2015. [Google Scholar] [CrossRef]
- Xing, Y.; Hewitt, N.; Griffiths, P. Zero carbon buildings refurbishment––A hierarchical pathway. Renew. Sustain. Energy Rev. 2011, 15, 3229–3236. [Google Scholar] [CrossRef]
- Badarnah, L.; Knaack, U. Organizational features in leaves for application in shading systems for building envelopes. In Comparing Design and Nature with Science and Engineering, Proceedings of the Fourth Design & Nature Conference, Algarve, Portugal, 24–26 June 2008; pp. 87–96.
- Barile, C.J.; Slotcavage, D.J.; McGehee, M.D. Polymer-nanoparticle electrochromic materials that selectively modulate visible and near-infrared light. Chem. Mater. 2016, 28, 1439–1445. [Google Scholar] [CrossRef]
- Gkikas, D.; Argiropoulos, A.; Rhizopoulou, S. Epidermal focusing of light and modelling of reflectance in floral-petals with conically shaped epidermal cells. Flora Morphol. Distrib. Funct. Ecol. Plants 2015, 212, 38–45. [Google Scholar] [CrossRef]
- Edmonds, I.R. Light Channelling Window Panel for Shading and Illuminating Rooms. Google Patents US7070314 B2, 4 July 2006. [Google Scholar]
- Evans, J.R.; Kaldenhoff, R.; Genty, B.; Terashima, I. Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot. 2009. [Google Scholar] [CrossRef] [PubMed]
- Ehleringer, J.; Björkman, O.; Mooney, H.A. Leaf pubescence: Effects on absorptance and photosynthesis in a desert shrub. Science 1976, 192, 376–377. [Google Scholar] [CrossRef] [PubMed]
- Duursma, R.A.; Falster, D.S.; Valladares, F.; Sterck, F.J.; Pearcy, R.W.; Lusk, C.H.; Sendall, K.M.; Nordenstahl, M.; Houter, N.C.; Atwell, B.J.; et al. Light interception efficiency explained by two simple variables: A test using a diversity of small- to medium-sized woody plants. New Phytol. 2012, 193, 397–408. [Google Scholar] [CrossRef] [PubMed]
- Cabrera-Bosquet, L.; Fournier, C.; Brichet, N.; Welcker, C.; Suard, B.; Tardieu, F. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol. 2016, 212, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Han, Y.; Li, Y.; Wang, G.; Feng, L.; Fan, Z.; Du, W.; Beifang, Y.; Cao, C.; Mao, S. Spatial distribution of light interception by different plant population densities and its relationship with yield. Field Crops Res. 2015, 184, 17–27. [Google Scholar] [CrossRef]
- Malinowski, R. Understanding of leaf development—The science of complexity. Plants 2013, 2, 396–415. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-G.; Long, S.P.; Ort, D.R. Improving photosynthetic efficiency for greater yield. Annu. Rev. Plant Biol. 2010, 61, 235–261. [Google Scholar] [CrossRef] [PubMed]
- Tsukaya, H. Leaf shape: Genetic controls and environmental factors. Int. J. Dev. Biol. 2005, 49, 547. [Google Scholar] [CrossRef] [PubMed]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Nicotra, A.B.; Leigh, A.; Boyce, C.K.; Jones, C.S.; Niklas, K.J.; Royer, D.L.; Tsukaya, H. The evolution and functional significance of leaf shape in the angiosperms. Funct. Plant Biol. 2011, 38, 535–552. [Google Scholar] [CrossRef]
- Ehleringer, J.; Forseth, I. Solar tracking by plants. Science 1980, 210, 1094–1098. [Google Scholar] [CrossRef] [PubMed]
- Koller, D. Plants in search of sunlight. Adv. Bot. Res. 2000, 33, 35–131. [Google Scholar]
- Loonen, R.; Trčka, M.; Cóstola, D.; Hensen, J. Climate adaptive building shells: State-of-the-art and future challenges. Renew. Sustain. Energy Rev. 2013, 25, 483–493. [Google Scholar] [CrossRef]
- Loonen, R.C.G.M. Bio-inspired adaptive building skins. In Biotechnologies and Biomimetics for Civil Engineering; Pacheco Torgal, F., Labrincha, A.J., Diamanti, V.M., Yu, C.P., Lee, K.H., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 115–134. [Google Scholar]
- Schleicher, S.; Lienhard, J.; Poppinga, S.; Masselter, T.; Speck, T.; Knippers, J. Adaptive façade shading systems inspired by natural elastic kinematics. In Proceedings of the International Conference on Adaptive Architecture, London, UK, 3 March 2011.
- Fu, Q.A.; Ehleringer, J.R. Heliotropic leaf movements in common beans controlled by air temperature. Plant Physiol. 1989, 91, 1162–1167. [Google Scholar] [CrossRef] [PubMed]
- Nanaa, Y.; Taleb, H. The lotus flower: Biomimicry solutions in the built environment. WIT Trans. Ecol. Environ. 2015, 193, 1085–1093. [Google Scholar]
- Badarnah, L.; Knaack, U. Organizational features in leaves for application in shading systems for building envelopes. WIT Trans. Ecol. Environ. 2008, 114, 87–96. [Google Scholar]
- Pieterse, C.M.J.; de Jonge, R.; Berendsen, R.L. The soil-borne supremacy. Trends Plant Sci. 2016, 21, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Birch, C.J.; Andrieu, B.; Fournier, C.; Vos, J.; Room, P. Modelling kinetics of plant canopy architecture—Concepts and applications. Eur. J. Agron. 2003, 19, 519–533. [Google Scholar] [CrossRef]
- Marcelis, L.; Heuvelink, E.; Goudriaan, J. Modelling biomass production and yield of horticultural crops: A review. Sci. Hortic. 1998, 74, 83–111. [Google Scholar] [CrossRef]
- Van Ittersum, M.K.; Leffelaar, P.A.; Van Keulen, H.; Kropff, M.J.; Bastiaans, L.; Goudriaan, J. On approaches and applications of the wageningen crop models. Eur. J. Agron. 2003, 18, 201–234. [Google Scholar] [CrossRef]
- Evers, J.B. Simulating crop growth and development using functional-structural plant modeling. In Canopy Photosynthesis: From Basics to Applications; Hikosaka, K., Niinemets, Ü., Anten, P.R.N., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 219–236. [Google Scholar]
- Vos, J.; Evers, J.B.; Buck-Sorlin, G.H.; Andrieu, B.; Chelle, M.; de Visser, P.H.B. Functional-structural plant modelling: A new versatile tool in crop science. J. Exp. Bot. 2009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowen, I.S. The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 1926, 27, 779. [Google Scholar] [CrossRef]
- Nicol, F. Adaptive thermal comfort standards in the hot-humid tropics. Energy Build. 2004, 36, 628–637. [Google Scholar] [CrossRef]
- Tanabe, S.; Kimura, K. Effects of Air Temperature, Humidity, and Air Movement on Thermal Comfort under Hot and Humid Conditions; 0001-2505; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 1994. [Google Scholar]
- Huang, Y.; Akbari, H.; Taha, H.; Rosenfeld, A.H. The potential of vegetation in reducing summer cooling loads in residential buildings. J. Clim. Appl. Meteorol. 1987, 26, 1103–1116. [Google Scholar] [CrossRef]
- Wang, Y.; Bakker, F.; de Groot, R.; Wörtche, H. Effect of ecosystem services provided by urban green infrastructure on indoor environment: A literature review. Build. Environ. 2014, 77, 88–100. [Google Scholar] [CrossRef]
- Sack, L.; Holbrook, N.M. Leaf hydraulics. Annu. Rev. Plant Biol. 2006, 57, 361–381. [Google Scholar] [CrossRef] [PubMed]
- Ford, M.A.; Thorne, G.N. Effects of atmospheric humidity on plant growth. Ann. Bot. 1974, 38, 441–452. [Google Scholar]
- Lopez, M.; Rubio, R.; Martín, S.; Croxford, B.; Jackson, R. Active materials for adaptive architectural envelopes based on plant adaptation principles. J. Facade Des. Eng. 2015, 3, 27–38. [Google Scholar] [CrossRef]
- Castleton, H.F.; Stovin, V.; Beck, S.B.M.; Davison, J.B. Green roofs; building energy savings and the potential for retrofit. Energy Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Cushman, J.C. Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol. 2001, 127, 1439–1448. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gwilliam, J.; Jones, P. Case study of zero energy house design in uk. Energy Build. 2009, 41, 1215–1222. [Google Scholar] [CrossRef]
- Taleb, H.M. Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in uae buildings. Front. Archit. Res. 2014, 3, 154–165. [Google Scholar] [CrossRef]
- Niachou, A.; Papakonstantinou, K.; Santamouris, M.; Tsangrassoulis, A.; Mihalakakou, G. Analysis of the green roof thermal properties and investigation of its energy performance. Energy Build. 2001, 33, 719–729. [Google Scholar] [CrossRef]
- Meier, A.K. Strategic landscaping and air-conditioning savings: A literature review. Energy Build. 1990, 15, 479–486. [Google Scholar] [CrossRef]
- Philokyprou, M.; Michael, A. An environmentally friendly approach towards the conservation of vernacular architecture. World Acad. Sci. Eng. Technol. Int. J. Civ. Environ. Struct. Construct. Archit. Eng. 2015, 9, 870–879. [Google Scholar]
- Chen, X.; Yang, H.; Lu, L. A comprehensive review on passive design approaches in green building rating tools. Renew. Sustain. Energy Rev. 2015, 50, 1425–1436. [Google Scholar] [CrossRef]
- Taleghani, M.; Tenpierik, M.; van den Dobbelsteen, A.; Sailor, D.J. Heat in courtyards: A validated and calibrated parametric study of heat mitigation strategies for urban courtyards in the netherlands. Solar Energy 2014, 103, 108–124. [Google Scholar] [CrossRef]
- Kotsiris, G.; Androutsopoulos, A.; Polychroni, E.; Nektarios, P.A. Dynamic u-value estimation and energy simulation for green roofs. Energy Build. 2012, 45, 240–249. [Google Scholar] [CrossRef]
- Costanzo, V.; Evola, G.; Marletta, L. Energy savings in buildings or uhi mitigation? Comparison between green roofs and cool roofs. Energy Build. 2016, 114, 247–255. [Google Scholar] [CrossRef]
- Del Barrio, E.P. Analysis of the green roofs cooling potential in buildings. Energy Build. 1998, 27, 179–193. [Google Scholar] [CrossRef]
- Kumar, R.; Kaushik, S.C. Performance evaluation of green roof and shading for thermal protection of buildings. Build. Environ. 2005, 40, 1505–1511. [Google Scholar] [CrossRef]
- Fang, C.-F. Evaluating the thermal reduction effect of plant layers on rooftops. Energy Build. 2008, 40, 1048–1052. [Google Scholar] [CrossRef]
- Sutton, R.K.; Lambrinos, J. Green roof ecosystems: Summary and synthesis. In Green roof Ecosystems; Sutton, R.K., Ed.; Springer International Publishing: Cham, Switzerland, 2015; Volume 223, pp. 423–440. [Google Scholar]
- Lundholm, J.T. Green roof plant species diversity improves ecosystem multifunctionality. J. Appl. Ecol. 2015, 52, 726–734. [Google Scholar] [CrossRef]
- Rinner, C.; Hussain, M. Toronto’s urban heat island—Exploring the relationship between land use and surface temperature. Remote Sens. 2011, 3, 1251–1265. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Takakura, T.; Kitade, S.; Goto, E. Cooling effect of greenery cover over a building. Energy Build. 2000, 31, 1–6. [Google Scholar] [CrossRef]
- Gaffin, S.; Rosenzweig, C.; Parshall, L.; Hillel, D.; Eichenbaum-Pikser, J.; Greenbaum, A.; Blake, R.; Beattie, D.; Berghage, R. Quantifying evaporative cooling from green roofs and comparison to other land surfaces. In Proceedings of the Fourth Annual Greening Rooftops for Sustainable Communities Conference, Awards and Trade Show, Boston, MA, USA, 10–12 May 2006; pp. 11–12.
- Wilby, R.L. A review of climate change impacts on the built environment. Built Environ. 2007, 33, 31–45. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Knight, R.W.; Easterling, D.R.; Karl, T.R.; Hegerl, G.C.; Razuvaev, V.N. Trends in intense precipitation in the climate record. J. Clim. 2005, 18, 1326–1350. [Google Scholar] [CrossRef]
- Min, S.-K.; Zhang, X.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Ahern, J. Urban landscape sustainability and resilience: The promise and challenges of integrating ecology with urban planning and design. Landsc. Ecol. 2013, 28, 1203–1212. [Google Scholar] [CrossRef]
- Burns, M.J.; Fletcher, T.D.; Walsh, C.J.; Ladson, A.R.; Hatt, B.E. Hydrologic shortcomings of conventional urban stormwater management and opportunities for reform. Landsc. Urban Plan. 2012, 105, 230–240. [Google Scholar] [CrossRef]
- Ellis, J.B. Sustainable surface water management and green infrastructure in uk urban catchment planning. J. Environ. Plan. Manag. 2013, 56, 24–41. [Google Scholar] [CrossRef]
- BREEAM UK New Construction. Breeam UK New Construction Non-Domestic Buildings Technical Manual; BRE Global Ltd.: Watford, UK, 2014. [Google Scholar]
- United States Environmental Protection Agency. Protecting Water Qualtiy from Urban Runoff, EPA 841-F-03-003; United States Environmental Protection Agency: Washington, DC, USA, 2003.
- Van Dijk, A.I.J.M.; Gash, J.H.; van Gorsel, E.; Blanken, P.D.; Cescatti, A.; Emmel, C.; Gielen, B.; Harman, I.N.; Kiely, G.; Merbold, L.; et al. Rainfall interception and the coupled surface water and energy balance. Agric. For. Meteorol. 2015, 214–215, 402–415. [Google Scholar] [CrossRef]
- Yannas, S. Adaptive strategies for an ecological architecture. Archit. Des. 2011, 81, 62–69. [Google Scholar] [CrossRef]
- Peters, T. Experimental green strategies: Redefining ecological design research. Archit. Des. 2011, 81, 14–19. [Google Scholar] [CrossRef]
- Harris, M. The Gro Green Roof Code: Green Roof Code of Best Practice in the UK 2014; Groundwork Sheffield: Sheffield, UK, 2014; pp. 1–35. [Google Scholar]
- Carter, T.; Jackson, C.R. Vegetated roofs for stormwater management at multiple spatial scales. Landsc. Urban Plan. 2007, 80, 84–94. [Google Scholar] [CrossRef]
- Zhang, Q.; Miao, L.; Wang, X.; Liu, D.; Zhu, L.; Zhou, B.; Sun, J.; Liu, J. The capacity of greening roof to reduce stormwater runoff and pollution. Landsc. Urban Plan. 2015, 144, 142–150. [Google Scholar] [CrossRef]
- Whittinghill, L.J.; Rowe, D.B.; Andresen, J.A.; Cregg, B.M. Comparison of stormwater runoff from sedum, native prairie, and vegetable producing green roofs. Urban Ecosyst. 2015, 18, 13–29. [Google Scholar] [CrossRef]
- Gregoire, B.G.; Clausen, J.C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng. 2011, 37, 963–969. [Google Scholar] [CrossRef]
- DeNardo, J.; Jarrett, A.; Manbeck, H.; Beattie, D.; Berghage, R. Stormwater mitigation and surface temperature reduction by green roofs. Trans. ASAE 2005, 48, 1491–1496. [Google Scholar] [CrossRef]
- Mentens, J.; Raes, D.; Hermy, M. Green roofs as a tool for solving the rainwater runoff problem in the urbanized 21st century? Landsc. Urban Plan. 2006, 77, 217–226. [Google Scholar] [CrossRef]
- Simmons, M.T.; Gardiner, B.; Windhager, S.; Tinsley, J. Green roofs are not created equal: The hydrologic and thermal performance of six different extensive green roofs and reflective and non-reflective roofs in a sub-tropical climate. Urban Ecosyst. 2008, 11, 339–348. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Andresen, J.A. Quantifying the effect of slope on extensive green roof stormwater retention. Ecol. Eng. 2007, 31, 225–231. [Google Scholar] [CrossRef]
- Nagase, A.; Dunnett, N. Amount of water runoff from different vegetation types on extensive green roofs: Effects of plant species, diversity and plant structure. Landsc. Urban Plan. 2012, 104, 356–363. [Google Scholar] [CrossRef]
- VanWoert, N.D.; Rowe, D.B.; Andresen, J.A.; Rugh, C.L.; Fernandez, R.T.; Xiao, L. Green roof stormwater retention. J. Environ. Qual. 2005, 34, 1036–1044. [Google Scholar] [CrossRef] [PubMed]
- Dunnett, N.; Nagase, A.; Booth, R.; Grime, P. Influence of vegetation composition on runoff in two simulated green roof experiments. Urban Ecosyst. 2008, 11, 385–398. [Google Scholar] [CrossRef]
- Zwicke, M.; Picon-Cochard, C.; Morvan-Bertrand, A.; Prud’homme, M.-P.; Volaire, F. What functional strategies drive drought survival and recovery of perennial species from upland grassland? Ann. Bot. 2015. [Google Scholar] [CrossRef] [PubMed]
- Harrison, S.; Damschen, E.; Fernandez-Going, B.; Eskelinen, A.; Copeland, S. Plant communities on infertile soils are less sensitive to climate change. Ann. Bot. 2014. [Google Scholar] [CrossRef] [PubMed]
- Thurling, C.E.; Dunnett, N. Vegetation composition of old extensive green roofs (from 1980s germany). Ecol. Proc. 2014, 3, 1–11. [Google Scholar]
- Schumann, L.; Tilley, D. Emergy evaluation of a green cloak: A lightweight alternative to conventional green roofs. In Proceedings of the 5th Biennial Emergy Conference, Gainsville, FL, USA, 31 January–2 February 2009; Brown, M.T., Ed.; The Center for Environmental Policy: Gainsville, FL, USA, 2009; pp. 235–244. [Google Scholar]
- Tilley, D.; Matt, S.; Schumann, L.; Kangas, P. Vegetation characteristics of green facades, green cloaks and naturally colonized walls of wooden barns located in the mid-atlantic region of north america. J. Living Archit. 2014, 1, 1–35. [Google Scholar]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Humphreys, M.W.; Whalley, W.R.; Turner, L.; Binley, A.; Watts, C.W.; Skøt, L.; Joynes, A.; Hawkins, S.; King, I.P.; O’Donovan, S. A novel grass hybrid to reduce flood generation in temperate regions. Sci. Rep. 2013, 3, 1683. [Google Scholar]
- Dodman, D. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ. Urban. 2009, 21, 185–201. [Google Scholar] [CrossRef]
- Satterthwaite, D. Cities’ contribution to global warming: Notes on the allocation of greenhouse gas emissions. Environ. Urban. 2008, 20, 539–549. [Google Scholar] [CrossRef]
- Prentice, I.C.; Farquhar, G.; Fasham, M.; Goulden, M.L.; Heimann, M.; Jaramillo, V.; Kheshgi, H.; LeQuéré, C.; Scholes, R.J.; Wallace, D.W. The Carbon Cycle and Atmospheric Carbon Dioxide; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2001. [Google Scholar]
- Pearson, P.N.; Palmer, M.R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 2000, 406, 695–699. [Google Scholar] [CrossRef] [PubMed]
- Franks, P.J.; Adams, M.A.; Amthor, J.S.; Barbour, M.M.; Berry, J.A.; Ellsworth, D.S.; Farquhar, G.D.; Ghannoum, O.; Lloyd, J.; McDowell, N. Sensitivity of plants to changing atmospheric CO2 concentration: From the geological past to the next century. New Phytol. 2013, 197, 1077–1094. [Google Scholar] [CrossRef] [PubMed]
- Long, S.P.; Ainsworth, E.A.; Rogers, A.; Ort, D.R. Rising atmospheric carbon dioxide: Plants face the future*. Annu. Rev. Plant Biol. 2004, 55, 591–628. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.G.; Scullion, J.; Ostle, N.; Levy, P.E.; Gwynn-Jones, D. Completing the face of elevated CO2 research. Environ. Int. 2014, 73, 252–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widory, D.; Javoy, M. The carbon isotope composition of atmospheric CO2 in paris. Earth Planet. Sci. Lett. 2003, 215, 289–298. [Google Scholar] [CrossRef]
- Gratani, L.; Varone, L. Daily and seasonal variation of CO2 in the city of rome in relationship with the traffic volume. Atmos. Environ. 2005, 39, 2619–2624. [Google Scholar] [CrossRef]
- Soegaard, H.; Møller-Jensen, L. Towards a spatial CO2 budget of a metropolitan region based on textural image classification and flux measurements. Remote Sens. Environ. 2003, 87, 283–294. [Google Scholar] [CrossRef]
- Moriwaki, R.; Kanda, M.; Nitta, H. Carbon dioxide build-up within a suburban canopy layer in winter night. Atmos. Environ. 2006, 40, 1394–1407. [Google Scholar] [CrossRef]
- Idso, C.D.; Idso, S.B.; Balling, R.C., Jr. The urban CO2 dome of phoenix, arizona. Phys. Geogr. 1998, 19, 95–108. [Google Scholar]
- Nasrallah, H.A.; Balling, R.C., Jr.; Madi, S.M.; Al-Ansari, L. Temporal variations in atmospheric CO2 concentrations in kuwait city, kuwait with comparisons to phoenix, arizona, USA. Environ. Pollut. 2003, 121, 301–305. [Google Scholar] [CrossRef]
- Velasco, E.; Pressley, S.; Allwine, E.; Westberg, H.; Lamb, B. Measurements of CO2 fluxes from the mexico city urban landscape. Atmos. Environ. 2005, 39, 7433–7446. [Google Scholar] [CrossRef]
- Zimnoch, M.; Florkowski, T.; Necki, J.M.; Neubert, R.E. Diurnal variability of δ13c and δ18o of atmospheric CO2 in the urban atmosphere of kraków, poland. Isot. Environ. Health Stud. 2004, 40, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Heckathorn, S.; Wang, X.; Philpott, S. A meta-analysis of plant physiological and growth responses to temperature and elevated CO2. Oecologia 2012, 169, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Lackner, K.S. A guide to CO2 sequestration. Science 2003, 300, 1677. [Google Scholar] [CrossRef] [PubMed]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [PubMed]
- Markewitz, P.; Kuckshinrichs, W.; Leitner, W.; Linssen, J.; Zapp, P.; Bongartz, R.; Schreiber, A.; Müller, T.E. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2. Energy Environ. Sci. 2012, 5, 7281–7305. [Google Scholar] [CrossRef]
- Edmondson, J.L.; Davies, Z.G.; McHugh, N.; Gaston, K.J.; Leake, J.R. Organic carbon hidden in urban ecosystems. Sci. Rep. 2012, 2, 963. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Byrne, J.; Pickering, C. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban For. Urban Green. 2012, 11, 351–363. [Google Scholar] [CrossRef]
- Brack, C.L. Pollution mitigation and carbon sequestration by an urban forest. Environ. Pollut. 2002, 116, S195–S200. [Google Scholar] [CrossRef]
- Davies, Z.G.; Dallimer, M.; Edmondson, J.L.; Leake, J.R.; Gaston, K.J. Identifying potential sources of variability between vegetation carbon storage estimates for urban areas. Environ. Pollut. 2013, 183, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Selmi, W.; Weber, C.; Rivière, E.; Blond, N.; Mehdi, L.; Nowak, D. Air pollution removal by trees in public green spaces in strasbourg city, france. Urban For. Urban Green. 2016, 17, 192–201. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Nowak, D.J. Comprehensive national database of tree effects on air quality and human health in the united states. Environ. Pollut. 2016, 215, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Escobedo, F.; Varela, S.; Zhao, M.; Wagner, J.E.; Zipperer, W. Analyzing the efficacy of subtropical urban forests in offsetting carbon emissions from cities. Environ. Sci. Policy 2010, 13, 362–372. [Google Scholar] [CrossRef]
- Liu, C.; Li, X. Carbon storage and sequestration by urban forests in shenyang, china. Urban For. Urban Green. 2012, 11, 121–128. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Yang, J.; McBride, J.; Zhou, J.; Sun, Z. The urban forest in beijing and its role in air pollution reduction. Urban For. Urban Green. 2005, 3, 65–78. [Google Scholar] [CrossRef]
- Davies, Z.G.; Edmondson, J.L.; Heinemeyer, A.; Leake, J.R.; Gaston, K.J. Mapping an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide scale. J. Appl. Ecol. 2011, 48, 1125–1134. [Google Scholar] [CrossRef]
- Stoffberg, G.H.; van Rooyen, M.W.; van der Linde, M.J.; Groeneveld, H.T. Carbon sequestration estimates of indigenous street trees in the city of tshwane, south africa. Urban For. Urban Green. 2010, 9, 9–14. [Google Scholar] [CrossRef]
- Strohbach, M.W.; Haase, D. Above-ground carbon storage by urban trees in leipzig, germany: Analysis of patterns in a european city. Landsc. Urban Plan. 2012, 104, 95–104. [Google Scholar] [CrossRef]
- Chaparro, L.; Terradas, J. Ecological services of urban forest in Barcelona. Available online: http://www.itreetools.org/resources/reports/Barcelona%20Ecosystem%20Analysis.pdf (accessed on 10 November 2016).
- Hutyra, L.R.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a gradient of urbanization: A study of the seattle, wa region. Glob. Chang. Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Höfle, B.; Hollaus, M.; Hagenauer, J. Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne lidar data. ISPRS J. Photogramm. Remote Sens. 2012, 67, 134–147. [Google Scholar] [CrossRef]
- Rutzinger, M.; Höfle, B.; Hollaus, M.; Pfeifer, N. Object-based point cloud analysis of full-waveform airborne laser scanning data for urban vegetation classification. Sensors 2008, 8, 4505–4528. [Google Scholar] [CrossRef]
- Tooke, T.R.; Coops, N.C.; Goodwin, N.R.; Voogt, J.A. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens. Environ. 2009, 113, 398–407. [Google Scholar] [CrossRef]
- Börjesson, P.; Gustavsson, L. Greenhouse gas balances in building construction: Wood versus concrete from life-cycle and forest land-use perspectives. Energy Policy 2000, 28, 575–588. [Google Scholar] [CrossRef]
- Lenzen, M.; Treloar, G. Embodied energy in buildings: Wood versus concrete—Reply to börjesson and gustavsson. Energy Policy 2002, 30, 249–255. [Google Scholar] [CrossRef]
- Ormondroyd, G.A.; Spear, M.J.; Skinner, C. The opportunities and challenges for re-use and recycling of timber and wood products within the construction sector. In Environmental Impacts of Traditional and Innovative Forest-Based Bioproducts; Springer: Berlin/Heidelberg, Germany, 2016; pp. 45–103. [Google Scholar]
- Gustavsson, L.; Pingoud, K.; Sathre, R. Carbon dioxide balance of wood substitution: Comparing concrete-and wood-framed buildings. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 667–691. [Google Scholar] [CrossRef]
- Gustavsson, L.; Sathre, R. Variability in energy and carbon dioxide balances of wood and concrete building materials. Build. Environ. 2006, 41, 940–951. [Google Scholar] [CrossRef]
- Lackner, K.S. Capture of carbon dioxide from ambient air. Eur. Phys. J. Spec. Top. 2009, 176, 93–106. [Google Scholar] [CrossRef]
- Wang, B.; Li, Y.; Wu, N.; Lan, C.Q. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 2008, 79, 707–718. [Google Scholar] [CrossRef] [PubMed]
Level of Biomimicry | Examples—Buildings that Mimic Plants | |
---|---|---|
Organism Level (mimicry of a specific organism) | Form | A large span building that looks like an Amazonian water lily. |
Material | A building made directly from timber, or from materials that mimic its properties. | |
Construction | The building is made in the same way as a plant, with nodes acting as stiffening “bulk heads” as in bamboo for example. | |
Process | The window adornments adjust depending on the angle of the sun, as in heliotropism. | |
Function | The building acts as a plant would in a wider context, cycling water or increasing heat loss on hot days. | |
Behaviour Level (mimicry of how an organism behaves or relates to its larger context) | Form | An adaptive shading canopy that extends or retracts like a convolvulus flower. |
Material | A material that allows the building to move and flex in the same way that plant stems such as willow do. | |
Construction | A building that is built in the same way as a plant grows, wide anchoring base like roots, or single hollow stem such as bamboo. | |
Process | The building operates as a plant would; by careful orientation, adaptive cooling, etc. | |
Function | The building functions as if it were a plant, stable internal environment, water conservation, “dormancy” in winter, etc. | |
Ecosystem Level (mimicry of an ecosystem) | Form | A building which resembles several trees or plants in close proximity. |
Material | A collection of buildings made from natural materials found in a natural ecosystem. Using limecrete/hempcrete, etc. | |
Construction | The buildings are assembled in the same way that a forest is, with multiple canopy layers and buildings occupying different niches. | |
Process | The building acts as a forest would, capturing and converting solar energy and intercepting and storing/transpiring water for example. | |
Function | The building is able to function as a tree would in a forest, recycling waste, interacting with other organisms, participating in hydrological cycle. |
Study | City | Total Carbon Storage by Trees (tC) | Carbon Storage per Tree (tC) | Number of Trees Assessed (×103) |
---|---|---|---|---|
Escobedo et al. [147] | Miami-Dade, USA | 1,497,676 | 0.041 | 36,697 |
Liu and Li [148] | Shenyang, CHN | 337,000 | 0.058 | 5760 |
Brack (2002) [143] | Canberra, AUS | 30,200 (potential) | 0.075 (predicted) | 400 |
Nowak and Crane [149] | New York, USA | 1,225,200 | 0.24 | 5212 |
Yang et al. [150] | Beijing, CHN | 200,000 | 0.083 | 2400 |
Davies et al. [151] | Leicester, UK | 225,217 | 0.15 | 1489.244 |
Stoffberg et al. [152] | Tshwane, RSA | 54,630 (potential) | 0.47 (predicted after 30 years) | 115.2 |
Strohback and Haase, [153] | Leipzig, GER | 316,000 | Not assessed. 11.8 per ha | Not assessed |
Chaparro and Tarradas, [154] | Barcelona, SPN | 113,437 | 0.080 | 1419.823 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wootton-Beard, P.C.; Xing, Y.; Durai Prabhakaran, R.T.; Robson, P.; Bosch, M.; Thornton, J.M.; Ormondroyd, G.A.; Jones, P.; Donnison, I. Review: Improving the Impact of Plant Science on Urban Planning and Design. Buildings 2016, 6, 48. https://doi.org/10.3390/buildings6040048
Wootton-Beard PC, Xing Y, Durai Prabhakaran RT, Robson P, Bosch M, Thornton JM, Ormondroyd GA, Jones P, Donnison I. Review: Improving the Impact of Plant Science on Urban Planning and Design. Buildings. 2016; 6(4):48. https://doi.org/10.3390/buildings6040048
Chicago/Turabian StyleWootton-Beard, Peter C., Yangang Xing, Raghavalu Thirumalai Durai Prabhakaran, Paul Robson, Maurice Bosch, Judith M. Thornton, Graham A. Ormondroyd, Phil Jones, and Iain Donnison. 2016. "Review: Improving the Impact of Plant Science on Urban Planning and Design" Buildings 6, no. 4: 48. https://doi.org/10.3390/buildings6040048
APA StyleWootton-Beard, P. C., Xing, Y., Durai Prabhakaran, R. T., Robson, P., Bosch, M., Thornton, J. M., Ormondroyd, G. A., Jones, P., & Donnison, I. (2016). Review: Improving the Impact of Plant Science on Urban Planning and Design. Buildings, 6(4), 48. https://doi.org/10.3390/buildings6040048