Recent Progress in Daytime Radiative Cooling: Is It the Air Conditioner of the Future?
Abstract
:1. Introduction
2. Fundamentals of Radiative Cooling
3. Conventional Radiative Cooling Technologies
3.1. Selective Coolers
3.2. Shield for Radiative Cooler
4. Technology Progress on Day Time Radiative Cooling Technologies
4.1. Multilayer Planar Photonic Radiative Structures
4.2. Metamaterials and 2D-3D Photonic Structures
4.3. Polymers for Radiative Cooling
4.4. Passive Radiative Cooling Systems Using Paints
5. Discussion
6. Conclusions
Funding
Conflicts of Interest
References
- Founda, D.; Santamouris, M. Synergies between urban heat island and heat waves in Athens (Greece), during an extremely hot summer (2012). Sci. Rep. 2017, 7, 10973. [Google Scholar] [CrossRef] [PubMed]
- Santamouris, M. Regulating the damaged thermostat of the cities—Status, impacts and mitigation challenges. Energy Build. 2015, 91, 43–56. [Google Scholar] [CrossRef]
- Family, R.; Mengüç, M.P. Materials for radiative cooling: A review. Procedia Environ. Sci. 2017, 38, 752–759. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the buildings—Past, present and future. Energy Build. 2016, 128, 617–638. [Google Scholar] [CrossRef]
- BSRIA. World Market for Air Conditioning; BSRIA: Bracknell, UK, 2015. [Google Scholar]
- Isaac, M.; Van Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- Santamouris, M. (Ed.) Cooling Energy Solutions for Buildings and Cities; World Scientific: Singapore, 2018. [Google Scholar]
- McNeil, M.A.L.; Virginie, E. Future Air Conditioning Energy Consumption in Developing Countries and What Can Be Done about it: The Potential of Efficiency in the Residential Sector; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, 2008. [Google Scholar]
- Silvana Mima, P.C.; Watkiss, P. The Impacts and Economic Costs of Climate Change on Energy in the European Union: Summary of Sector Results from the Climate Cost Project; Technical Policy Briefing Note Series; Stockholm Environment Institute: Oxford, UK, 2011. [Google Scholar]
- Sivak, M. Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for developing countries. Energy Policy 2009, 37, 1382–1384. [Google Scholar] [CrossRef]
- Rachel Warren, N.A.; Nicholls, R.; Levy, P.; Price, J. Understanding the Regional Impacts of Climate Change Research Report Prepared for the Stern Review on the Economics of Climate Change; Tyndell Centre for Climate Change Research: Norwich, UK, 2006. [Google Scholar]
- Hadley, S.W.; Erickson, D.J.; Hernandez, J.L.; Broniak, C.T.; Blasing, T.J. Responses of energy use to climate change: A climate modeling study. Eophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef] [Green Version]
- Maryse Labriet, S.R.J.; Vielle, M.; Kanudi, A.; Holden, P.; Edwards, N. Impacts of Climate Change on Heating and Cooling: A Worldwide Estimate from Energy and Macro-Economic Perspectives; EPFL: Paris, France, 2013. [Google Scholar]
- Silvana Mima, P.C. Assessment of the Impacts under Future Climate Change on the Energy Systems with the Poles Model; Fondazione Giorgio Cini: Venise, Italy, 2009. [Google Scholar]
- Zhou, Y.; Clarke, L.; Eom, J.; Kyle, P.; Patel, P.; Kim, S.H.; Dirks, J.; Jensen, E.; Liu, Y.; Rice, J.; et al. Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework. Appl. Energy 2014, 113, 1077–1088. [Google Scholar] [CrossRef]
- Power, E.A. The European Cold Market, Final Report of the EcoHeatCool Project; European Union: Brussels, Belgium, 2006. [Google Scholar]
- Annual Energy Outlook 2015; Energy Information Administration: Washington, DC, USA, 2015.
- Scott, M.J.; Dirks, J.A.; Cort, K.A. The value of energy efficiency programs for US residential and commercial buildings in a warmer world. Mitigation Adapt. Strat. Glob. Chang. 2008, 13, 307–339. [Google Scholar] [CrossRef]
- The Future of Cooling–Opportunities for Energy Efficient Air Conditioning; International Energy Agency: Paris, France, 2018.
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Santamouris, M. Innovating to zero the building sector in Europe: Minimising the energy consumption, eradication of the energy poverty and mitigating the local climate change. Sol. Energy 2016, 128, 61–94. [Google Scholar] [CrossRef]
- Karatasou, S.; Laskari, M.; Santamouris, M. Determinants of high electricity use and high energy consumption for space and water heating in European Social Housing: Socio-demographic and building characteristics. Energy Build. 2018, 170, 107–114. [Google Scholar] [CrossRef]
- Santamouris, M.; Kolokotsa, D. On the impact of urban overheating and extreme climatic conditions on housing, energy, comfort and environmental quality of vulnerable population in Europe. Energy Build. 2015, 98, 125–133. [Google Scholar] [CrossRef]
- Santamouris, M.; Kapsis, K.; Korres, D.; Livada, I.; Pavlou, C.; Assimakopoulos, M.N. On the relation between the energy and social characteristics of the residential sector. Energy Build. 2007, 39, 893–905. [Google Scholar] [CrossRef] [Green Version]
- Sakka, A.; Santamouris, M.; Livada, I.; Nicol, F.; Wilson, M. On the thermal performance of low income housing during heat waves. Energy Build. 2012, 49, 69–77. [Google Scholar] [CrossRef]
- Laboratory, O.R.N. The Future of Air Conditioning for Buildings; Navigant Consulting, Inc.: Chicago, IL, USA; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 2016. [Google Scholar]
- Santamouris, M.; Synnefa, A.; Karlessi, T. Using advanced cool materials in the urban built environment to mitigate heat islands and improve thermal comfort conditions. Sol. Energy 2011, 85, 3085–3102. [Google Scholar] [CrossRef]
- Berdahl, P.; Chen, S.S.; Destaillats, H.; Kirchstetter, T.W.; Levinson, R.M.; Zalich, M.A. Fluorescent cooling of objects exposed to sunlight—The ruby example. Sol. Energy Mater. Sol. Cells 2016, 157, 312–317. [Google Scholar] [CrossRef]
- Karlessi, T.; Santamouris, M.; Apostolakis, K.; Synnefa, A.; Livada, I. Development and testing of thermochromic coatings for buildings and urban structures. Sol. Energy 2009, 83, 538–551. [Google Scholar] [CrossRef]
- Zeyghami, M.; Goswami, D.Y.; Stefanakos, E. A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling. Sol. Energy Mater. Sol. Cells 2018, 178, 115–128. [Google Scholar] [CrossRef]
- Crossley, S.; Mathur, N.D.; Moya, X. New developments in caloric materials for cooling applications. AIP Adv. 2015, 5, 067153. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Fernandez, N.; Katipamula, S.; Alvine, K. Performance assessment of a photonic radiative cooling system for office buildings. Renew. Energy 2018, 118, 265–277. [Google Scholar] [CrossRef]
- Goldstein, E.A.; Raman, A.P.; Fan, S. Sub-ambient non-evaporative fluid cooling with the sky. Nat. Energy 2017, 2, 17143. [Google Scholar] [CrossRef]
- Hu, M.; Zhao, B.; Ao, X.; Su, Y.; Wang, Y.; Pei, G. Comparative analysis of different surfaces for integrated solar heating and radiative cooling: A numerical study. Energy 2018, 155, 360–369. [Google Scholar] [CrossRef]
- Zhao, B.; Hu, M.; Ao, X.; Pei, G. Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China. Appl. Energy 2017, 205, 626–634. [Google Scholar] [CrossRef]
- Vall, S.; Castell, A. Radiative cooling as low-grade energy source: A literature review. Renew. Sustain. Energy Rev. 2017, 77, 803–820. [Google Scholar] [CrossRef]
- Smith, G.; Gentle, A. Radiative cooling: Energy savings from the sky. Nat. Energy 2017, 2, 17142. [Google Scholar] [CrossRef]
- Gentle, A.R.; Smith, G.B. A Subambient open roof surface under the mid-summer sun. Adv. Sci. 2015, 2, 1500119. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhu, L.; Raman, A.; Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 2016, 7, 13729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Z.; Ruan, X. Nanoparticle embedded double-layer coating for daytime radiative cooling. Int. J. Heat Mass Transf. 2017, 104, 890–896. [Google Scholar] [CrossRef] [Green Version]
- Kou, J.-L.; Jurado, Z.; Chen, Z.; Fan, S.; Minnich, A.J. Daytime radiative cooling using near-black infrared emitters. ACS Photon. 2017, 4, 626–630. [Google Scholar] [CrossRef]
- Zou, C.; Ren, G.; Hossain, M.M.; Nirantar, S.; Withayachumnankul, W.; Ahmed, T.; Bhaskaran, M.; Sriram, S.; Gu, M.; Fumeaux, C. metal-loaded dielectric resonator metasurfaces for radiative cooling. Adv. Opt. Mater. 2017, 5, 1700460. [Google Scholar] [CrossRef]
- Nilsson, T.M.J.; Niklasson, G.A. Radiative cooling during the day: Simulations and experiments on pigmented polyethylene cover foils. Sol. Energy Mater. Sol. Cells 1995, 37, 93–118. [Google Scholar] [CrossRef]
- Harrison, A.W.; Walton, M.R. Radiative cooling of TiO2 white paint. Sol. Energy 1978, 20, 185–188. [Google Scholar] [CrossRef]
- Orel, B.; Gunde, M.K.; Krainer, A. Radiative cooling efficiency of white pigmented paints. Sol. Energy 1993, 50, 477–482. [Google Scholar] [CrossRef]
- Catalanotti, S.; Cuomo, V.; Piro, G.; Ruggi, D.; Silvestrini, V.; Troise, G. The radiative cooling of selective surfaces. Sol. Energy 1975, 17, 83–89. [Google Scholar] [CrossRef]
- Tsilingiris, P.T. The total infrared transmittance of polymerised vinyl fluoride films for a wide range of radiant source temperature. Renew. Energy 2003, 28, 887–900. [Google Scholar] [CrossRef]
- Gupta, A.; Tandon, R.P. Organic–inorganic hybrid polyvinylidene fluoride–Co0.6Zn0.4Mn0.3Fe1.7O4 nanocomposite film with significant optical and magnetodielectric properties. RSC Adv. 2015, 5, 10110–10118. [Google Scholar] [CrossRef]
- Trombe, F. Perspectives sur l’utilisation des rayonnements solaires et terrestres dans certaines régions du monde. Rev. Gen. Therm. 1967, 6, 1285. [Google Scholar]
- Grenier, P. Réfrigération radiative. Effet de serre inverse. Rev. Phys. Appl. 1979, 14, 87–90. [Google Scholar] [CrossRef]
- Hossain, M.M.; Gu, M. Radiative cooling: Principles, progress, and potentials. Adv. Sci. 2016, 3, 1500360. [Google Scholar] [CrossRef] [PubMed]
- Hjortsberg, A.; Granqvist, C.G. Radiative cooling with selectively emitting ethylene gas. Appl. Phys. Lett. 1981, 39, 507–509. [Google Scholar] [CrossRef]
- Lushiku, E.M.; Eriksson, T.S.; Hjortsberg, A.; Granqvist, C.G. Radiative cooling to low temperatures with selectively infrared-emitting gases. Solar Wind Technol. 1984, 1, 115–121. [Google Scholar] [CrossRef]
- Eriksson, T.S.; Lushiku, E.M.; Granqvist, C.G. Materials for radiative cooling to low temperature. Sol. Energy Mater. Sol. Cells 1984, 11, 149–161. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Hjortsberg, A. Surfaces for radiative cooling: Silicon monoxide films on aluminum. Appl. Phys. Lett. 1980, 36, 139–141. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Hjortsberg, A. Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films. J. Appl. Phys. 1981, 52, 4205–4220. [Google Scholar] [CrossRef]
- Granqvist, C.G.; Hjortsberg, A.; Eriksson, T.S. Radiative cooling to low temperatures with selectivity IR-emitting surfaces. Thin Solid Films 1982, 90, 187–190. [Google Scholar] [CrossRef]
- Eriksson, T.; Jiang, S.J.; Granqvist, C. Surface coatings for radiative cooling applications—Silicon dioxide and silicon nitride made by reactive RF-sputtering. Sol. Energy Mater. 1985, 12, 319–325. [Google Scholar] [CrossRef]
- Eriksson, T.S.; Jiang, S.; Granqvist, C.G. Dielectric function of sputter-deposited silicon dioxide and silicon nitride films in the thermal infrared. Appl. Opt. 1985, 24, 745–746. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Shen, H.; Li, J.; Xu, N. Microstructure and optical properties of silicon nitride thin films as radiative cooling materials. Sol. Energy 2002, 72, 505–510. [Google Scholar] [CrossRef]
- Miyazaki, H.; Okada, K.; Jinno, K.; Ota, T.J. Fabrication of radiative cooling devices using Si2N2O nano-particles. J. Ceram. Soc. Jpn. 2016, 124, 1185–1187. [Google Scholar] [CrossRef]
- Diatezua, M.; Thiry, D.A.; Dereux, P.; Caudano, A.R. Silicon oxynitride multilayers as spectrally selective material for passive radiative cooling applications. Sol. Energy Mater. Sol. Cells 1996, 40, 253–259. [Google Scholar] [CrossRef]
- Gentle, A.R.; Smith, G.B. Radiative Heat Pumping from the Earth Using Surface Phonon Resonant Nanoparticles. Nano Lett. 2010, 10, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Tazawa, M.; Jin, P.; Tanemura, S. Thin film used to obtain a constant temperature lower than the ambient. Thin Solid Films 1996, 281–282, 232–234. [Google Scholar] [CrossRef]
- Tazawa, M.; Jin, P.; Yoshimura, K.; Miki, T.; Tanemura, S. New material design with V1−xWxO2 film for sky radiator to obtain temperature stability. Sol. Energy 1998, 64, 3–7. [Google Scholar] [CrossRef]
- Jorgenson, G.V.; Lee, J.C. Doped vanadium oxide for optical switching films. Sol. Energy Mater. Sol. Cells 1986, 14, 205–214. [Google Scholar] [CrossRef]
- Adachi, S. Optical Properties of Crystalline and Amorphous Semiconductors; Springer: Boston, MA, USA, 1999. [Google Scholar]
- Berdahl, P. Radiative cooling with MgO and/or LiF layers. Appl. Opt. 1984, 23, 370–372. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, N.A.; Eriksson, T.S.; Granqvist, C.G. Infrared-transparent convection shields for radiative cooling: Initial results on corrugated polyethylene foils. Sol. Energy Mater. Sol. Cells 1985, 12, 327–333. [Google Scholar] [CrossRef]
- Raman, A.P.; Anoma, M.A.; Zhu, L.; Rephaeli, E.; Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 2014, 515, 540. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.H.H.; Saito, H.; Taha, I.M.S.; Kishinami, K.; Ismail, I.M. Effect of aging, thickness and color on both the radiative properties of polyethylene films and performance of the nocturnal cooling unit. Energy Conv. Manag. 1998, 39, 87–93. [Google Scholar] [CrossRef]
- Gentle, A.R.; Dybdal, K.L.; Smith, G.B. Polymeric mesh for durable infra-red transparent convection shields: Applications in cool roofs and sky cooling. Sol. Energy Mater. Sol. Cells 2013, 115, 79–85. [Google Scholar] [CrossRef]
- Nilsson, T.M.J.; Niklasson, G.A.; Granqvist, C.G. A solar reflecting material for radiative cooling applications: ZnS pigmented polyethylene. Sol. Energy Mater. Sol. Cells 1992, 28, 175–193. [Google Scholar] [CrossRef]
- Niklasson, G.A.; Eriksson, T.S. Radiative Cooling with Pigmented Polyethylene Foils. In Proceedings of the 1988 International Congress on Optical Science and Engineering, Hamburg, Germany, 24–26 April 1988; p. 11. [Google Scholar]
- Mastai, Y.; Diamant, Y.; Aruna, S.T.; Zaban, A. TiO2 Nanocrystalline Pigmented Polyethylene Foils for Radiative Cooling Applications: Synthesis and Characterization. Langmuir 2001, 17, 7118–7123. [Google Scholar] [CrossRef]
- Dobson, K.D.; Hodes, G.; Mastai, Y. Thin semiconductor films for radiative cooling applications. Sol. Energy Mater. Sol. Cells 2003, 80, 283–296. [Google Scholar] [CrossRef]
- Naghshine, B.B.; Saboonchi, A. Optimized thin film coatings for passive radiative cooling applications. Opt. Commun. 2018, 410, 416–423. [Google Scholar] [CrossRef]
- Benlattar, M.; Oualim, E.M.; Harmouchi, M.; Mouhsen, A.; Belafhal, A. Radiative properties of cadmium telluride thin film as radiative cooling materials. Opt. Commun. 2005, 256, 10–15. [Google Scholar] [CrossRef]
- Benlattar, M.; Oualim, E.M.; Mouhib, T.; Harmouchi, M.; Mouhsen, A.; Belafhal, A. Thin cadmium sulphide film for radiative cooling application. Opt. Commun. 2006, 267, 65–68. [Google Scholar] [CrossRef]
- Engelhard, T.; Jones, E.D.; Viney, I.; Mastai, Y.; Hodes, G. Deposition of tellurium films by decomposition of electrochemically-generated H2Te: Application to radiative cooling devices. Thin Solid Films 2000, 370, 101–105. [Google Scholar] [CrossRef]
- Mouhib, T.; Mouhsen, A.; Oualim, E.M.; Harmouchi, M.; Vigneron, J.P.; Defrance, P. Stainless steel/tin/glass coating as spectrally selective material for passive radiative cooling applications. Opt. Mater. 2009, 31, 673–677. [Google Scholar] [CrossRef]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 2017. [Google Scholar] [CrossRef] [PubMed]
- Atiganyanun, S.; Plumley, J.B.; Han, S.J.; Hsu, K.; Cytrynbaum, J.; Peng, T.L.; Han, S.M.; Han, S.E. Effective radiative cooling by paint-format microsphere-based photonic random media. ACS Photonics 2018, 5, 1181–1187. [Google Scholar] [CrossRef]
- Narayanaswamy, A.; Mayo, J.; Canetta, C. Infrared selective emitters with thin films of polar materials. Appl. Phys. Lett. 2014, 104, 183107. [Google Scholar] [CrossRef]
- Bao, H.; Yan, C.; Wang, B.; Fang, X.; Zhao, C.Y.; Ruan, X. Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Sol. Energy Mater. Sol. Cells 2017, 168, 78–84. [Google Scholar] [CrossRef]
- Kecebas, M.A.; Menguc, M.P.; Kosar, A.; Sendur, K. Passive radiative cooling design with broadband optical thin-film filters. J. Quant. Spectrosc. Radiat. Transf. 2017, 198, 179–186. [Google Scholar] [CrossRef]
- Hervé, A.; Drevillon, J.; Ezzahri, Y.; Joulain, K. Radiative cooling by tailoring surfaces with microstructures. arXiv, 2018; arXiv:1802.02067. [Google Scholar]
- Ono, M.; Chen, K.; Li, W.; Fan, S. Self-adaptive radiative cooling based on phase change materials. Opt. Express 2018, 26, A777–A787. [Google Scholar] [CrossRef] [PubMed]
- Rephaeli, E.; Raman, A.; Fan, S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 2013, 13, 1457–1461. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Jia, B.; Gu, M. A metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 2015, 3, 1047–1051. [Google Scholar] [CrossRef]
- Yang, Y.; Taylor, S.; Alshehri, H.; Wang, L. Wavelength-selective and diffuse infrared thermal emission mediated by magnetic polaritons from silicon carbide metasurfaces. Appl. Phys. Lett. 2017, 111, 051904. [Google Scholar] [CrossRef]
- Wu, D.; Liu, C.; Xu, Z.; Liu, Y.; Yu, Z.; Yu, L.; Chen, L.; Li, R.; Ma, R.; Ye, H. The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling. Mater. Des. 2018, 139, 104–111. [Google Scholar] [CrossRef]
- Zhao, D.; Aili, A.; Zhai, Y.; Lu, J.; Kidd, D.; Tan, G.; Yin, X.; Yang, R. Subambient cooling of water: Toward real-world applications of daytime radiative cooling. Joule 2018. [Google Scholar] [CrossRef]
- Mandal, J.; Fu, Y.; Overvig, A.; Jia, M.; Sun, K.; Shi, N.; Zhou, H.; Xiao, X.; Yu, N.; Yang, Y. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 2018. [Google Scholar] [CrossRef] [PubMed]
- Suichi, T.; Ishikawa, A.; Hayashi, Y.; Tsuruta, K. Performance limit of daytime radiative cooling in warm humid environment. AIP Adv. 2018, 8, 055124. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.F.; Stover, C.A.; Gilbert, L.R.; Nevitt, T.J.; Ouderkirk, A.J. Giant birefringent optics in multilayer polymer mirrors. Science 2000, 287, 2451. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, N.; Wang, W.; Alvine, K.J.; Katipamula, S. Energy Savings Potential of Radiative Cooling Technologies; United States Dept. of Energy: Washington, DC, USA, 2015.
- Bergman, T.L. Active daytime radiative cooling using spectrally selective surfaces for air conditioning and refrigeration systems. Sol. Energy 2018, 174, 16–23. [Google Scholar] [CrossRef]
- Observatory, G. Infrared Atmospheric Transmission Spectrum at Mauna Kea. Available online: https://www.gemini.edu/sciops/telescopes-and-sites/observing-condition-constraints/ir-transmission-spectra (accessed on 20 October 2018).
- Tso, C.Y.; Chan, K.C.; Chao, C.Y.H. A field investigation of passive radiative cooling under Hong Kong’s climate. Renew. Energy 2017, 106, 52–61. [Google Scholar] [CrossRef]
- Wong, R.Y.M.; Tso, C.Y.; Chao, C.Y.H.; Huang, B.; Wan, M.P. Ultra-broadband asymmetric transmission metallic gratings for subtropical passive daytime radiative cooling. Sol. Energy Mater. Sol. Cells 2018, 186, 330–339. [Google Scholar] [CrossRef]
- Gentle, A.; Tai, M.; White, S.; Arnold, M.; Cortie, M.; Smith, G. Design, control, and characterisation of switchable radiative cooling. In Proceedings of the SPIE Optical Engineering + Applications, San Diego, CA, USA, 19–23 August 2018; p. 10. [Google Scholar]
No | Solar Short Wave Reflective Structure | Reflectivity in Short Wave Solar Radiation (0.3–2 μm) | Emissive Structure | Emissivity in the Atmospheric Window | Day Time Net Cooling Potential (W/m2) | Day Time Surface Temperature Depression below ambient Temperature (°C) | Reference |
---|---|---|---|---|---|---|---|
Multilayered Planar Photonic Radiative Structures | |||||||
1 | Four bottom layers of HfO2, SiO2, HfO2, SiO2, on top a silver mirror | 0.97 | Three upper layers of SiO2, HfO2, SiO2 on top of the structure. | Varies between 0.5–0.8 | 40.1 (experimental) | 5 °C (experimental) | [70] |
2 | Metal film and reflective substrate | Not Reported | Layers of polar materials like SiC and BN | 0.9–1 | Not Calculated or measured | Not Calculated or measured | [84] |
3 | Al MirrorRadiator under vacuum | Not Reported | Two layers of Si and Si3N4 | Varies between 0.2–0.9 | Not reported | Maximum: 42 °C Not below 33 °C during the day time | [39] |
4 | A layer of suboptimum TiO2 particles and an Al mirror | 0.907 | SiO2 particles | 0.901 | Not Reported | Surface Temperature above ambient temperature | [85] |
5 | Silver film | 0.9 | Fused silica wafer coated in its top with PDMS | 0.9–1.0 | 127 (Experimental) | 8.2 °C (Experimental) | [41] |
6 | 4 bottom alternate layers of SiO2 and TiO2 above a silver mirror | 0.97 | Alternative layers TiO2, SiO2, and Al2O3 | 0.7–0.8 | 85.5 (Simulation) | Not calculated | [86] |
7 | Silver Film | 0.9 | Layers of HfO2, BN, SiC and SiO2 and lamellar gratings of SiC, SiO2 and BN | 0.5–1.0 | 40 (Simulation) | Not calculated | [87] |
8 | 11 layers of Ge/MgF2 | Transmissivity below 0.1 | Three layers of VO2, MgF2 and W | 0.8–1.0 | Not Reported | 9 (Simulation) | [88] |
Metamaterials and 2D-3D Photonic Structures | |||||||
9 | Three sets of 5 bilayers of MgF2 and TiO2 over a silver substrate. | 0.965 | Two 2D layers of SiC and Quartz | 0.1–0.95 | 105 (Simulation) | 8 °C or 15 °C for a heat transfer coefficient 12 or 6 W/m2/°C respectively | [89] |
10 | A conical metamaterial composed by symmetrically shaped conical metamaterial pillars composed by alternating layers of aluminium and germanium | 0.97 | A conical metamaterial composed by symmetrically shaped conical metamaterial pillars composed by alternating layers of aluminium and germanium | 0.99 | Not reported | 9 °C (simulated) | [90] |
11 | Not mentioned | Not mentioned | A 2D SiC metasurface | 0.25–0.75, average = 0.6 | Not tested or simulated | Not tested or simulated | [91] |
12 | An array of dielectric reasonators coated with a silver layer | 0.97 | The typical cell of the metasurface consists of a doped silicon substrate and to rectangular dielectric reasonators placed orthogonally to each other and coated in their top with silver | 0.8–0.95 | 96 (Simulated) | 8.2 °C (Simulated) | [42] |
13 | Micropyramids composed by 19 alternate Al2O3/SiO2 pairs of variable length thin film with a silver layer at the bottom. | 0.95 | Micropyramids composed by 19 alternate Al2O3/SiO2 pairs of variable length thin film | 0.65–1 | 122 (Simulated) | Not Reported | [92] |
Polymers for Radiative Cooling | |||||||
15 | Al film | 0.9 | Crystalline SiC and SiO2 nanoparticles are used to dope a 25-μm thick PE, transparent to IR radiation | 0.35–0.95 | Not Reported | 12–25 °C (Simulation) | [63] |
16 | Two polymers on top and a silver film on the bottom | 0.97 | Two polymers | 0.96 | Not reported | 2 °C without convective protection (Experimental) | [38] |
17 | Acrylic resin is embedded with TiO2 nanoparticles | 0.90 | Acrylic resin embedded with carbon black particles | 0.9 | 100 (simulated) | 6 °C (Simulated) | [40] |
18 | Silver Coating | 0.96 | A transparent polymer where randomly distributed silicon dioxide microspheres. The polymer is 50-μm thick and includes 6% of microspheres. | 0.93 | 93 (Experimental) | Not Reported | [82] |
19 | A highly reflective polymer on top of a silver film | 0.97 | A polymer | 0.96 | Not Reported | Decrease of the water temperature in contact with the radiator up to 5 °C below the ambient temperature (experimental) | [33] |
20 | Silver Coating | 0.95 | A transparent polymer where randomly distributed silicon dioxide microspheres. The polymer is 50-μm thick and includes 6% of microspheres | 0.86 | Decrease of the water temperature in contact with the radiator up to 10.6 °C below the ambient temperature (experimental) | [93] | |
Paints for Radiative Cooling | |||||||
21 | Low refractive index microspheres of SiO2 | 0.97 | Microspheres of SiO2 | 0.95 | Not reported | 12 °C (experimental) | [83] |
22 | An hierarchically porous poly(vinylidene fluoride-cohexafluoropropene) (P(VdF-HFP)HP) coating | 0.96 | An hierarchically porous poly(vinylidene fluoride-cohexafluoropropene) (P(VdF-HFP)HP) coating | 0.97 | 96 (Experimental) | 6 °C (Experimental) | [94] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santamouris, M.; Feng, J. Recent Progress in Daytime Radiative Cooling: Is It the Air Conditioner of the Future? Buildings 2018, 8, 168. https://doi.org/10.3390/buildings8120168
Santamouris M, Feng J. Recent Progress in Daytime Radiative Cooling: Is It the Air Conditioner of the Future? Buildings. 2018; 8(12):168. https://doi.org/10.3390/buildings8120168
Chicago/Turabian StyleSantamouris, Mattheos, and Jie Feng. 2018. "Recent Progress in Daytime Radiative Cooling: Is It the Air Conditioner of the Future?" Buildings 8, no. 12: 168. https://doi.org/10.3390/buildings8120168
APA StyleSantamouris, M., & Feng, J. (2018). Recent Progress in Daytime Radiative Cooling: Is It the Air Conditioner of the Future? Buildings, 8(12), 168. https://doi.org/10.3390/buildings8120168