Commenting on Top Spanish YouTubers: “No Comment”
Abstract
:1. Introduction
1.1. YouTube: Broadcast Yourself
1.2. YouTubers
1.3. Commenting on YouTuber Videos
1.4. Sentiment Analysis
2. Method
- -
- Sample of channels: 10 channels were chosen from a ranking of the 250 accounts with the most subscribers according to SocialBlade (September 2018). The selection criteria for the channels were: Spanish YouTuber channels with the most subscribers, together with the presence of monetization and parallel profiles on other social networks (Facebook and Twitter).
- -
- Sample of videos and comments: The selection was based on two levels:Level 1 (comment content): From each channel, only the most recent video in the period studied and with the most views was chosen, resulting in a sample of 10 videos that allowed for the collection of 8598 comments. The criterion of the most recent video was chosen due to the nature of the software used to extract details from the comments (NVivo Capture), which allows access to the last 1000 comments on the video at the time of capture. By choosing the most recent videos, we could maximize the capture of comments at the beginning of the conversation thread, although in some cases the volume of comments was very high and it was not possible to capture the first comments. On three channels the comments did not reach the maximum number of 1000 that could be captured by NVivo 12. This level was used to answer research questions Q1–Q5.Level 2 (comment polarity and subjectivity): 100 videos were chosen, made up of the 10 videos with the most views in the study period on each of the 10 previously identified channels. These 100 videos generated a sample of 1,141,091 comments. This level was used for research questions Q6–Q11.
- -
- Subjectivity of conversation: objective or subjective (+0.0 => +1.0). The value of +1.0 is the highest level of subjectivity and 0 is the highest level of objectivity.
- -
- Polarity of conversation sentiment: Negative or positive (−1.0 => +1.0). The value of 0 denotes neutrality.
3. Results
3.1. General Interaction Metrics for Channels and Videos Selected (Level 1)
3.2. Analysis of Comments on the 10 Videos in the Sample (Level 1)
3.3. Sentiment Analysis: Polarity and Subjectivity (Level 2)
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AMDIA. 2015. Social Media: La Revolución de las Redes Sociales. Available online: www.amdia.org.ar (accessed on 9 October 2018).
- Benevenuto, Fabrício, Adriano C. M. Pereira, Tiago Rodrigues, Virgilio Almeida, Jussara Almeida, and Marcos André Gonçalves. 2010. Characterization and analysis of user profiles in online video sharing systems. Journal of Information and Data Management 1: 261–75. [Google Scholar]
- Boyd, Michael S. 2014. (New) participatory framework on YouTube? Commenter interaction in US political speeches. Journal of Pragmatics 72: 46–58. [Google Scholar] [CrossRef]
- Chang, Pamara F., Janis Whitlock, and Natalya N. Bazarova. 2018. “To Respond or not to Respond, that is the Question”: The Decision-Making Process of Providing Social Support to Distressed Posters on Facebook. Social Media & Society 4: 1–11. [Google Scholar] [CrossRef]
- Chau, Clement. 2010. YouTube as a participatory culture. New Directions for Youth Development 128: 65–74. [Google Scholar] [CrossRef] [PubMed]
- Cheong, France, and Christopher Cheong. 2011. Social Media Data Mining: A Social Network Analysis of Tweets During The 2010–2011 Australian Floods. Pacific Asia Conference on Information Systems, PACIS 2011: Quality Research in Pacific Asia, Brisbane, Queensland, Australia. Available online: http://bit.ly/cheong-cheong-2011 (accessed on 23 September 2018).
- Choi, Kyungsub Steve. 2003. Imposing computer-mediated communication theories on virtual reality. Paper presented at International Conference on Information Technology: Research and Education, Newark, NJ, USA, August 11–13; Newark: IEEE. [Google Scholar] [CrossRef]
- Cialdini, Robert B. 2001. Influence: Science and Practice, 4th ed. Boston: Allyn & Bacon. [Google Scholar]
- Del Pino-Romero, Cristina, and Araceli Castelló-Martínez, eds. 2017. La estrategia publicitaria basada en influencers. El caso de SmartGirl by Samsung. In Publicidad y Convergencia mediática. Nuevas Estrategias de Comunicación Persuasive. Sevilla: Egregius Ediciones, pp. 116–46. Available online: http://bit.ly/publicidad-convergencia-mediatica (accessed on 11 December 2018).
- Dynel, Marta. 2014. Participation framework underlying YouTube interaction. Journal of Pragmatics 73: 37–52. [Google Scholar] [CrossRef]
- Eckler, Petya, and Paul Bolls. 2011. Spreading the virus: Emotional tone of viral advertising and its effect on forwarding intentions and attitudes. Journal of Interactive Advertising 11: 1–11. [Google Scholar] [CrossRef]
- Feixas, Daniel, Ernest Codina, and Roger Carandell. 2014. Cómo triunfar en YouTube. Barcelona: La Galera. [Google Scholar]
- Frobenius, Maximiliane. 2014. Audience design in monologues: How vloggers involve their viewers. Journal of Pragmatics 72: 59–72. [Google Scholar] [CrossRef]
- Gallardo-Camacho, Jorge, and Ana Jorge Alonso. 2010. La baja interacción del espectador de vídeos en Internet: caso YouTube España. Revista Latina de Comunicación Social 65: 421–35. [Google Scholar] [CrossRef]
- Galtung, Johan, and Mari Ruge. 1973. Structuring and selecting news. In The Manufacture of News: Social Problems, Deviance and the Mass Media. Thousand Oaks: Sage, vol. 1, pp. 62–72. [Google Scholar]
- García-Jiménez, Antonio, Beatriz Catalina García, and María Cruz López de Ayala. 2016. Adolescents and YouTube creation, participation and consumption. Prisma Social: Revista de Ciencias Sociales 1: 60–89. [Google Scholar]
- Hagerstrom, Amy, Alhabash Saleem, and Kononova Anastasia. 2014. Emotional dimensionality and online ad virality: Investigating the effects of affective valence and content arousingness on processing and effectiveness of viral ads. American Academy of Advertising. Paper presented at the Annual Meeting of the American Academy of Advertising, Atlanta, GA, USA, March 27–30. [Google Scholar]
- Hidalgo-Marí, Tatiana, and Jesús Segarra-Saavedra. 2017. El fenómeno YouTuber y su expansión transmedia. Análisis del empoderamiento juvenil en redes sociales. Fonseca, Journal of Communication 15: 43–56. [Google Scholar] [CrossRef]
- IAB Spain. 2018. Estudio Anual Redes Sociales 2018. Available online: http://bit.ly/iabspain-2018 (accessed on 9 March 2019).
- Jamali, Salman, and Huzefa Rangwala. 2009. Digging Digg: Comment Mining, Popularity Prediction, and Social Network Analysis. Paper presented at the 2009 International Conference on Web Information Systems and Mining, Shanghai, China, Novermber 7–8; Shanghai: IEEE, pp. 32–38. [Google Scholar] [CrossRef]
- Kavoori, Anandam. 2015. Making sense of YouTube. Global Media Journal 13: 1–25. [Google Scholar]
- Khan, M. Laeeq. 2017. Social media engagement: What motivates user participation and consumption on YouTube? Computers in Human Behavior 66: 236–47. [Google Scholar] [CrossRef]
- Kim, Youngju. 2015. Exploring the Effects of Source Credibility and Others’ Comments on Online News Evaluation. Electronic News 9: 160–76. [Google Scholar] [CrossRef]
- Kirby, Justin. 2004. Getting the Bug. Brand Strategy 184: 33. [Google Scholar]
- Krishna, Amar. 2014. Polarity Trend Analysis of Public Sentiment on YouTube. Master’s thesis, Iowa State University, Ames, IA, USA. [Google Scholar] [CrossRef]
- Ksiazek, Thomas B., Limor Peer, and Kevin Lessard. 2014. User engagement with online news: Conceptualizing interactivity and exploring the relationship between online news videos and user comments. New Media & Society 18: 502–20. [Google Scholar] [CrossRef]
- Lange, Patricia G. 2007. Commenting on Comments: Investigating Responses to Antagonism on YouTube. Paper Presented at Society for Applied Anthropology Conference, Tampa, FL, USA, March 31; Annenberg Center for Communication, vol. 31, pp. 163–90. Available online: http://bit.ly/lange-2007 (accessed on 15 March 2018).
- Lavado, Antonio. 2013. El consumo de YouTube en España. Global Media Journal México 7: 76–92. [Google Scholar]
- Lee, Eun-Ju. 2012. That’s Not the Way It Is: How User-Generated Comments on the News Affect Perceived Media Bias. Journal of Computer-Mediated Communication 18: 32–45. [Google Scholar] [CrossRef]
- Lee, Eun-Ju, and Yoon Jae Jang. 2010. What Do Others’ Reactions to News on Internet Portal Sites Tell Us? Effects of Presentation Format and Readers’ Need for Cognition on Reality Perception. Communication Research 37: 825–46. [Google Scholar] [CrossRef]
- Lee, Jong Gun, Sue Moon, and Kave Salamatian. 2010. An approach to model and predict the popularity of online contents with explanatory factors. Paper presented at the International Conference on Web Intelligence and Intelligent Agent Technology, Toronto, ON, Canada, August 31–September 3; New York: IEEE, pp. 623–30. [Google Scholar]
- Madden, Amy, Ian Ruthven, and David Mcmenemy. 2013. A classification scheme for content analyses of YouTube video comments. Journal of Documentation 69: 693–714. [Google Scholar] [CrossRef]
- Maniou, Theodora A., and Philemon Bantimaroudis. 2018. Hybrid salience: Examining the role of traditional and digital media in the rise of the Greek radical left. Journalism, 1–18. [Google Scholar] [CrossRef]
- Murolo, Norberto Leonardo. 2010. Post-zapping: Transmite tú mismo. YouTube como la televisión posmoderna. Razón y Palabra 71: 15. [Google Scholar]
- Pang, Bo, and Lillian Lee. 2008. Opinion mining and sentiment analysis. Foundations and Trends in Information Retrieval 2: 1–90. [Google Scholar] [CrossRef]
- Phelps, Joseph E., Regina Lewis, Lynne Mobilio, David K. Perry, and Niranjan Raman. 2004. Viral Marketing or Electronic Word-of-Mouth Advertising: Examining Consumer Responses and Motivations to Pass Along Email. Journal of Advertising Research 44: 333–49. [Google Scholar] [CrossRef]
- Ramos-Serrano, Marina, and Paula Herrero-Diz. 2016. Unboxing and brands: youTubers phenomenon through the case study of EvanTubeHD. Prisma Social: Revista de Ciencias Sociales 1: 90–120. [Google Scholar]
- Rego, Sandra, and Luis M. Romero-Rodríguez. 2016. Representación discursiva y lenguaje de los youTubers españoles: estudio de caso de los gamers más populares. Index Comunicación 6: 197–224. [Google Scholar]
- Rotman, Dana, and Jennifer Preece. 2010. The ‘WeTube’ in YouTube—Creating an Online Community through Video Sharing. International Journal of Web Based Communities 6: 317–33. [Google Scholar] [CrossRef]
- Rull, Antonio. 2014. Ser Youtuber es un Infierno Creativo. El Diario. May 14. Available online: http://bit.ly/rull-2014 (accessed on 8 October 2018).
- Sabich, María Agustina, and Lorena Steinberg. 2017. Discursividad youTuber: afecto, narrativas y estrategias de socialización en comunidades de Internet. Revista Mediterránea de Comunicación/Mediterranean Journal of Communication 8: 171–88. [Google Scholar] [CrossRef]
- Sáez Barneto, Gloria, and Jorge Gallardo Camacho. 2017. La relación de los youTubers con la publicidad y sus espectadores. El caso de YouTube España. Telos: Cuadernos de Comunicación e Innovación 107: 47–57. [Google Scholar]
- Scolari, Carlos, and Damián Fraticelli. 2016. Nuevos sujetos mediáticos en el ecosistema de medios: el caso de los youTubers españoles. Paper presented at V Congreso de la Asociación Argentina de Estudios De Cine y Audiovisual (ASAECA), Bernal, Argentina, August 19; Available online: http://bit.ly/scolari-fraticelli-2016 (accessed on 12 October 2018).
- Siersdorfer, Stefan, Sergiu Chelaru, Wolfgang Nejdl, and Jose San Pedro. 2010. How Useful are Your comments? Analyzing and Predicting YouTube Comments and Comment Ratings. Paper presented at the 19th International Conference on World Wide Web, Raleigh, NC, USA, April 26–30; Raleigh: ACM, pp. 891–900. Available online: http://bit.ly/siersdorfer-et-al-2010 (accessed on 23 November 2018).
- Stroud, Natalie Jomini, Emily Van Duyn, and Cynthia Peacock. 2016. News Commenters and New Comment Readers. Engaging New Projects 1: 1–21. [Google Scholar]
- Sureka, Ashish, Ponnurangam Kumaraguru, Atul Goyal, and Sidharth Chhabra. 2010. Mining YouTube to Discover Extremist Videos, Users and Hidden Communities. In Information Retrieval Technology. AIRS 2010. Lecture Notes in Computer Science. Edited by Pu-Jen Cheng, Min-Yen Kan, Wai Lam and Preslav Nakov. Berlin and Heidelberg: Springer, vol. 6458, pp. 13–24. [Google Scholar] [CrossRef]
- Tannen, Deborah. 1999. The Argument Culture: Stopping America’s War of Words. New York: Ballantine. [Google Scholar]
- Thelwall, Mike, Kevan Buckley, and Georgios Paltoglou. 2012. Sentiment strength detection for the social web. Journal of the American Society for Information Science and Technology 63: 163–73. [Google Scholar] [CrossRef]
- Tur-Viñes, Victoria, Patricia Núñez Gómez, and María-José González-Río. 2018. Menores influyentes en YouTube. Un espacio para la responsabilidad. Revista Latina de Comunicación Social 73: 1211–30. [Google Scholar] [CrossRef]
- Vilares, Manuel, Elena Sánchez Trigo, Carlos Gómez-Rodríguez, and Miguel A. Alonso. 2017. Tecnologías de la lengua para análisis de opiniones en redes sociales. Procesamiento del Lenguaje Natural 59: 125–28. [Google Scholar]
- Von Sikorski, Christian, and Maria Hänelt. 2016. Scandal 2.0: How Valenced Reader Comments Affect Recipients’ Perception of Scandalized Individuals and the Journalistic Quality of Online News. Journalism & Mass Communication Quarterly 93: 551–71. [Google Scholar] [CrossRef]
- Weber, Patrick. 2013. Discussions in the comments section: Factors influencing participation and interactivity in online newspapers’ reader comments. New Media & Society 16: 941–57. [Google Scholar] [CrossRef]
Channel Name | Topic | Subscribers (M) (21/02/2019) | Video Title | Video Type | Date and Time | Duration | |
---|---|---|---|---|---|---|---|
1 | elrubiusOMG | VIDEO GAMES | 33 | EL NUEVO GENIO DE ALADDIN | Vlog | 19/02/2019 14:03 | 0:10:39 |
2 | VEGETTA777 | VIDEO GAMES | 25 | FORTNITE - MINIJUEGO *PINBALL LOCO* (MODO CREATIVO) | Screen-sharing | 25/02/2019 11:33 | 00:14:07 |
3 | TheWillyrex | VIDEO GAMES | 15 | AL LIMITE! | PAINT THE TOWN RED | Screen-sharing | 16/01/2019 16:17 | 00:09:15 |
4 | ExpCaseros | HOME MADE EXPERIMENTS | 10 | EL INVENTO MÃS ESTÊPIDO Y ASQUEROSO DE AMAZON - REVIENTA GRANOS | Sit-down | 24/01/2019 12:58 | 00:13:18 |
5 | Makiman131 | VIDEO GAMES | 10 | ENTRENANDO COMO UN MILITAR!! PRACTICA MILITAR MAKIMAN | Vlog | 19/02/2019 12:01 | 00:11:17 |
6 | luzugames | VIDEO GAMES | 8.6 | FINAL INCREIBLE! RESIDENT EVIL 2 REMAKE - LUZU | Screen-sharing | 11/02/2019 11:15 | 00:58:12 |
7 | TheGrefg | VIDEO GAMES | 9.6 | MI GRAN VICTORIA EN BLACK OPS 4 *NUEVO CONTENIDO GRATIS* - THEGREFG | Screen-sharing | 24/02/2019 17:43 | 01:48:38 |
8 | sTaXxCraft | VIDEO GAMES | 7.2 | FORTNITE TE DA ESTE CAMUFLAJE GRATIS!! | Screen-sharing | 21/11/2018 20:22 | 00:10:45 |
9 | gymvirtual | VIRTUAL GYM | 6 | CALENDARIO DE EJERCICIOS PARA ADELGAZAR DICIEMBRE | GYMVIRTUAL | Sit-down | 30/11/2018 10:00 | 00:05:43 |
10 | elchurches | VIDEO GAMES | 5.6 | EL NUEVO LADRON PROFESIONAL! SIMULADOR DE LADRON - ELCHURCHES | Screen-sharing | 06/11/2018 11:00 | 00:13:07 |
Video | YouTuber | Views (28/02/2019) | Comments (28/02/2019) | Likes (28/02/2019) | Dis-Likes (28/02/2019) | Polar-Ity | Subjec-Tivity | Comment-View Ratio | Like-View Ratio | Dislike-View Ratio | Comment-Like Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
1.9 | elrubiusOMG | 6,922,305 | 46,305 | 922,619 | 17,323 | 3.6 | 22.62 | 0.7% | 13.3% | 0.3% | 5.0% |
2.1 | VEGETTA777 | 387,239 | 1595 | 42,213 | 786 | N/D | N/D | 0.4% | 10.9% | 0.2% | 3.8% |
3.4 | theWillyrex | 206,277 | 2117 | 19,694 | 1247 | 2.79 | 21.15 | 1.0% | 9.5% | 0.6% | 10.7% |
4.5 | ExpCaseros | 834,523 | 2557 | 23,790 | 1273 | 1.43 | 13.47 | 0.3% | 2.9% | 0.2% | 10.7% |
5.3 | Makiman131 | 556,348 | 2535 | 28,107 | 2193 | −4.83 | 24.53 | 0.5% | 5.1% | 0.4% | 9.0% |
6.1 | luzugames | 167,649 | 1170 | 16,853 | 132 | 12.15 | 28.96 | 0.7% | 10.1% | 0.1% | 6.9% |
7.10 | TheGrefg | 412,418 | 350 | 20,675 | 1120 | 1.43 | 18.49 | 0.1% | 5.0% | 0.3% | 1.7% |
8.6 | sTaXxCraft | 158,551 | 519 | 10,612 | 132 | 16.08 | 22.04 | 0.3% | 6.7% | 0.1% | 4.9% |
9.1 | gymvirtual | 120,144 | 480 | 5641 | 82 | 2.52 | 14.06 | 0.4% | 4.7% | 0.1% | 8.5% |
10.4 | elChurches | 251,897 | 1023 | 21,259 | 295 | −0.92 | 6.47 | 0.4% | 8.4% | 0.1% | 4.8% |
TOTAL | 10,017,351 | 58,651 | 1,111,463 | 24,583 | 0.6% | 11.1% | 0.2% | 5.3% |
Video | YouTuber | NVivo Comments (28/02/2019) | Comments | Replies | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | Number of Different Users | Different Users—Comments | Comments per User | n | % | Number of Different Users | Different Users—Replies | REPLIES PER USER | |||
1 | elrubiusOMG | 1107 | 982 | 88.7% | 943 | 96.1% | 1.0 | 125 | 11.3% | 80 | 63.8% | 1.6 |
2 | VEGETTA777 | 1071 | 1000 | 93.4% | 957 | 95.7% | 1.0 | 71 | 6.7% | 55 | 77.2% | 1.3 |
3 | theWillyrex | 1025 | 1001 | 97.7% | 961 | 96.0% | 1.0 | 24 | 2.3% | 21 | 87.9% | 1.1 |
4 | ExpCaseros | 1048 | 1001 | 95.6% | 948 | 94.7% | 1.1 | 47 | 4.4% | 33 | 70.9% | 1.4 |
5 | Makiman131 | 1048 | 1003 | 95.7% | 955 | 95.2% | 1.1 | 45 | 4.3% | 31 | 69.0% | 1.5 |
6 | luzugames | 1034 | 994 | 96.1% | 964 | 97.0% | 1.0 | 40 | 3.9% | 22 | 55.0% | 1.8 |
7 | TheGrefg | 307 | 217 | 70.5% | 198 | 91.4% | 1.1 | 90 | 29.5% | 65 | 71.8% | 1.4 |
8 | sTaXxCraft | 464 | 360 | 77.6% | 328 | 91.1% | 1.1 | 104 | 22.4% | 77 | 74.2% | 1.3 |
9 | gymvirtual | 480 | 333 | 69.4% | 435 | 130.6% | 0.8 | 147 | 30.6% | 19 | 12.9% | 7.7 |
10 | elChurches | 1014 | 858 | 84.6% | 951 | 110.8% | 0.9 | 156 | 15.4% | 11 | 7.1% | 14.2 |
YT Channels and No. of Subscribers in Millions | Average Polarity of Comments | Average Subjectivity of Comments |
---|---|---|
elrubiusOMG (3.3) | 6.6280 | 22.3090 |
VEGETTA777 (25) | 2.6313 | 8.8888 |
TheWillyrex (15) | 7.8190 | 23.1890 |
ExpCaseros (10) | 4.2230 | 14.3180 |
Makiman131 (10) | 4.5490 | 16.0040 |
Luzugames (8.6) | 8.8640 | 26.3890 |
TheGrefg (9.6) | 5.0500 | 15.2300 |
sTaXxCraft (7.2) | 2.9990 | 5.1100 |
Gymvirtual (6) | 8.2544 | 15.0811 |
ElChurches (5.6) | 1.1070 | 7.1370 |
OVERALL AVERAGE: | 5.28 | 15.50 |
By Video Type | Ratio freq_actions_day/yout_viewCount | Duration | Subjectivity Level | Polarity Level | YT Channel |
---|---|---|---|---|---|
Screen-sharing/collab. | 17.464% | 00:25:02 | >8 points * 16 videos/100 = 16% | >22 points * 13/100 = 13% | VEGETTA777, luzugames |
Sit-down | 5.101% | 00:07:48 | Gymvirtual | ||
Vlog | 1.248% | 00:11:17 | Makiman 131 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tur-Viñes, V.; Castelló-Martínez, A. Commenting on Top Spanish YouTubers: “No Comment”. Soc. Sci. 2019, 8, 266. https://doi.org/10.3390/socsci8100266
Tur-Viñes V, Castelló-Martínez A. Commenting on Top Spanish YouTubers: “No Comment”. Social Sciences. 2019; 8(10):266. https://doi.org/10.3390/socsci8100266
Chicago/Turabian StyleTur-Viñes, Victoria, and Araceli Castelló-Martínez. 2019. "Commenting on Top Spanish YouTubers: “No Comment”" Social Sciences 8, no. 10: 266. https://doi.org/10.3390/socsci8100266
APA StyleTur-Viñes, V., & Castelló-Martínez, A. (2019). Commenting on Top Spanish YouTubers: “No Comment”. Social Sciences, 8(10), 266. https://doi.org/10.3390/socsci8100266