The Use of Natural Bioactive Nutraceuticals in the Management of Tick-Borne Illnesses
Abstract
:1. Introduction
2. Methods
3. Discussion
3.1. Specific Agents
3.1.1. Alchornea cordifolia Extracts
3.1.2. Allicin (Garlic)
3.1.3. Andrographis paniculata
3.1.4. Artemisia annua
3.1.5. Berberis vulgaris/Berberine
3.1.6. Cinnamomum (Cinnamon)
3.1.7. Cistus creticus
3.1.8. Cryptolepis sanguinolenta
3.1.9. Dipsacus sylvestris/Dipsacus fullonum (Teasel Root)
3.1.10. Eugenia caryophyllata (Syzigium aromaticum L. (Myrtaceae)
3.1.11. Grapefruit Seed Extract (GSE)
3.1.12. Juglans nigra (Black Walnut)
3.1.13. Monolaurin
3.1.14. Nigella sativa (Black Cumin)
3.1.15. Oregano
3.1.16. Otoba parvifolia (Banderol)
3.1.17. Piper nigrum (Black Pepper)
3.1.18. Polygonum cuspidatum (Japanese Knotweed)
3.1.19. Rhus coriaria L. (Sumac)
3.1.20. Rosmarinic Acid
3.1.21. Scuttelaria spp., Baicalin, and Baicalein
3.1.22. Stevia rebaudiana
3.1.23. Uncaria tomentosa (Cat’s Claw)
3.1.24. Vitamin C
3.1.25. Vitamin D3
3.2. Combination Protocols Reveal Synergy
4. Miscellaneous
4.1. Synthetic Products
4.1.1. Methylene Blue
4.1.2. Tetraethylthiuram Disulfide (Disulfiram)
4.2. Safety
4.3. Potential Criticisms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Summary of Clinical Impact
Borrelia | Bartonella | Babesia | ||||||
Agent | Identified Active Ingredient | burgdorferi and/or garinii | henselae | Species | ||||
Spirochete | Stationary | Biofilm | Active | Stationary | Biofilm | |||
Allicin (garlic) | Diallyl Disulfide (DADS) | 2 | 16,24 | |||||
Alchornea cordifolia | Ellagic acid | 13 | ||||||
Artemisia annua (Sweet wormwood) | Artemisinin | 13 | 1,7,11 | 1,13 | ||||
Berberis vulgaris | Berberine | 5 | 19,25,21 | |||||
Betula lenta (Birch sweet oil) | Methyl salicylate | 23 | 23 | 23 | ||||
Cinnamomum cassia (Cassia oi) | Cinnamaldehyde | 2,23 | 2,3,23 | 3,23 | 4 | 4 | 29 | |
Cistus creticus and incanus | Carvacrol | 1,3,17,18 | 1,3 | |||||
Cryptolepis sanguinolenta | Cryptoleptine | 1,13 | 1 | 13,31 | 13,31 | 1,13 | ||
Dipsacus sylvestris/Dipsacus fullonum (teasel root ) | Multiple | 6,30 | ||||||
Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae)- Clove | Diallyl Disulfide (DADS) | 3 | 3 | 4 | 4 | 26,27 | ||
Grapefruit see extract (GSE) | Flavanoids/ascorbic acid | 6 | 6 | 4 | ||||
Juglans nigra (black walnut) | Epigallocatechin gallate (EGCG) | 6 | 6 | 1 | 31 | 31 | ||
Kelp | Iodine | 10 | 10 | 10 | ||||
Matricaria chamomilla (Chamomile oil German) | Chamazulene | 23 | 23 | 23 | ||||
Methylene blue | Methylene blue | 7 | 5,8 | 4,5,8 | 8 | 7,35 | ||
Monolaurin (coconut oil) | Lauric acid | 10 | 6,10 | 6,10 | ||||
Nigella sativa (Black cumin) | Thymoquinone | 36 | ||||||
Oregano | Carvacrol & Diallyl Disulfide (DADS) | 3 | 3 | 3 | 4 | 4 | ||
Otoba parvifolia (Banderol) | Otoba parvifolia | 6 | 6 | |||||
Pimenta racemosa (Bay Leaf Oil) | Eugonol | 23 | 23 | 23 | ||||
Piper nigrum (Black Pepper) | B-Caryophyllene (BCP) | 16 | ||||||
Polygonum cuspidatum (Japanese knotweed) | Resveratrol | 1 | 1 | 31 | 31 | 1,13 | ||
Rhus coriaria L. (Sumac) | Multiple | 26 | ||||||
Rosmarinic acid | Diallyl Disulfide (DADS) | 10,28 | ||||||
Scutellaria baicalensis (Chineses skullcap) | Baicalein | 1,10,20 | 1,10,20 | 10,2 | 13 | |||
Stevia | Stevioside and rebaudioside | 6,14 | 6,14 | 6,14 | ||||
Tetraethylthiuram Disulfide (Disulfiram) | Bis(diethylthiocarbamoyl)disulfide | 33,34 | 33 | 34,35 | ||||
Thymus vulgaris (Thyme oil) | Thymol | 23 | 23 | 23 | ||||
Uncaria tomentosa (Cat’s claw) | Isopteropodine & rynchophylline | 6 | 1,6 | 6 | ||||
Vitamin C | Ascorbic acid | 10,28 | ||||||
Vitamin D3 | Cholecalciferol | 10,28 |
Appendix B. Reference Key for Appendix A
1. Feng, J.; Leone, J.; Schweig, S.; Zhang, Y. Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of B. burgdorferi. Front. Med. 2020, 7, 6, https://doi.org/10.3389/fmed.2020.00006. |
2. Feng, J.; Shi, W.; Miklossy, J.; Tauxe, G.M.; McMeniman, C.J.; Zhang, Y. Identification of Essential Oils with Strong Activity against Stationary Phase Borrelia burgdorferi. Antibiotics 2018, 7, 89, https://doi.org/10.3390/antibiotics7040089. |
3. Feng, J.; Zhang, S.; Shi, W.; Zubcevik, N.; Miklossy, J.; Zhang, Y. Selective Essential Oils from Spice or Culinary Herbs Have High Activity against Stationary Phase and Biofilm Borrelia burgdorferi. Front. Med. 2017, 4, 169–169, https://doi.org/10.3389/fmed.2017.00169. |
4. Ma, X.; Shi, W.; Zhang, Y. Essential Oils with High Activity against Stationary Phase Bartonella henselae. Antibiotics 2019, 8, 246, https://doi.org/10.3390/antibiotics8040246. |
5. Li, T.; Feng, J.; Xiao, S.; Shi, W.; Sullivan, D.; Zhang, Y. Identification of FDA-Approved Drugs with Activity against Stationary Phase Bartonella henselae. Antibiotics 2019, 8, 50, https://doi.org/10.3390/antibiotics8020050. |
6. Goc, A.; Rath, M. The anti-borreliae efficacy of phytochemicals and micronutrients: an update. Ther. Adv. Infect. Dis. 2016, 3, 75–82, https://doi.org/10.1177/2049936116655502. |
7. Feng, J.; Weitner, M.; Shi, W.; Zhang, S.; Sullivan, D.; Zhang, Y. Identification of Additional Anti-Persister Activity against Borrelia burgdorferi from an FDA Drug Library. Antibiotics 2015, 4, 397–410, https://doi.org/10.3390/antibiotics4030397. |
8. Zheng, X.; Ma, X.; Li, T.; Shi, W.; Zhang, Y. Effect of different drugs and drug combinations on killing stationary phase and biofilms recovered cells of Bartonella henselae in vitro. BMC Microbiol. 2020, 20, 87–9, https://doi.org/10.1186/s12866-020-01777-9. |
9. Feng, J.; Wang, T.; Shi, W.; Zhang, S.; Sullivan, D.; Auwaerter, P.G.; Zhang, Y. Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library. Emerg. Microbes Infect. 2014, 3, 1-8, https://doi.org/10.1038/emi.2014.53 |
10. Goc, A.; Niedzwiecki, A.; Rath, M. In vitro evaluation of antibacterial activity of phytochemicals and micronutrients against Borrelia burgdorferi and Borrelia garinii. J. Appl. Microbiol. 2015, 119, 1561–1572, https://doi.org/10.1111/jam.12970. |
11. Feng, J.; Eshi, W.; Ezhang, S.; Esullivan, D.; Auwaerter, P.G.; Ezhang, Y. A Drug Combination Screen Identifies Drugs Active against Amoxicillin-Induced Round Bodies of In Vitro Borrelia burgdorferi Persisters from an FDA Drug Library. Front. Microbiol. 2016, 7, 743, https://doi.org/10.3389/fmicb.2016.00743. |
12. Feng, J.; Zhang, S.; Shi, W.; Zhang, Y. Activity of Sulfa Drugs and Their Combinations against Stationary Phase B. burgdorferi In Vitro. 2017, 6, https://doi.org/10.3390/antibiotics6010010. |
13. Zhang, Y.; Alvarez-Manzo, H.; Leone, J.; Schweig, S.; Zhang, Y. Botanical Medicines Cryptolepis sanguinolenta, Artemisia annua, Scutellaria baicalensis, Polygonum cuspidatum, and Alchornea cordifolia Demonstrate Inhibitory Activity Against Babesia duncani. Front. Cell. Infect. Microbiol. 2021, 11, https://doi.org/10.3389/fcimb.2021.624745. |
14. Theophilus, P.A.S.; Victoria, M.J.; Socarras, K.M.; Filush, K.R.; Gupta, K.; Luecke, D.F.; Sapi, E. Effectiveness of Stevia rebaudiana whole leaf extract against the various morphological forms of Borrelia burgdorferi in vitro. Eur. J. Microbiol. Immunol. 2015, 5, 268–280. https://doi.org/10.1556/1886.2015.00031 |
15. Luo, J.; Dong, B.; Wang, K.; Cai, S.; Liu, T.; Cheng, X.; Lei, D.; Chen, Y.; Li, Y.; Kong, J.; et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLOS ONE 2017, 12, e0176883, https://doi.org/10.1371/journal.pone.0176883. |
16. Zhang, Y.; Bai, C.; Shi, W.; Manzo, H.A.; Zhang, Y. Identification of Essential Oils Including Garlic Oil and Black Pepper Oil with High Activity against Babesia duncani. Pathogens 2020, 9, https://doi.org/10.3390/pathogens9060466. |
17. Hutschenreuther, A.; Birkemeyer, C.; Grötzinger, K.; Straubinger, R.; Rauwald, H.W. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi s.s. in vitro. Die Pharm. 2010, 65. |
18. Rauwald, H.W.; Liebold, T.; Grötzinger, K.; Lehmann, J.; Kuchta, K. Labdanum and Labdanes of Cistus creticus and C. ladanifer: Anti-Borrelia activity and its phytochemical profiling. Phytomedicine 2019, 60, 152977, https://doi.org/10.1016/j.phymed.2019.152977. |
19. Batiha, G.E.-S.; Magdy Beshbishy, A.; Adeyemi, O.S.; Nadwa, E.H.; Rashwan, E.K.M.; Alkazmi, L.M.; Elkelish, A.A.; Igarashi, I. Phytochemical Screening and Antiprotozoal Effects of the Methanolic Berberis Vulgaris and Acetonic Rhus Coriaria Extracts. Molecules 2020, 25, 550, https://doi.org/10.3390/molecules25030550. |
20. Goc, A.; Niedzwiecki, A.; Rath, M. Reciprocal cooperation of phytochemicals and micronutrients against typical and atypical forms of Borrelia sp. J. Appl. Microbiol. 2017, 123, 637–650, https://doi.org/10.1111/jam.13523. |
21. Elkhateeb, A.; Yamada, K.; Takahashi, K.; Matsuura, H.; Yamasaki, M.; Maede, Y.; Katakura, K.; Nabeta, K. Anti-Babesial Compounds from Berberis Vulgaris. Nat. Prod. Commun. 2007, 2, https://doi.org/10.1177/1934578x0700200213. |
22. Brorson, O.; Brorson, S.-H. Grapefruit Seed Extract is a Powerful in vitro Agent Against Motile and Cystic Forms of Borrelia burgdorferi sensu lato. Infection 2007, 35, 206–208, https://doi.org/10.1007/s15010-007-6105-0. |
23. Goc, A.; Niedzwiecki, A.; Rath, M. Anti-borreliae efficacy of selected organic oils and fatty acids. BMC Complement. Altern. Med. 2019, 19, 1–11, https://doi.org/10.1186/s12906-019-2450-7. |
24. Salama, A.A.; AbouLaila, M.; Terkawi, M.A.; Mousa, A.; El-Sify, A.; Allaam, M.; Zaghawa, A.; Yokoyama, N.; Igarashi, I. Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites. Parasitol. Res. 2013, 113, 275–283, https://doi.org/10.1007/s00436-013-3654-2. |
25. Subeki; Matsuura, H.; Takahashi, K.; Yamasaki, M.; Yamato, O.; Maede, Y.; Katakura, K.; Suzuki, M.; Trimurningsih; Chairul; et al. Antibabesial Activity of Protoberberine Alkaloids and 20-Hydroxyecdysone from Arcangelisia flava against Babesia gibsoni in Culture. J. Veter- Med Sci. 2005, 67, 223–227, https://doi.org/10.1292/jvms.67.223. |
26. Batiha, G.E.-S.; Beshbishy, A.M.; El-Mleeh, A.; Abdel-Daim, M.M.; Devkota, H.P. Traditional Uses, Bioactive Chemical Constituents, and Pharmacological and Toxicological Activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020, 10, 352, https://doi.org/10.3390/biom10030352. |
27. Batiha, G.E.-S.; Beshbishy, A.M.; Tayebwa, D.S.; Shaheen, H.M.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick-borne Dis. 2019, 10, 949–958, https://doi.org/10.1016/j.ttbdis.2019.04.016. |
28. Goc, A.; Niedzwiecki, A.; Rath, M. Cooperation of Doxycycline with Phytochemicals and Micronutrients Against Active and Persistent Forms of Borrelia sp. Int. J. Biol. Sci. 2016, 12, 1093–1103, https://doi.org/10.7150/ijbs.16060. |
29. Batiha, G.E.-S.; Beshbishy, A.M.; Guswanto, A.; Nugraha, A.; Munkhjargal, T.; Abdel-Daim, M.M.; Mosqueda, J.; Igarashi, I. Phytochemical Characterization and Chemotherapeutic Potential of Cinnamomum verum Extracts on the Multiplication of Protozoan Parasites In Vitro and In Vivo. Molecules 2020, 25, 996, https://doi.org/10.3390/molecules25040996. |
30. Rauwald, H.W.; Liebold, T.; Straubinger, R.K. Growth inhibiting activity of lipophilic extracts from Dipsacus sylvestris Huds. roots against Borrelia burgdorferi s. s. in vitro. 2011, 628–630, https://doi.org/10.1691/PH.2011.0887. |
31. Ma, X.; Leone, J.; Schweig, S.; Zhang, Y. Botanical Medicines With Activity Against Stationary Phase Bartonella henselae. Infect. Microbes Dis. 2021, 3, 158–167, https://doi.org/10.1097/im9.0000000000000069. |
32. Rizk, M.A.; El-Sayed, S.A.E.-S.; Igarashi, I. Ascorbic acid co-administration with a low dose of diminazene aceturate inhibits the in vitro growth of Theileria equi, and the in vivo growth of Babesia microti. Parasitol. Int. 2022, 90, https://doi.org/10.1016/j.parint.2022.102596. |
33. Potula, H.-H.S.K.; Shahryari, J.; Inayathullah, M.; Malkovskiy, A.V.; Kim, K.-M.; Rajadas, J. Repurposing Disulfiram (Tetraethylthiuram Disulfide) as a Potential Drug Candidate against Borrelia burgdorferi In Vitro and In Vivo. Antibiotics 2020, 9, 633, https://doi.org/10.3390/antibiotics9090633. |
34. Liegner, K.B. Disulfiram (Tetraethylthiuram Disulfide) in the Treatment of Lyme Disease and Babesiosis: Report of Experience in Three Cases. Antibiotics 2019, 8, 72, https://doi.org/10.3390/antibiotics8020072. |
35. Carvalho, L.J.M.; Tuvshintulga, B.; Nugraha, A.B.; Sivakumar, T.; Yokoyama, N. Activities of artesunate-based combinations and tafenoquine against Babesia bovis in vitro and Babesia microti in vivo. Parasites Vectors 2020, 13, 1–9, https://doi.org/10.1186/s13071-020-04235-7. |
36. El-Sayed, S.A.E.-S.; Rizk, M.A.; Yokoyama, N.; Igarashi, I. Evaluation of the in vitro and in vivo inhibitory effect of thymoquinone on piroplasm parasites. Parasites Vectors 2019, 12, 37, https://doi.org/10.1186/s13071-019-3296-z. |
References
- Schwartz, A.M.; Hinckley, A.F.; Mead, P.S.; Hook, S.A.; Kugeler, K.J. Surveillance for Lyme Disease—United States, 2008–2015. MMWR Surveill. Summ. 2017, 66, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, J.S.; Kirstein, F.; Robertson, J.N.; Stein, J.; Kahl, O. Borrelia burgdorferi sensu lato in Ixodes ricinus Ticks and Rodents in a Recreational Park in South-Western Ireland. Exp. Appl. Acarol. 1999, 23, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A.M.; Kugeler, K.J.; Nelson, C.A.; Marx, G.E.; Hinckley, A.F. Evaluation of Commercial Insurance Claims as an Annual Data Source for Lyme Disease Diagnoses. Emerg. Infect. Dis. 2021, 27, 499–507. [Google Scholar] [CrossRef]
- Kugeler, K.J.; Schwartz, A.M.; Delorey, M.J.; Mead, P.S.; Hinckley, A.F. Estimating the Frequency of Lyme Disease Diagnoses—United States, 2010–2018. Emerg. Infect. Dis. 2021, 27, 616–619. [Google Scholar] [CrossRef]
- Aucott, J.N.; Rebman, A.W.; Crowder, L.A.; Kortte, K.B. Post-Treatment Lyme Disease Syndrome Symptomatology and the Impact on Life Functioning: Is There Something Here? Qual. Life Res. 2013, 22, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Shor, S.; Green, C.; Szantyr, B.; Phillips, S.; Liegner, K.; Burrascano, J.J., Jr.; Bransfield, R.; Maloney, E.L. Chronic Lyme Disease: An Evidence-Based Definition by the ILADS Working Group. Antibiotics 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Berger, B.W. Dermatologic Manifestations of Lyme Disease. Rev. Infect. Dis. 1989, 11 (Suppl. 6), S1475–S1481. [Google Scholar] [CrossRef] [PubMed]
- Preac-Mursic, V.; Pfister, H.W.; Spiegel, H.; Burk, R.; Wilske, B.; Reinhardt, S.; Böhmer, R. First Isolation of Borrelia burgdorferi from an Iris Biopsy. J. Clin. Neuroophthalmol. 1993, 13, 155–161. [Google Scholar]
- Schmidli, J.; Hunziker, T.; Moesli, P.; Schaad, U.B. Cultivation of Borrelia burgdorferi from Joint Fluid Three Months after Treatment of Facial Palsy Due to Lyme Borreliosis. J. Infect. Dis. 1988, 158, 905–906. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, M.; Ruben, F.L.; Steere, A.C.; Duray, P.H.; Norden, C.W.; Winkelstein, A. Fatal Adult respiratory distress syndrome in a patient with Lyme disease. JAMA 1988, 259, 2737–2739. [Google Scholar] [CrossRef]
- Preac-Mursic, V.; Weber, K.; Pfister, H.W.; Wilske, B.; Gross, B.; Baumann, A.; Prokop, J. Survival of Borrelia burgdorferi in antibiotically treated patients with Lyme borreliosis. Infection 1989, 17, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Pfister, H.W.; Preac-Mursic, V.; Wilske, B.; Schielke, E.; Sorgel, F.; Einhaupl, K.M. Randomized comparison of ceftriaxone and cefotaxime in Lyme neuroborreliosis. J. Infect. Dis. 1991, 163, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Liegner, K.B.; Shapiro, J.R.; Ramsay, D.; Halperin, A.; Hogrefe, W.; Kong, L. Recurrent erythema migrans despite extended antibiotic treatment with minocycline in a patient with persisting Borrelia burgdorferi infection. J. Am. Acad. Dermatol. 1993, 28 (Pt 2), 312–314. [Google Scholar] [CrossRef]
- Strle, F.; Preac-Mursic, V.; Cimperman, J.; Ruzic, E.; Maraspin, V.; Jereb, M. Azithromycin versus doxycycline for treatment of erythema migrans: Clinical and microbiological findings. Infection 1993, 21, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Wilske, B.; Preac-Mursic, V.; Thurmayr, R. Azithromycin versus penicillin V for the treatment of early Lyme borreliosis. Infection 1993, 21, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Battafarano, D.F.; Combs, J.A.; Enzenauer, R.J.; Fitzpatrick, J.E. Chronic septic arthritis caused by Borrelia burgdorferi. Clin. Orthop. Relat. Res. 1993, 297, 238–241. [Google Scholar] [CrossRef]
- Chancellor, M.B.; McGinnis, D.E.; Shenot, P.J.; Kiilholma, P.; Hirsch, I.H. Urinary dysfunction in Lyme disease. J. Urol. 1993, 149, 26–30. [Google Scholar] [CrossRef]
- Bradley, J.F.; Johnson, R.C.; Goodman, J.L. The persistence of spirochetal nucleic acids in active Lyme arthritis. Ann. Intern. Med. 1994, 120, 487–489. [Google Scholar] [CrossRef]
- Lawrence, C.; Lipton, R.B.; Lowy, F.D.; Coyle, P.K. Seronegative chronic relapsing neuroborreliosis. Eur. Neurol. 1995, 35, 113–117. [Google Scholar] [CrossRef]
- Strle, F.; Maraspin, V.; Lotric-Furlan, S.; Ruzic-Sabljic, E.; Cimperman, J. Azithromycin and doxycycline for treatment of Borrelia culture-positive erythema migrans. Infection 1996, 24, 64–68. [Google Scholar] [CrossRef]
- Oksi, J.; Nikoskelainen, J.; Viljanen, M.K. Comparison of oral cefixime and intravenous ceftriaxone followed by oral amoxicillin in disseminated Lyme borreliosis. Eur. J. Clin. Microbiol. Infect. Dis. 1998, 17, 715–719. [Google Scholar] [CrossRef]
- Priem, S.; Burmester, G.R.; Kamradt, T.; Wolbart, K.; Rittig, M.G.; Krause, A. Detection of Borrelia burgdorferi by polymerase chain reaction in synovial membrane, but not in synovial fluid from patients with persisting Lyme arthritis after antibiotic therapy. Ann. Rheum. Dis. 1998, 57, 118–121. [Google Scholar] [CrossRef]
- Hudson, B.J.; Stewart, M.; Lennox, V.A.; Fukunaga, M.; Yabuki, M.; Macorison, H.; Kitchener-Smith, J. Culture-positive Lyme borreliosis. Med. J. Aust. 1998, 168, 500–502. [Google Scholar] [CrossRef] [PubMed]
- Oksi, J.; Marjamaki, M.; Nikoskelainen, J.; Viljanen, M.K. Borrelia burgdorferi detected by culture and PCR in clinical relapse of disseminated Lyme borreliosis. Ann. Med. 1999, 31, 225–232. [Google Scholar] [CrossRef]
- Breier, F.; Khanakah, G.; Stanek, G.; Kunz, G.; Aberer, E.; Schmidt, B.; Tappeiner, G. Isolation and polymerase chain reaction typing of Borrelia afzelii from a skin lesion in a seronegative patient with generalized ulcerating bullous lichen sclerosus et atrophicus. Br. J. Dermatol. 2001, 144, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Hunfeld, K.P.; Ruzic-Sabljic, E.; Norris, D.E.; Kraiczy, P.; Strle, F. In vitro susceptibility testing of Borrelia burgdorferi sensu lato isolates cultured from patients with erythema migrans before and after antimicrobial chemotherapy. Antimicrob. Agents Chemother. 2005, 49, 1294–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, A.; Telford, S.R.; Turk, S.P.; Chung, E.; Williams, C.; Dardick, K.; Krause, P.J.; Brandeburg, C.; Crowder, C.D.; Carolan, H.E.; et al. Xenodiagnosis to detect Borrelia burgdorferi infection: A first-in-human study. Clin. Infect. Dis. 2014, 58, 937–945. [Google Scholar] [CrossRef]
- Embers, M.E.; Barthold, S.W.; Borda, J.T.; Bowers, L.; Doyle, L.; Hodzic, E.; Jacobs, M.B.; Hasenkampf, N.R.; Martin, D.S.; Narasimhan, S.; et al. Persistence of Borrelia burgdorferi in Rhesus Macaques following antibiotic treatment of disseminated infection. PLoS ONE 2012, 7, e29914. [Google Scholar] [CrossRef]
- Hodzic, E.; Feng, S.; Holden, K.; Freet, K.J.; Barthold, S.W. Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob. Agents Chemother. 2008, 52, 1728–1736. [Google Scholar] [CrossRef] [Green Version]
- Barthold, S.W.; Hodzic, E.; Imai, D.M.; Feng, S.; Yang, X.; Luft, B.L. Ineffectiveness of tigecycline against persistent Borrelia burgdorferi. Antimicrob. Agents Chemother. 2010, 54, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straubinger, R.K.; Summers, B.A.; Chang, Y.F.; Appel, M.J. Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J. Clin. Microbiol. 1997, 35, 111–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Embers, M.E.; Hasenkampf, N.R.; Jacobs, M.B.; Tardo, A.C.; Doyle-Meyers, L.A.; Philipp, M.T.; Hodzic, E. Variable manifestations, diverse seroreactivity and post-treatment persistence in non-human primates exposed to Borrelia burgdorferi by tick feeding. PLoS ONE 2017, 12, e0189071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudenko, N.; Golovchenko, M.; Kybicova, K.; Vancova, M. Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasites Vectors 2019, 12, 237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brorson, O.; Brorson, S.H. In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium. Infection 1998, 26, 144–150. [Google Scholar] [CrossRef]
- Murgia, R.; Cinco, M. Induction of cystic forms by different stress conditions in Borrelia burgdorferi. APMIS 2004, 112, 57–62. [Google Scholar] [CrossRef]
- Sapi, E.; Bastian, S.L.; Mpoy, C.M.; Scott, S.; Rattelle, A.; Pabbati, N.; Poruri, A.; Burugu, D.; Theophilus, P.A.; Pham, T.V.; et al. Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS ONE 2012, 7, e48277. [Google Scholar] [CrossRef]
- Sapi, E.; Kaur, N.; Anyanwu, S.; Luecke, D.F.; Datar, A.; Patel, S.; Rossi, M.; Stricker, R.B. Evaluation of in-vitro antibiotic susceptibility of different morphological forms of Borrelia burgdorferi. Infect. Drug Resist. 2011, 4, 97–113. [Google Scholar]
- Sharma, B.; Brown, A.V.; Matluck, N.E.; Hu, L.T.; Lewis, K. Borrelia burgdorferi, the causative agent of Lyme disease, forms drug-tolerant persister cells. Antimicrob. Agents Chemother. 2015, 59, 4616–4624. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Auwaerter, P.G.; Zhang, Y. Drug Combinations against Borrelia burgdorferi persisters in vitro: Eradication achieved by using daptomycin, cefoperazone and doxycycline. PLoS ONE 2015, 10, e0117207. [Google Scholar] [CrossRef] [Green Version]
- Caskey, J.R.; Embers, M.E. Persister development by Borrelia burgdorferi populations in vitro. Antimicrob. Agents Chemother. 2015, 59, 6288–6295. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Wang, T.; Shi, W.; Zhang, S.; Sullivan, D.; Auwaerter, P.G.; Zhang, Y. Identification of novel activity against Borrelia burgdorferi persisters using an FDA approved drug library. Emerg. Microbes Infect. 2014, 3, e49. [Google Scholar] [CrossRef] [PubMed]
- Sapi, E.; Balasubramanian, K.; Poruri, A.; Maghsoudlou, J.S.; Socarras, K.M.; Timmaraju, A.V.; Filush, K.R.; Gupta, K.; Shaikh, S.; Theophilus, P.A.; et al. Evidence of in vivo existence of Borrelia biofilm in Borrelial lymphocytomas. Eur. J. Microbiol. Immunol. 2016, 6, 9–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Vicente, S.; Tagliafierro, T.; Coleman, J.L.; Benach, J.L.; Tokarz, R. Polymicrobial Nature of Tick-Borne Diseases. mBio 2019, 10, e02055-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Monco, J.C.; Benach, J.L. Lyme Neuroborreliosis: Clinical Outcomes, Controversy, Pathogenesis, and Polymicrobial Infections. Ann. Neurol. 2019, 85, 21–31. [Google Scholar] [CrossRef]
- Citera, M.; Freeman, P.R.; Horowitz, R.I. Empirical validation of the Horowitz Multiple Systemic Infectious Disease Syndrome Questionnaire for suspected Lyme disease. Int. J. Gen. Med. 2017, 10, 249–273. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, R.I.; Freeman, P.R. Precision Medicine: The Role of the MSIDS Model in Defining, Diagnosing, and Treating Chronic Lyme Disease/Post Treatment Lyme Disease Syndrome and Other Chronic Illness: Part 2. Healthcare 2018, 6, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krause, P.J. Human babesiosis. Int. J. Parasitol. 2019, 49, 165–174. [Google Scholar] [CrossRef]
- Dunn, J.M.; Krause, P.J.; Davis, S.; Vannier, E.G.; Fitzpatrick, M.C.; Rollend, L.; Belperron, A.A.; States, S.L.; Stacey, A.; Bockenstedt, L.K.; et al. Borrelia burgdorferi promotes the establishment of Babesia microti in the northeastern United States. PLoS ONE 2014, 9, e115494. [Google Scholar]
- Madison-Antenucci, S.; Kramer, L.D.; Gebhardt, L.L.; Kauffman, E. Emerging Tick-Borne Diseases. Clin. Microbiol. Rev. 2020, 33, e00083-18. [Google Scholar] [CrossRef]
- de la Fuente, J.; Antunes, S.; Bonnet, S.; Cabezas-Cruz, A.; Domingos, A.G.; Estrada-Peña, A.; Johnson, N.; Kocan, K.M.; Mansfield, K.L.; Nijhof, A.M.; et al. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases. Front. Cell. Infect. Microbiol. 2017, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Krause, P.J.; Telford, S.R.; Spielman, A.; Sikand, V.; Ryan, R.; Christianson, D.; Burke, G.; Brassard, P.; Pollack, R.; Peck, J.; et al. Concurrent Lyme disease and babesiosis. Evidence for increased severity and duration of illness. JAMA 1996, 275, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Halperin, J.J.; Steere, A.C.; Klempner, M.S.; Krause, P.J.; Bakken, J.S.; Strle, F.; Stanek, G.; et al. The Clinical Assessment, Treatment and Prevention of Lyme Disease, Human Granulocytic Anaplasmosis, and Babebiosis: Clinical Practice Guidelines by the Infectious Disease Society of America. Clin. Infect. Dis. 2006, 43, 1089–1134. [Google Scholar] [CrossRef] [PubMed]
- Lantos, P.M.; Rumbaugh, J.; Bockenstedt, L.K.; Falck-Ytter, Y.T.; Aguero-Rosenfeld, M.E.; Auwaerter, P.G.; Baldwin, K.; Bannuru, R.R.; Belani, K.K.; Bowie, W.R.; et al. Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA), American Academy of Neurology (AAN), and American College of Rheumatology (ACR): 2020 Guidelines for the Prevention, Diagnosis, and Treatment of Lyme Disease. Arthritis Rheumatol. 2021, 73, 12–20. [Google Scholar] [CrossRef] [PubMed]
- Cameron, D.J.; Johnson, L.B.; Maloney, E.L. Evidence assessments and guideline recommendations in Lyme disease: The clinical management of known tick bites, erythema migrans rashes and persistent disease. Expert. Rev. Anti Infect. Ther. 2014, 12, 1103–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klempner, M.S.; Hu, L.T.; Evans, J.; Schmid, C.H.; Johnson, G.M.; Trevino, R.P.; Norton, D.; Levy, L.; Wall, D.; McCall, J.; et al. Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N. Engl. J. Med. 2001, 345, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Fallon, B.A.; Keilp, J.G.; Corbera, K.M.; Petkova, E.; Britton, C.B.; Dwyer, E.; Slavov, I.; Cheng, J.; Dobkin, J.; Nelson, D.R.; et al. A randomized, placebo-controlled trial of repeated IV antibiotic therapy for Lyme encephalopathy. Neurology 2008, 70, 992–1003. [Google Scholar] [CrossRef] [Green Version]
- Krupp, L.B.; Hyman, L.G.; Grimson, R.; Coyle, P.K.; Melville, P.; Ahnn, S.; Dattwyler, R.; Chandler, B. Study and treatment of post Lyme disease (STOP-LD): A randomized double masked clinical trial. Neurology 2003, 60, 1923–1930. [Google Scholar] [CrossRef]
- DeLong, A.K.; Blossom, B.; Maloney, E.L.; Phillips, S.E. Antibiotic retreatment of Lyme disease: Review of randomized, placebo-controlled, clinical trials. Contemp. Clin. Trials 2012, 33, 1132–1142. [Google Scholar] [CrossRef]
- Cameron, D.J. Generalizability in two clinical trials of Lyme disease. Epidemiol. Perspect. Innov. 2006, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Stricker, R.B. Counterpoint: Long-term antibiotic therapy improves persistent symptoms associated with Lyme disease. Clin. Infect. Dis. 2007, 45, 149–157. [Google Scholar] [CrossRef]
- Nahid, P.; Mase, S.R.; Migliori, G.B.; Sotgiu, G.; Bothamley, G.H.; Brozek, J.L.; Cattamanchi, A.; Cegielski, J.P.; Chen, L.; Daley, C.L.; et al. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2019, 200, e93–e142. [Google Scholar] [CrossRef] [PubMed]
- Bartos, G.; Sheuring, R.; Combs, A.; Rivlin, D. Treatment of histoid leprosy: A lack of consensus. Int. J. Dermatol. 2020, 59, 1264–1269. [Google Scholar] [CrossRef] [PubMed]
- Million, M.; Thuny, F.; Richet, H.; Raoult, D. Long-term outcome of Q fever endocarditis: A 26-year personal survey. Lancet Infect. Dis. 2010, 10, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, R.I.; Murali, K.; Gaur, G.; Freeman, P.R.; Sapi, E. Effect of dapsone alone and in combination with intracellular antibiotics against the biofilm form of B. burgdorferi. BMC Res. Notes. 2020, 13, 455. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [CrossRef] [Green Version]
- Goc, A.; Niedzwiecki, A.; Rath, M. In vitro evaluation of antibacterial activity of phytochemicals and micronutrients against Borrelia burgdorferi and Borrelia garinii. J. Appl. Microbiol. 2015, 119, 1561–1572. [Google Scholar] [CrossRef] [Green Version]
- Goc, A.; Niedzwiecki, A.; Rath, M. Anti-borreliae efficacy of selected organic oils and fatty acids. BMC Complement. Altern. Med. 2019, 19, 40. [Google Scholar] [CrossRef]
- Feng, J.; Leone, J.; Schweig, S.; Zhang, Y. Evaluation of Natural and Botanical Medicines for Activity Against Growing and Non-growing Forms of B. burgdorferi. Front. Med. 2020, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Chorianopoulos, N.G.; Giaouris, E.D.; Skandamis, P.N.; Haroutounian, S.A.; Nychas, G.J.E. Disinfectant test against monoculture and mixed-culture biofilms composed of technological, spoilage and pathogenic bacteria: Bactericidal effect of essential oil and hydrosol of Satureja thymbra and comparison with standard acid-base sanitizers. J. Appl. Microbiol. 2008, 104, 1586–1599. [Google Scholar] [CrossRef]
- Burt, S.A.; Reinders, R.D. Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Lett. Appl. Microbiol. 2003, 36, 162–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Martino, L.; de Feo, V.; Nazzaro, F. Chemical composition and in vitro antimicrobial and mutagenic activities of seven Lamiaceae essential oils. Molecules 2009, 14, 4213–4230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Zhang, S.; Shi, W.; Zubcevik, N.; Miklossy, J.; Zhang, Y. Selective Essential Oils from Spice or Culinary Herbs Have High Activity against Stationary Phase and Biofilm Borrelia burgdorferi. Front. Med. 2017, 4, 169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Alvarez-Manzo, H.; Leone, J.; Schweig, S.; Zhang, Y. Botanical Medicines Cryptolepis sanguinolenta, Artemisia annua, Scutellaria baicalensis, Polygonum cuspidatum, and Alchornea cordifolia Demonstrate Inhibitory Activity Against Babesia duncani. Front. Cell. Infect. Microbiol. 2021, 11, 624745. [Google Scholar] [CrossRef] [PubMed]
- Zhai, X.; Li, L.; Zhang, P.; Guo, Y.; Jiang, H.; He, W.; Li, Y.; Zhang, B.; Yao, D. Evaluation of The Inhibitory Effects of Six Natural Product Extracts Against Babesia Gibsoni In Vitro and In Vivo. J. Parasitol. 2022, 108, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Batiha, G.E.; Beshbishy, A.M.; Guswanto, A.; Nugraha, A.; Munkhjargal, T.; MAbdel-Daim, M.; Mosqueda, J.; Igarashi, I. Phytochemical Characterization and Chemotherapeutic Potential of Cinnamomum verum Extracts on the Multiplication of Protozoan Parasites In Vitro and In Vivo. Molecules 2020, 25, 996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Bai, C.; Shi, W.; Alvarez-Manzo, H.; Zhang, Y. Identification of Essential Oils Including Garlic Oil and Black Pepper Oil with High Activity Against Babesia duncani. Pathogens 2020, 9, 466. [Google Scholar] [CrossRef]
- Chmielewski, T.; Kuśmierczyk, M.; Fiecek, B.; Roguska, U.; Lewandowska, G.; Parulski, A.; Cielecka-Kuszyk, J.; Tylewska-Wierzbanowska, S. Tick-borne pathogens Bartonella spp., Borrelia burgdorferi sensu lato, Coxiella burnetii and Rickettsia spp. may trigger endocarditis. Adv. Clin. Exp. Med. 2019, 28, 937–943. [Google Scholar] [CrossRef] [Green Version]
- Maggi, R.G.; Mozayeni, B.R.; Pultorak, E.L.; Hegarty, B.C.; Bradley, J.M.; Correa, M.; Breitschwerdt, E.B. Bartonella spp. Bacteremia and Rheumatic Symptoms in Patients from Lyme Disease-Endemic Region. Emerg. Infect. Dis. 2012, 18, 783–791. [Google Scholar] [CrossRef]
- Jensen, B.B.; Ocias, L.F.; Andersen, N.S.; Dessau, R.B.; Krogfelt, K.A.; Skarphedinsson, S. Tick-borne infections in Denmark. Ugeskr. Laeger. 2017, 179, V01170027. [Google Scholar]
- Angelakis, E.; Raoult, D. Pathogenicity and treatment of Bartonella infections. Int. J. Antimicrob. Agents 2014, 44, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Shi, W.; Zhang, Y. Essential Oils with High Activity against Stationary Phase Bartonella henselae. Antibiotics 2019, 8, 246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scutera, S.; Mitola, S.; Sparti, R.; Salvi, V.; Grillo, E.; Piersigilli, G.; Bugatti, M.; Alotto, D.; Schioppa, T.; Sozzani, S.; et al. Bartonella henselae Persistence within Mesenchymal Stromal Cells Enhances Endothelial Cell Activation and Infectibility That Amplifies the Angiogenic Process. Infect. Immun. 2021, 89, e0014121. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Feng, J.; Xiao, S.; Shi, W.; Sullivan, D.; Zhang, Y. Identification of FDA-Approved Drugs with Activity against Stationary Phase Bartonella henselae. Antibiotics 2019, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Ma, X.; Li, T.; Shi, W.; Zhang, Y. Effect of Different Drugs and Drug Combinations on Killing Stationary Phase and Biofilms Recovered Cells of Bartonella Henselae In Vitro. BMC Microbiol. 2020, 20, 87. [Google Scholar] [CrossRef]
- Ebi, G.C. Antimicrobial activities of Alchornea cordifolia. Fitoterapia 2001, 72, 69–72. [Google Scholar] [CrossRef]
- Manga, H.M.; Brkic, D.; Marie, D.E.; Quetin-Leclercq, J. In vivo anti-inflammatory activity of Alchornea cordifolia (Schumach. Thonn.) Mull. Arg. (Euphorbiaceae). J. Ethnopharmacol. 2004, 92, 209–214. [Google Scholar] [CrossRef]
- Mustofa, A.; Benoit-Vical, F.; Pelissier, Y.; Kone-Bamba, D.; Mallie, M. Antiplasmodial Activity of Plant Extracts Used in West African Traditional Medicine. J. Ethnopharmacol. 2000, 73, 145–151. [Google Scholar]
- Mesia, G.K.; Tona, G.L.; Nanga, T.H.; Cimanga, R.K.; Apers, S.; Cos, P.; Maes, L.; Pieters, L.; Vlietinck, A.J. Antiprotozoal Cytotoxic Screening of 45 Plant extracts from Democratic Republic of Congo. J. Ethnopharmacol. 2008, 115, 409–415. [Google Scholar] [CrossRef]
- Ayisi, N.K.; Appiah-Opong, R.; Gyan, B.; Bugyei, K.; Ekuban, F. Plasmodium falciparum: Assessment of Selectivity of Action of Chloroquine, Alchornea cordifolia, Ficus polita, and Other Drugs by a Tetrazolium-Based Colorimetric Assay. Malar. Res. Treat 2011, 2011, 816250. [Google Scholar] [CrossRef] [Green Version]
- Boniface, P.K.; Ferreira, S.B.; Kaiser, C.R. Recent Trends in Phytochemistry, Ethnobotany and Pharmacological Significance of Alchornea cordifolia (Schumach. & Thonn.) Muell. Arg. J. Ethnopharmacol. 2016, 191, 216–244. [Google Scholar]
- Gatsing, D.; Nkeugouapi, C.F.N.; Nji-Nkah, B.F.; Kuiate, J.R.; Tchouanguep, F.M. Antibacterial Activity, Bioavailability and Acute Toxicity Evaluation of the Leaf Extract of Alchornea cordifolia (Euphorbiaceae). Int. J. Pharmacol. 2010, 6, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Ajibade, T.O.; Olayemi, F.O. Reproductive and toxic effects of methanol extract of Alchornea cordifolia leaf in male rats. Andrologia 2015, 47, 1034–1040. [Google Scholar] [CrossRef]
- Djimeli, M.N.; Fodouop, S.P.C.; Njateng, G.S.S.; Fokunang, C.; Tala, D.S.; Kengni, F.; Gatsing, D. Antibacterial activities and toxicological study of the aqueous extract from leaves of Alchornea cordifolia (Euphorbiaceae). BMC Complement. Altern. Med. 2017, 17, 349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankri, S.; Mirelman, D. Antimicrobial Properties of Allicin from Garlic. Microbes Infect. 1999, 1, 125–129. [Google Scholar] [CrossRef]
- Feng, J.; Shi, W.; Miklossy, J.; Tauxe, G.M.; McMeniman, C.J.; Zhang, Y. Identification of Essential Oils with Strong Activity against Stationary Phase Borrelia burgdorferi. Antibiotics 2018, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salama, A.A.; AbouLaila, M.; Terkawi, M.A.; Mousa, A.; El-Sify, A.; Allaam, M.; Zaghawa, A.; Yokoyama, N.; Igarashi, I. Inhibitory effect of allicin on the growth of Babesia and Theileria equi parasites. Parasitol. Res. 2014, 113, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Deng, S. Preliminary study on the prevention and treatment of leptospirosis with traditional Chinese medicine. Liaoning J. Tradit. Chin. Med. 1985, 9, 15–17. [Google Scholar]
- World Health Organization. WHO Monograph on Good Agricultural and Collection Practices (GACP) for Artemisia annua L.; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Liu, W.; Liu, Y. Youyou Tu: Significance of winning the 2015 Nobel Prize in Physiology or Medicine. Cardiovasc. Diagn. Ther. 2016, 6, 1–2. [Google Scholar]
- Al-Khayri, J.M.; Sudheer, W.N.; Lakshmaiah, V.V.; Mukherjee, E.; Nizam, A.; Thiruvengadam, M.; Nagella, P.; Alessa, F.M.; Al-Mssallem, M.Q.; Rezk, A.A.; et al. Biotechnological Approaches for Production of Artemisinin, an Anti-Malarial Drug from Artemisia annua L. Molecules 2022, 27, 3040. [Google Scholar] [CrossRef]
- Olliaro, P.L.; Haynes, R.K.; Meunier, B.; Yuthavong, Y. Possible modes of action of the artemisinin-type compounds. Trends Parasitol. 2001, 17, 122–126. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Shi, W.; Zhang, S.; Sullivan, D.; Auwaerter, P.G.; Zhang, Y. A drug combination screen identifies drugs active against amoxicillin-induced round bodies of in vitro Borrelia burgdorferi persisters from an FDA drug library. Front. Microbiol. 2016, 7, 743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Weitner, M.; Shi, W.; Zhang, S.; Sullivan, D.; Zhang, Y. Identification of additional anti-persister activity against Borrelia burgdorferi from an FDA drug library. Antibiotics 2015, 4, 397–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, S.; Omer, T.N.; Omer, B. Wormwood (Artemisia absinthium) suppresses tumor necrosis factor alpha and accelerates healing in patients with Crohn’s disease—A controlled clinical trial. Phytomedicine 2010, 17, 305–309. [Google Scholar] [CrossRef]
- Oryan, A. Plant-derived compounds in the treatment of leishmaniasis. Iran. J. Vet. Res. 2015, 16, 1–19. [Google Scholar]
- Tomosaka, H.; Chin, Y.W.; Salim, A.A.; Keller, W.J.; Chai, H.; Kinghorn, A.D. Antioxidant and cytoprotective compounds from Berberis vulgaris (Barberry). Phytother. Res. 2008, 22, 979–981. [Google Scholar] [CrossRef]
- Mokhber-Dezfuli, N.; Saeidnia, S.; Gohari, A.R.; Kurepaz-Mahmoodabadi, M. Phytochemistry and pharmacology of berberis species. Pharmacogn. Rev. 2014, 8, 8–15. [Google Scholar]
- Mahmoudvand, H.; Sharififar, F.; Sharifi, I.; Ezatpour, B.; Fasihi Harandi, M.; Makki, M.S.; Zia-Ali, N.; Jahanbakhsh, S. In vitro inhibitory effect of Berberis vulgaris (Berberidaceae) and its main component, berberine against different Leishmania species. Iran. J. Parasitol. 2014, 9, 28–36. [Google Scholar]
- Subeki Matsuura, H.; Takahashi, K.; Yamasaki, M.; Yamato, O.; Maede, Y.; Katakura, K.; Suzuki, M.; Trimurningsih Chairul Yoshihara, T. Antibabesial activity of protoberberine alkaloids and 20-hydroxyecdysone from Arcangelisia flava against Babesia gibsonii in culture. J. Vet. Med. Sci. 2005, 67, 223–227. [Google Scholar] [CrossRef] [Green Version]
- Batiha, G.E.; Magdy Beshbishy, A.; Adeyemi, O.S.; Nadwa, E.H.; Rashwan, E.K.M.; Alkazmi, L.M.; Elkelish, A.A.; Igarashi, I. Phytochemical Screening and Antiprotozoal Effects of the Methanolic Berberis vulgaris and Acetonic Rhus coriaria Extracts. Molecules 2020, 25, 550. [Google Scholar] [CrossRef] [Green Version]
- Elkhateeb, A.; Yamada, K.; Takahashi, K.; Matsuura, H.; Yamasaki, M.; Maede, Y.; Katakura, K.; Nabeta, K. Anti-Babesial Compounds from Berberis vulgaris. Nat. Prod. Commun. 2007, 2, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Vasconcelos, N.; Croda, J.; Simionatto, S. Antibacterial Mechanisms of Cinnamon and its Constituents: A Review. Microb. Pathogen. 2018, 120, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Chinou, I.; Demetzos, C.; Harvala, C.; Roussakis, C.; Verbist, J.F. Cytotoxic and antibacterial labdane-type diterpenes from the aerial parts of Cistus incanus subsp. creticus. Planta Med. 1994, 60, 34–36. [Google Scholar] [CrossRef]
- Yesilada, E.; Gürbüz, I.; Shibata, H. Screening of Turkish antiulcerogenic folk remedies for anti-Heliobacter pylori activity. J. Ethnopharmacol. 1999, 66, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Demetzos, C.; Katerinopoulos, H.; Kouvarakis, A.; Stratigakis, N.; Loukis, A.; Ekonomakis, C.; Spiliotis, V.; Tsaknis, J. Composition and antimicrobial activity of the essential oil of Cistus creticus subsp. eriocephalus. Planta Med. 1997, 63, 477–479. [Google Scholar] [CrossRef]
- Demetzos, C.; Mitaku, S.; Couladis, M.; Harvala, C.; Kokkinopoulos, D. Natural metabolites of ent-13-epi-manoyl oxide and other cytotoxic diterpenes from the resin ladano of Cistus creticus. Planta Med. 1994, 60, 590–591. [Google Scholar] [CrossRef]
- Ehrhardt, C.; Hrincius, E.R.; Korte, V.; Mazur, I.; Droebner, K.; Poetter, A.; Dreschers, S.; Schmolke, M.; Planz, O.; Ludwig, S. A polyphenol rich plant extract, CYSTUS052, exerts anti influenza virus activity in cell culture without toxic side effects or the tendency to induce viral resistance. Antivir. Res 2007, 76, 38–47. [Google Scholar] [CrossRef]
- Güvenc, A.; Yildiz, S.; Ozkan, A.M.; Erdurak, C.S.; Coskun, M.; Yilmaz, G.; Okuyama, T.; Okada, Y. Antimicrobiological studies on Turkish Cistus species. Pharm. Biol. 2005, 43, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Bouamama, H.; Villard, J.; Benharref, A.; Jana, M. Antibacterial and antifungal activities of Cistus incanus and C. monspeliensis leaf extracts. Therapie 1999, 54, 731–733. [Google Scholar]
- Bouamama, H.; Noel, T.; Villard, J.; Benharref, A.; Jana, M. Antimicrobial activities of the leaf extracts of two Moroccan Cistus L. species. J. Ethnopharmacol. 2006, 104, 104–107. [Google Scholar] [CrossRef]
- Petereit, F.; Kolodziej, H.; Nahrstedt, A. Flavan-3-ols and Proanthocyanidins from Cistus incanus. Phytochemistry 1991, 30, 981–985. [Google Scholar] [CrossRef]
- Hutschenreuther, A.; Birkemeyer, C.; Grotzinger, K.; Straubinger, R.K.; Rauwald, H.W. Growth inhibiting activity of volatile oil from Cistus creticus L. against Borrelia burgdorferi s.s. in vitro. Pharmazie 2010, 65, 290–295. [Google Scholar] [PubMed]
- Grellier, P.; Ramiaramanana, L.; Millerioux, V.; Deharo, E.; Schrével, J.; Frappier, F.; Trigalo, F.; Bodo, B.; Pousset, J.L. Antimalarial activity of cryptolepine and isocryptolepine, alkaloids isolated from Cryptolepis sanguinolenta. Phytother. Res. 1996, 10, 317–321. [Google Scholar] [CrossRef]
- Tona, L.; Kambu, K.; Ngimbi, N.; Cimanga, K.; Vlietinck, A.J. Antiamoebic and phytochemical screening of some Congolese medicinal plants. J. Ethnopharmacol. 1998, 61, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Mills-Robertson, F.C.; Tay, S.C.; Duker-Eshun, G.; Walana, W.; Badu, K. In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Ansah, C.; Mensah, K.B. A review of the anticancer potential of the antimalarial herbal Cryptolepis sanguinolenta and its major alkaloid cryptolepine. Ghana Med. J. 2013, 47, 137–147. [Google Scholar]
- Hanprasertpong, N.; Teekachunhatean, S.; Chaiwongsa, R.; Ongchai, S.; Kunanusorn, P.; Sangdee, C.; Panthong, A.; Bunteang, S.; Nathasaen, N.; Reutrakul, V. Analgesic, anti-inflammatory, and chondroprotective activities of Cryptolepis buchanani extract: In vitro and in vivo studies. BioMed. Res. Int. 2014, 2014, 978582. [Google Scholar] [CrossRef] [Green Version]
- Osafo, N.; Mensah, K.B.; Yeboah, O.K. Phytochemical and Pharmacological Review of Cryptolepis sanguinolenta (Lindl.) Schlechter. Adv. Pharmacol. Sci. 2017, 2017, 3026370. [Google Scholar] [CrossRef] [Green Version]
- Ameyaw, E.O.; Asmah, K.B.; Biney, R.P.; Henneh, I.T.; Owusu-Agyei, P.; Prah, J.; Forkuo, A.D. Isobolographic analysis of co-administration of two plant-derived antiplasmodial drug candidates, cryptolepine and xylopic acid, in Plasmodium berghei. Malar. J. 2018, 7, 153. [Google Scholar] [CrossRef]
- Bugyei, K.A.; Boye, G.L.; Addy, M.E. Clinical efficacy of a tea-bag formulation of Cryptolepis sanguinolenta root in the treatment of acute uncomplicated falciparum malaria. Ghana Med. J. 2010, 44, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Tempesta, M.S. The clinical efficacy of Cryptolepis sanguinolenta in the treatment of malaria. Ghana Med. J. 2010, 44, 1–2. [Google Scholar] [PubMed]
- Ma, X.; Leone, J.; Schweig, S.; Zhang, Y. Botanical Medicines With Activity Against Stationary Phase Bartonella henselae. Infect. Microbes Dis. 2021, 3, 158–167. [Google Scholar] [CrossRef]
- Ajayi, A.F.; Akhigbe, R.E. Antifertility activity of Cryptolepis sanguinolenta leaf ethanolic extract in male rats. J. Hum. Reprod. Sci. 2012, 5, 43–47. [Google Scholar] [PubMed]
- Mensah, K.B.; Benneh, C.; Forkuo, A.D.; Ansah, C. Cryptolepine, the Main Alkaloid of the Antimalarial Cryptolepis sanguinolenta (Lindl.) Schlechter, Induces Malformations in Zebrafish Embryos. Biochem. Res. Int. 2019, 2019, 7076986. [Google Scholar] [CrossRef] [Green Version]
- Liebold, T.; Straubinger, R.; Rauwald, H. Growth inhibiting activity of lipophilic extracts from Dipsacus sylvestris huds. Roots against Borrelia burgdorferi s. s. in vitro. Pharmazie 2011, 66, 628–630. [Google Scholar] [PubMed]
- Goc, A.; Rath, M. The anti-borreliae efficacy of phytochemicals and micronutrients: An update. Ther. Adv. Infect. Dis. 2016, 3, 75–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batiha, G.E.; Alkazmi, L.M.; Wasef, L.G.; Beshbishy, A.M.; Nadwa, E.H.; Rashwan, E.K. Syzygium aromaticum L. (Myrtaceae): Traditional Uses, Bioactive Chemical Constituents, Pharmacological and Toxicological Activities. Biomolecules 2020, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Batiha, G.E.; Beshbishy, A.M.; Tayebwa, D.S.; Shaheen, H.M.; Yokoyama, N.; Igarashi, I. Inhibitory effects of Syzygium aromaticum and Camellia sinensis methanolic extracts on the growth of Babesia and Theileria parasites. Ticks Tick. Borne Dis. 2019, 10, 949–958. [Google Scholar] [CrossRef]
- Bi, D.; Zhao, Y.; Jiang, R.; Wang, Y.; Tian, Y.; Chen, X.; Bai, S.; She, G. Phytochemistry, bioactivity and potential impact on health of Juglans: The original plant of walnut. Nat. Prod. Commun. 2016, 11, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, T.; Suzuki, Y.J. Juglone in oxidative stress and cell signaling. Antioxidants 2019, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Therapeutic Research Center. Natural Medicines Monograph: Black Walnut. 2019. Available online: https://naturalmedicines.therapeuticresearch.com/ (accessed on 4 March 2019).
- Bonamonte, D.; Foti, C.; Angelini, G. Hyperpigmentation and contact dermatitis due to Juglans regia. Contact Derm. 2001, 44, 102–103. [Google Scholar] [CrossRef]
- Neri, I.; Bianchi, F.; Giacomini, F.; Patrizi, A. Acute irritant contact dermatitis due to Juglans regia. Contact Derm. 2006, 55, 62–63. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.M. Dermatitis due to black walnut juice. AMA Arch. Derm. Syphilol. 1954, 70, 511–513. [Google Scholar] [CrossRef] [PubMed]
- Barker, L.A.; Bakkum, B.W.; Chapman, C. The Clinical Use of Monolaurin as a Dietary Supplement: A Review of the Literature. J. Chiropr. Med. 2019, 18, 305–310. [Google Scholar] [CrossRef]
- Batovska, D.I.; Todorova, I.T.; Tsvetkova, I.V.; Najdenski, H. MAntibacterial study of the medium chain fatty acids and their 1-monoglycerides: Individual effects and synergistic relationships. Pol. J. Microbiol. 2009, 58, 43–47. [Google Scholar]
- El-Sayed, S.A.E.; Rizk, M.A.; Yokoyama, N.; Igarashi, I. Evaluation of the in vitro and in vivo inhibitory effect of thymoquinone on piroplasm parasites. Parasit Vectors. 2019, 12, 37. [Google Scholar] [CrossRef]
- McCormick Science Institute. Resources: Oregano. Available online: https://www.mccormickscienceinstitute.com/resources/culinary-spices/herbs-spices/oregano#:~:text=Oregano%20is%20the%20dried%20leaves,in%20high%20altitude%20Mediterranean%20climates.> (accessed on 14 January 2023).
- Melo, F.H.C.; Moura, B.A.; de Sousa, D.P.; de Vasconcelos, S.M.M.; Macedo, D.S.; Fonteles, M.M.d.F.; Viana, G.S.d.B.; de Sousa, F.C.F. Antidepressant-like effect of carvacrol (5-isopropyl-2- methylphenol) in mice: Involvement of dopaminergic system. Fundam. Clin. Pharm. 2011, 25, 362–367. [Google Scholar] [CrossRef]
- Wu, X.; Li, Q.; Feng, Y.; Ji, Q. Antitumor research of the active ingredients from traditional Chinese medical plant Polygonum cuspidatum. Evid.-Based Complement. Altern. Med. 2018, 2018, 2313021. [Google Scholar] [CrossRef] [Green Version]
- Breuss, J.M.; Atanasov, A.G.; Uhrin, P. Resveratrol and its effects on the vascular system. Int. J. Mol. Sci. 2019, 20, 1523. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.R.; Oh, D.R.; Cha, M.H.; Pyo, B.S.; Rhee, J.H.; Choy, H.E.; Oh, W.K.; Kim, Y.R. Protective effect of polygoni cuspidati radix and emodin on Vibrio vulnificus cytotoxicity and infection. J. Microbiol. 2008, 46, 737–743. [Google Scholar] [CrossRef]
- Pandit, S.; Kim, H.J.; Park, S.H.; Jeon, J.G. Enhancement of fluoride activity against Streptococcus mutans biofilms by a substance separated from Polygonum cuspidatum. Biofouling 2012, 28, 279–287. [Google Scholar] [CrossRef]
- Shan, B.; Cai, Y.Z.; Brooks, J.D.; Corke, H. Antibacterial properties of Polygonum cuspidatum roots and their major bioactive constituents. Food Chem. 2008, 109, 530–537. [Google Scholar] [CrossRef]
- Ghanim, H.; Sia, C.L.; Abuaysheh, S.; Korzeniewski, K.; Patnaik, P.; Marumganti, A.; Chaudhuri, A.; Dandona, P. An antiinflammatory and reactive oxygen species suppressive effects of an extract of Polygonum cuspidatum containing resveratrol. J. Clin. Endocrinol. Metab. 2010, 95, E1–E8. [Google Scholar] [CrossRef] [Green Version]
- la Porte, C.; Voduc, N.; Zhang, G.; Seguin, I.; Tardiff, D.; Singhal, N.; Cameron, D.W. Steady-state pharmacokinetics and tolerability of trans-resveratrol 2000mg twice daily with food, Quercetin and Alcohol (Ethanol) in healthy human subjects. Clin. Pharmacokinet. 2010, 49, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Alsamri, H.; Athamneh, K.; Pintus, G.; Eid, A.H.; Iratni, R. Pharmacological and Antioxidant Activities of Rhus coriaria L. (Sumac). Antioxidants 2021, 10, 73. [Google Scholar] [CrossRef] [PubMed]
- Deguchi, Y.; Ito, M. Rosmarinic acid in Perilla frutescens and perilla herb analyzed by HPLC. J. Nat. Med. 2020, 74, 341–352. [Google Scholar] [CrossRef]
- Goc, A.; Niedzwiecki, A.; Rath, M. Reciprocal cooperation of phytochemicals and micronutrients against typical and atypical forms of Borrelia sp. J. Appl. Microbiol. 2017, 123, 637–650. [Google Scholar] [CrossRef]
- Luo, J.; Dong, B.; Wang, K.; Cai, S.; Liu, T.; Cheng, X.; Lei, D.; Chen, Y.; Li, Y.; Kong, J.; et al. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS ONE 2017, 12, e0176883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, M.; Shiota, S.; Kuroda, T.; Hatano, T.; Yoshida, T.; Mizushima, T.; Tsuchiya, T. Remarkable synergies between baicalein and tetracycline, and baicalein and b-lactams against methicillin-resistant Staphylococcus aureus. Microbiol. Immunol. 2005, 49, 391–396. [Google Scholar] [CrossRef]
- Cai, W.; Fu, Y.; Zhang, W.; Chen, X.; Zhao, J.; Song, W.; Li, Y.; Huang, Y.; Wu, Z.; Sun, R.; et al. Synergistic effects of baicalein with cefotaxime against Klebsiella pneumoniae through inhibiting CTX-M-1 gene expression. BMC Microbiol. 2016, 16, 181. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Qiao, M.; Zhou, Y.; Du, H.; Bai, J.; Yuan, W.; Liu, J.; Wang, D.; Hu, Y.; Wu, Y. In vitro synergistic effect of baicalin with azithromycin against Staphylococcus saprophyticus isolated from francolins with ophthalmia. Poult. Sci. 2019, 98, 373–380. [Google Scholar] [CrossRef]
- Gol’Dberg, V.E.; Ryzhakov, V.M.; Matiash, M.G.; Stepovaia, E.A.; Boldyshev, D.A.; Litvinenko, V.I.; Dygaĭ, A.M. Dry extract of Scutellaria baicalensis as a hemostimulant in antineoplastic chemotherapy in patents with lung cancer. Eksp. Klin. Farmakol. 1997, 60, 28–30. [Google Scholar] [PubMed]
- Smol’Ianinov, E.S.; Gol’Dberg, V.E.; Matiash, M.G.; Ryzhakov, V.M.; Boldyshev, D.A.; Litvinenko, V.I.; Dygaĭ, A.M. Effect of Scutellaria baicalensis extract on the immunologic status of patients with lung cancer receiving antineoplastic chemotherapy. Eksp. Klin. Farmakol. 1997, 60, 49–51. [Google Scholar]
- Zhou, H.C.; Wang, H.; Shi, K.; Li, J.M.; Zong, Y.; Du, R. Hepatoprotective Effect of Baicalein Against Acetaminophen-Induced Acute Liver Injury in Mice. Molecules 2018, 24, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, K.M.; Wang, X.H.; Xue, H. Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site. Planta Med. 2000, 66, 91–93. [Google Scholar] [CrossRef]
- Theophilus, P.A.; Victoria, M.J.; Socarras, K.M.; Filush, K.R.; Gupta, K.; Luecke, D.F.; Sapi, E. Effectiveness of Stevia rebaudiana Whole Leaf Extract Against the Various Morphological Forms of Borrelia Burgdorferi in Vitro. Eur. J. Microbiol. Immunol. 2015, 5, 268–280. [Google Scholar] [CrossRef] [Green Version]
- Anton, S.D.; Martin, C.K.; Han, H.; Coulon, S.; Cefalu, W.T.; Geiselman, P.; Williamson, D.A. Effects of stevia, aspartame, and sucrose on food intake, satiety, and postprandial glucose and insulin levels. Appetite 2010, 55, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Carakostas, M.C.; Curry, L.L.; Boileau, A.C.; Brusick, D.J. Overview: The history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem. Toxicol. 2008, 46 (Suppl. 7), S1–S10. [Google Scholar] [CrossRef] [PubMed]
- Herrera, D.R.; Durand-Ramirez, J.E.; Falcao, A.; Silva, E.J.; Santos, E.B.; Gomes, B.P. Antimicrobial activity and substantivity of Uncaria tomentosa in infected root canal dentin. Braz. Oral Res. 2016, 30, e61. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Li, L.; Holmgren, K.; Pero, R.W. DNA repair enhancement of aqueous extracts of Uncaria tomentosa in a human volunteer study. Phytomedicine 2001, 8, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Piscoya, J.; Rodriguez, Z.; Bustamante, S.A.; Okuhama, N.N.; Miller, M.J.; Sandoval, M. Efficacy and safety of freeze-dried cat’s claw in osteoarthritis of the knee: Mechanisms of action of the species Uncaria guianensis. Inflamm. Res. 2001, 50, 442–448. [Google Scholar] [CrossRef]
- Mur, E.; Hartig, F.; Eibl, G.; Schirmer, M. Randomized double-blind trial of an extract from the pentacyclic alkaloid-chemotype of Uncaria tomentosa for the treatment of rheumatoid arthritis. J. Rheumatol. 2002, 29, 678–681. [Google Scholar]
- Salazar, E.L.; Jayme, V. Depletion of specific binding sites for estrogen receptor by Uncaria tomentosa. Proc. West. Pharmacol. Soc. 1998, 41, 123–124. [Google Scholar] [PubMed]
- Neto, J.N.; Cavalcante, F.L.L.P.; Carvalho, R.A.F.; Rodrigues, T.G.P.D.M.; Xavier, M.S.; Furtado, P.G.R.; Schor, E. Contraceptive effect of Uncaria tomentosa (cat’s claw) in rats with experimental endometriosis. Acta Cirugica Bras. 2011, 26 (Suppl. S2), 15–19. [Google Scholar] [CrossRef] [Green Version]
- Goc, A.; Niedzwiecki, A.; Rath, M. Cooperation of Doxycycline with Phytochemicals and Micronutrients Against Active and Persistent Forms of Borrelia sp. Int. J. Biol. Sci. 2016, 12, 1093–1103. [Google Scholar] [CrossRef] [Green Version]
- Donta, S.T. Issues in the diagnosis and treatment of Lyme disease. Open Neurol. J. 2012, 6, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Rizk, M.A.; El-Sayed, S.A.E.; Igarashi, I. Ascorbic acid co-administration with a low dose of diminazene aceturate inhibits the in vitro growth of Theileria equi, and the in vivo growth of Babesia microti. Parasitol. Int. 2022, 90, 102596. [Google Scholar] [CrossRef] [PubMed]
- Cantorna, M.T. Vitamin D, multiple sclerosis and inflammatory bowel disease. Arch. Biochem. Biophys. 2012, 523, 103–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantorna, M.T.; Hayes, C.E.; DeLuca, H.F. 1,25-Dihydroxycholecalciferol inhibits the progression of arthritis in murine models of human arthritis. J. Nutr. 1998, 128, 68–72. [Google Scholar] [CrossRef] [Green Version]
- Goc, A.; Gehring, G.; Baltin, H.; Niedzwiecki, A.; Rath, M. Specific composition of polyphenolic compounds with fatty acids as an approach in helping to reduce spirochete burden in Lyme disease: In vivo and human observational study. Ther. Adv. Chronic Dis. 2020, 11, 2040622320922005. [Google Scholar] [CrossRef] [PubMed]
- Pushparajah Mak, R.S.; Liebelt, E.L. Methylene Blue: An Antidote for Methemoglobinemia and Beyond. Pediatr. Emerg. Care 2021, 37, 474–477. [Google Scholar] [CrossRef]
- Zoungrana, A.; Coulibaly, B.; Sié, A.; Walter-Sack, I.; Mockenhaupt, F.P.; Kouyaté, B.; Schirmer, R.H.; Klose, C.; Mansmann, U.; Meissner, P.; et al. Safety and efficacy of methylene blue combined with artesunate or amodiaquine for uncomplicated falciparum malaria: A randomized controlled trial from Burkina Faso. PLoS ONE 2008, 3, e1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwok, E.S.; Howes, D. Use of methylene blue in sepsis: A systematic review. J. Intensive Care Med. 2006, 21, 359–363. [Google Scholar] [CrossRef] [PubMed]
- Hillary, S.L.; Guillermet, S.; Brown, N.J.; Balasubramanian, S.P. Use of methylene blue and near-infrared fluorescence in thyroid and parathyroid surgery. Langenbecks Arch. Surg. 2018, 403, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, A.S.; Moreira, C.K.; Elsworth, B.; Allred, D.R.; Duraisingh, M.T. Extensive Shared Chemosensitivity between Malaria and Babesiosis Blood-Stage Parasites. Antimicrob. Agents Chemother. 2016, 60, 5059–5063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ord, R.L.; Lobo, C.A. Human Babesiosis: Pathogens, Prevalence, Diagnosis, and Treatment. Curr. Clin. Microbiol. Rep. 2015, 2, 173–181. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.J.M.; Tuvshintulga, B.; Nugraha, A.B.; Sivakumar, T.; Yokoyama, N. Activities of artesunate-based combinations and tafenoquine against Babesia bovis in vitro and Babesia microti in vivo. Parasits Vectors 2020, 13, 362. [Google Scholar] [CrossRef]
- Galkin, A.; Kulakova, L.; Lim, K.; Chen, C.Z.; Zheng, W.; Turko, I.V.; Herzberg, O. Structural basis for inactivation of Giardia lamblia carbamate kinase by disulfiram. J. Biol. Chem. 2014, 289, 10502–10509. [Google Scholar] [CrossRef] [Green Version]
- Hao, W.; Qiao, D.; Han, Y.; Du, N.; Li, X.; Fan, Y.; Ge, X.; Zhang, H. Identification of disulfiram as a potential antifungal drug by screening small molecular libraries. J. Infect. Chemother. 2021, 27, 696–701. [Google Scholar] [CrossRef]
- Long, T.E. Repurposing Thiram and Disulfiram as Antibacterial Agents for Multidrug-Resistant Staphylococcus aureus Infections. Antimicrob. Agents Chemother. 2017, 61, e00898-17. [Google Scholar] [CrossRef] [Green Version]
- Horita, Y.; Takii, T.; Yagi, T.; Ogawa, K.; Fujiwara, N.; Inagaki, E.; Kremer, L.; Sato, Y.; Kuroishi, R.; Lee, Y.; et al. Antitubercular activity of disulfiram, an antialcoholism drug, against multidrug-and extensively drug-resistant Mycobacterium tuberculosis isolates. Antimicrob. Agents Chemother. 2012, 56, 4140–4145. [Google Scholar] [CrossRef] [Green Version]
- Scheibel, L.W.; Adler, A.; Trager, W. Tetraethylthiuram disulfide (Antabuse) inhibits the human malaria parasite Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 1979, 76, 5303–5307. [Google Scholar] [CrossRef] [PubMed]
- Potula, H.S.K.; Shahryari, J.; Inayathullah, M.; Malkovskiy, A.V.; Kim, K.M.; Rajadas, J. Repurposing Disulfiram (Tetraethylthiuram Disulfide) as a Potential Drug Candidate against Borrelia burgdorferi In Vitro and In Vivo. Antibiotics 2020, 9, 633. [Google Scholar] [CrossRef] [PubMed]
- Pothineni, V.; Wagh, D.; Babar, M.M.; Inayathullah, M.; Solow-Cordero, D.; Kim, K.-M.; Samineni, A.; Parekh, M.B.; Tayebi, L.; Rajadas, J. Identification of new drug candidates against Borrelia burgdorferi using high-throughput screening. Drug. Des. Devel. Ther. 2016, 10, 1307. [Google Scholar] [CrossRef] [Green Version]
- Liegner, K.B. Disulfiram (Tetraethylthiuram Disulfide) in the Treatment of Lyme Disease and Babesiosis: Report of Experience in Three Cases. Antibiotics 2019, 8, 72. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Gong, Z.; Montesano, D.; Glazer, E.; Liegner, K. “Repurposing” Disulfiram in the Treatment of Lyme Disease and Babesiosis: Retrospective Review of First 3 Years’ Experience in One Medical Practice. Antibiotics 2020, 9, 868. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Ceschi, A.; Kupferschmidt, H.; Lüde, S.; De Souza Nascimento, E.; Dos Santos, A.; Colombo, F.; Frigerio, G.; Nørby, K.; Plumb, J.; et al. Adverse effects of plant food supplements and botanical preparations: A systematic review with critical evaluation of causality. Br. J. Clin. Pharmacol. 2015, 79, 578–592. [Google Scholar] [CrossRef] [Green Version]
- Perrillo, R.P.; Burton, J.R., Jr.; Westbrook, L.M. Herbal hepatitis due to use of alternative medicines for Lyme disease. Bayl. Univ. Med. Cent. Proc. 2021, 35, 104–105. [Google Scholar] [CrossRef]
Organic Oils | Active Ingredient | Active | Stationary | Biofilm |
---|---|---|---|---|
Bay leaf oil (Pimenta racemosa) | Eugenol | X | X | X |
Birch (sweet) oil (Betula lenta) | Methyl salicylate | X | X | X |
Cassia oil (Cinnamomum cassia) | Cinnamaldehyde | X | X | X |
Chamomile oil German (Matricaria chamomilla) | Chamazulene | X | X | X |
Thyme oil (Thymus vulgaris) | Thymol | X | X | X |
Synergistic or Additive Combinations | Spirochete | Stationary | Biofilm |
---|---|---|---|
Baicalein with luteolin | X | X | X |
Monolaurin with cis-2-decenoic acid | X | X | |
Baicalein and rosmarinic acid | X | ||
Luteolin and rosmarinic acid | X | ||
Baicalein and iodine | X | ||
Luteolin and iodine | X | ||
Baicalein with cis-2-decenoic acid | X | ||
Luteolin with cis-2-decenoic acid | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shor, S.M.; Schweig, S.K. The Use of Natural Bioactive Nutraceuticals in the Management of Tick-Borne Illnesses. Microorganisms 2023, 11, 1759. https://doi.org/10.3390/microorganisms11071759
Shor SM, Schweig SK. The Use of Natural Bioactive Nutraceuticals in the Management of Tick-Borne Illnesses. Microorganisms. 2023; 11(7):1759. https://doi.org/10.3390/microorganisms11071759
Chicago/Turabian StyleShor, Samuel M., and Sunjya K. Schweig. 2023. "The Use of Natural Bioactive Nutraceuticals in the Management of Tick-Borne Illnesses" Microorganisms 11, no. 7: 1759. https://doi.org/10.3390/microorganisms11071759