Potential Fungal Zoonotic Pathogens in Cetaceans: An Emerging Concern
Abstract
:1. Introduction
2. Ascomycota
2.1. The Blastomyces Genus
2.2. The Histoplasma Genus
2.3. The Coccidioides Genus
2.4. The Paracoccidioides Genus
2.5. The Candida Genus
2.6. The Fusarium Genus
2.7. The Aspergillus Genus
3. Basidiomycota
3.1. The Cryptococcus Genus
3.2. The Malassezia Genus
4. Mucormycota
5. Other Reports
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shanks, S.; van Schalkwyk, M.C.; Cunningham, A.A. A call to prioritise prevention: Action is needed to reduce the risk of zoonotic disease emergence. Lancet Reg. Health Eur. 2022, 23, 100506. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef] [PubMed]
- Plowright, R.K.; Parrish, C.R.; McCallum, H.; Hudson, P.J.; Ko, A.I.; Graham, A.L.; Lloyd-Smith, J.O. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 2017, 15, 502–510. [Google Scholar] [CrossRef]
- Schmeller, D.S.; Courchamp, F.; Killeen, G. Biodiversity loss, emerging pathogens and human health risks. Biodivers. Conserv. 2020, 29, 3095–3102. [Google Scholar] [CrossRef]
- Lawler, O.K.; Allan, H.L.; Baxter, P.W.J.; Castagnino, R.; Tor, M.C.; Dann, L.E.; Hungerford, J.; Karmacharya, D.; Lloyd, T.J.; López-Jara, M.J.; et al. The COVID-19 pandemic is intricately linked to biodiversity loss and ecosystem health. Lancet Planet. Health 2021, 5, e840–e850. [Google Scholar] [CrossRef]
- Allen, T.; Murray, K.A.; Zambrana-Torrelio, C.; Morse, S.S.; Rondinini, C.; Di Marco, M.; Breit, N.; Olival, K.J.; Daszak, P. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 2017, 8, 1124. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Nosanchuk, J.D. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLoS Negl. Trop. Dis. 2020, 14, e0007964. [Google Scholar] [CrossRef]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 2024, 12. [Google Scholar] [CrossRef]
- Blackwell, M. The fungi: 1, 2, 3... 5.1 million species? Am. J. Bot. 2011, 98, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Seyedmousavi, S.; Bosco, S.M.G.; de Hoog, S.; Ebel, F.; Elad, D.; Gomes, R.R.; Jacobsen, I.D.; Jensen, H.E.; Martel, A.; Mignon, B.; et al. Fungal infections in animals: A patchwork of different situations. Med. Mycol. 2018, 56, 165–187. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Bustos, V.; Cabañero-Navalon, M.D.; Ruiz-Gaitán, A.; Salavert, M.; Tormo-Mas, M.Á.; Pemán, J. Climate change, animals, and Candida auris: Insights into the ecological niche of a new species from a One Health approach. Clin. Microbiol. Infect. 2023, 29, 858–862. [Google Scholar] [CrossRef]
- Waltzek, T.B.; Cortés-Hinojosa, G.; Wellehan, J.F., Jr.; Gray, G.C. Marine mammal zoonoses: A review of disease manifestations. Zoonoses Public Health 2012, 59, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Dolman, S.J.; Brakes, P. Sustainable Fisheries Management and the Welfare of Bycaught and Entangled Cetaceans. Front. Vet. Sci. 2018, 5, 287. [Google Scholar] [CrossRef] [PubMed]
- Ziarati, M.; Zorriehzahra, M.J.; Hassantabar, F.; Mehrabi, Z.; Dhawan, M.; Sharun, K.; Emran, T.B.; Dhama, K.; Chaicumpa, W.; Shamsi, S. Zoonotic diseases of fish and their prevention and control. Vet. Q. 2022, 42, 95–118. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A. Global warming could drive the emergence of new fungal pathogens. Nat. Microbiol. 2023, 8, 2217–2219. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Silliman, B.R. Climate Change, Human Impacts, and Coastal Ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef]
- Větrovský, T.; Kohout, P.; Kopecký, M.; Machac, A.; Man, M.; Bahnmann, B.D.; Brabcová, V.; Choi, J.; Meszárošová, L.; Human, Z.R.; et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 2019, 10, 5142. [Google Scholar] [CrossRef]
- Kumar, V.; Sarma, V.V.; Thambugala, K.M.; Huang, J.J.; Li, X.Y.; Hao, G.F. Ecology and Evolution of Marine Fungi with Their Adaptation to Climate Change. Front. Microbiol. 2021, 12, 719000. [Google Scholar] [CrossRef]
- Garcia-Bustos, V.; Acosta-Hernández, B.; Cabañero-Navalón, M.D.; Pemán, J.; Ruiz-Gaitán, A.C.; Rosario Medina, I. The Ecology of Non-Candida Yeasts and Dimorphic Fungi in Cetaceans: From Pathogenicity to Environmental and Global Health Implications. J. Fungi 2024, 10, 111. [Google Scholar] [CrossRef]
- Reif, J.S.; Peden-Adams, M.M.; Romano, T.A.; Rice, C.D.; Fair, P.A.; Bossart, G.D. Immune dysfunction in Atlantic bottlenose dolphins (Tursiops truncatus) with lobomycosis. Med. Mycol. 2009, 47, 125–135. [Google Scholar] [CrossRef]
- Van Bressem, M.F.; Raga, J.A.; Di Guardo, G.; Jepson, P.D.; Duignan, P.J.; Siebert, U.; Barrett, T.; Santos, M.C.; Moreno, I.B.; Siciliano, S.; et al. Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors. Dis. Aquat. Organ. 2009, 86, 143–157. [Google Scholar] [CrossRef]
- Hess-Erga, O.K.; Moreno-Andrés, J.; Enger, Ø.; Vadstein, O. Microorganisms in ballast water: Disinfection, community dynamics, and implications for management. Sci. Total Environ. 2019, 657, 704–716. [Google Scholar] [CrossRef]
- Nøttestad, L.; Krafft, B.A.; Anthonypillai, V.; Bernasconi, M.; Langård, L.; Mørk, H.L.; Fernö, A. Recent changes in distribution and relative abundance of cetaceans in the Norwegian Sea and their relationship with potential prey. Front. Ecol. Evolut. 2015, 2, 83. [Google Scholar] [CrossRef]
- Schoch, C.L.; Ciufo, S.; Domrachev, M.; Hotton, C.L.; Kannan, S.; Khovanskaya, R.; Leipe, D.; Mcveigh, R.; O’Neill, K.; Robbertse, B.; et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database 2020, 2020, baaa062. [Google Scholar] [CrossRef]
- Sayers, E.W.; Cavanaugh, M.; Clark, K.; Ostell, J.; Pruitt, K.D.; Karsch-Mizrachi, I. GenBank. Nucleic Acids Res. 2019, 47, D94–D99. [Google Scholar] [CrossRef]
- Mazi, P.B.; Rauseo, A.M.; Spec, A. Blastomycosis. Infect. Dis. Clin. N. Am. 2021, 35, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Meece, J.K.; Anderson, J.L.; Fisher, M.C.; Henk, D.A.; Sloss, B.L.; Reed, K.D. Population genetic structure of clinical and environmental isolates of Blastomyces dermatitidis, based on 27 polymorphic microsatellite markers. Appl. Environ. Microbiol. 2011, 77, 5123–5131. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; McTaggart, L.R.; Zhang, S.X.; Low, D.E.; Stevens, D.A.; Richardson, S.E. Phylogenetic analysis reveals a cryptic species Blastomyces gilchristii, sp. nov. within the human pathogenic fungus Blastomyces dermatitidis. PLoS ONE 2013, 8, e59237. [Google Scholar] [CrossRef]
- Smith, J.A.; Riddell, J., 4th; Kauffman, C.A. Cutaneous manifestations of endemic mycoses. Curr. Infect. Dis. Rep. 2013, 15, 440–449. [Google Scholar] [CrossRef]
- Cates, M.B.; Kaufman, L.; Grabau, J.H.; Pletcher, J.M.; Schroeder, J.P. Blastomycosis in an Atlantic bottlenose dolphin. J. Am. Vet. Med. Assoc. 1986, 189, 1148–1150. [Google Scholar] [PubMed]
- Sweeney, J.C.; Migaki, G.; Vainik, P.M.; Conklin, R.H. Systemic mycosis in marine mammals. J. Am. Vet. Med. Assoc. 1976, 169, 946–948. [Google Scholar]
- Zwick, L.S.; Briggs, M.B.; Tunev, S.S.; Lichtensteiger, C.A.; Murnane, R.D. Disseminated blastomycosis in two California sea lions (Zalophus californianus). J. Zoo Wildl. Med. 2000, 31, 211–214. [Google Scholar] [CrossRef]
- Migaki, C.; Jones, S.R. Mycotic diseases in marine mammals. In Pathobiology of Marine Mammal Diseases; Howard, E.B., Ed.; CRC Press: Boca Raton, FL, USA, 1983; Volume 2, p. 5. [Google Scholar]
- Williamson, W.M.; Lombard, L.S.; Getty, R.E. North American blastomycosis in a northern sea lion. J. Am. Vet. Med. Assoc. 1959, 135, 513–515. [Google Scholar]
- Linz, A.M.; Anderson, J.L.; Meece, J.K. Detection of Blastomyces gilchristii via metagenomic sequencing in outbreak-associated soils. Med. Mycol. 2024, 62, myad140. [Google Scholar] [CrossRef]
- Dukik, K.; Muñoz, J.F.; Jiang, Y.; Feng, P.; Sigler, L.; Stielow, J.B.; Freeke, J.; Jamalian, A.; Gerrits van den Ende, B.; McEwen, J.G.; et al. Novel taxa of thermally dimorphic systemic pathogens in the Ajellomycetaceae (Onygenales). Mycoses 2017, 60, 296–309. [Google Scholar] [CrossRef]
- Azar, M.M.; Loyd, J.L.; Relich, R.F.; Wheat, L.J.; Hage, C.A. Current Concepts in the Epidemiology, Diagnosis, and Management of Histoplasmosis Syndromes. Semin. Respir. Crit. Care Med. 2020, 41, 13–30. [Google Scholar] [CrossRef]
- Araúz, A.B.; Papineni, P. Histoplasmosis. Infect. Dis. Clin. N. Am. 2021, 35, 471–491. [Google Scholar] [CrossRef]
- Ashraf, N.; Kubat, R.C.; Poplin, V.; Adenis, A.A.; Denning, D.W.; Wright, L.; McCotter, O.; Schwartz, I.S.; Jackson, B.R.; Chiller, T.; et al. Re-drawing the Maps for Endemic Mycoses. Mycopathologia 2020, 185, 843–865. [Google Scholar] [CrossRef] [PubMed]
- Jensen, E.D.; Lipscomb, T.; Van Bonn, B.; Miller, G.; Fradkin, J.M.; Ridgway, S.H. Disseminated histoplasmosis in an Atlantic bottlenose dolphin (Tursiops truncatus). J. Zoo Wildl. Med. 1998, 29, 456–460. [Google Scholar] [PubMed]
- Venn-Watson, S.; Daniels, R.; Smith, C. Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population. Dis. Aquat. Organ. 2012, 99, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The Changing Epidemiology of Invasive Fungal Infections. Methods Mol. Biol. 2017, 1508, 17–65. [Google Scholar] [CrossRef]
- Crum, N.F. Coccidioidomycosis: A Contemporary Review. Infect Dis. Ther. 2022, 11, 713–742. [Google Scholar] [CrossRef]
- Bays, D.J.; Thompson, G.R., 3rd. Coccidioidomycosis. Infect. Dis. Clin. N. Am. 2021, 35, 453–469. [Google Scholar] [CrossRef]
- Shubitz, L.F. Comparative aspects of coccidioidomycosis in animals and humans. Ann. N. Y. Acad. Sci. 2007, 1111, 395–403. [Google Scholar] [CrossRef]
- Thompson, G.R.; Pasqualotto, A.C. Endemic mycoses: Expansion of traditional geographic ranges and pitfalls in management. Mycoses 2021, 64, 989–992. [Google Scholar] [CrossRef] [PubMed]
- Reidarson, T.H.; Harrell, J.H.; Rinaldi, M.G.; McBain, J. Bronchoscopic and serologic diagnosis of Aspergillus fumigatus pulmonary infection in a bottlenose dolphin (Tursiops truncatus). J. Zoo Wildl. Med. 1998, 29, 451–455. [Google Scholar] [PubMed]
- Huckabone, S.E.; Gulland, F.M.; Johnson, S.M.; Colegrove, K.M.; Dodd, E.M.; Pappagianis, D.; Dunkin, R.C.; Casper, D.; Carlson, E.L.; Sykes, J.E.; et al. Coccidioidomycosis and other systemic mycoses of marine mammals stranding along the central California, USA coast: 1998–2012. J. Wildl. Dis. 2015, 51, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Kanegae, H.; Sano, A.; Okubo-Murata, M.; Watanabe, A.; Tashiro, R.; Eto, T.; Ueda, K.; Hossain, M.A.; Itano, E.N. Seroprevalences Against Paracoccidioides cetii: A Causative Agent for Paracoccidiomycosis Ceti (PCM-C) and Coccidioides posadasii; for Coccidioidomycosis (CCM) in Dall’s Porpoise (Phocoenoides dalli) and Harbor Porpoise (Phocoena phocoena) Stranded at Hokkaido, Japan. Mycopathologia 2022, 187, 385–391. [Google Scholar] [CrossRef]
- Vilela, R.; Huebner, M.; Vilela, C.; Vilela, G.; Pettersen, B.; Oliveira, C.; Mendoza, L. The taxonomy of two uncultivated fungal mammalian pathogens is revealed through phylogeny and population genetic analyses. Sci. Rep. 2021, 11, 18119. [Google Scholar] [CrossRef]
- Paniz-Mondolfi, A.; Talhari, C.; Sander Hoffmann, L.; Connor, D.L.; Talhari, S.; Bermudez-Villapol, L.; Hernandez-Perez, M.; Van Bressem, M.F. Lobomycosis: An emerging disease in humans and delphinidae. Mycoses. 2012, 55, 298–309. [Google Scholar] [CrossRef]
- Vilela, R.; de Hoog, S.; Bensch, K.; Bagagli, E.; Mendoza, L. A taxonomic review of the genus Paracoccidioides, with focus on the uncultivable species. PLoS Negl. Trop. Dis. 2023, 17, e0011220. [Google Scholar] [CrossRef]
- Lobo, J. Um caso de blastomicose specie o por uma specie nova, encontrada no Recife. Rev. Med. 1931, 1, 763–765. [Google Scholar]
- Migaki, G.; Valerio, M.G.; Irvine, B.; Garner, F.M. Lobo’s disease in an Atlantic bottlenosed dolphin. J. Am. Vet. Med. Assoc. 1971, 159, 578–582. [Google Scholar] [PubMed]
- Symmers, W.S. A possible case of Lôbo’s disease acquired in Europe from a bottle-nosed dolphin (Tursiops truncatus). Bull. Soc. Pathol. Exot. Filiales 1983, 76, 777–784. [Google Scholar] [PubMed]
- Norton, S.A. Dolphin-to-human transmission of lobomycosis? J. Am. Acad. Dermatol. 2006, 55, 723–724. [Google Scholar] [CrossRef] [PubMed]
- Reif, J.S.; Schaefer, A.M.; Bossart, G.D. Lobomycosis: Risk of zoonotic transmission from dolphins to humans. Vector Borne Zoonotic Dis. 2013, 13, 689–693. [Google Scholar] [CrossRef]
- Bossart, G.D.; Schaefer, A.M.; McCulloch, S.; Goldstein, J.; Fair, P.A.; Reif, J.S. Mucocutaneous lesions in free-ranging Atlantic bottlenose dolphins Tursiops truncatus from the southeastern USA. Dis. Aquat. Organ. 2015, 115, 175–184. [Google Scholar] [CrossRef]
- Daura-Jorge, F.G.; Simões-Lopes, P.C. Lobomycosis-like disease in wild bottlenose dolphins Tursiops truncatus of Laguna, southern Brazil: Monitoring of a progressive case. Dis. Aquat. Organ. 2011, 93, 163–170. [Google Scholar] [CrossRef]
- Bessesen, B.L.; Oviedo, L.; Burdett Hart, L.; Herra-Miranda, D.; Pacheco-Polanco, J.D.; Baker, L.; Saborío-Rodriguez, G.; Bermúdez-Villapol, L.; Acevedo-Gutiérrez, A. Lacaziosis-like disease among bottlenose dolphins Tursiops truncatus photographed in Golfo Dulce, Costa Rica. Dis. Aquat. Organ. 2014, 107, 173–180. [Google Scholar] [CrossRef]
- Bermúdez, L.; Van Bressem, M.F.; Reyes-Jaimes, O.; Sayegh, A.J.; Paniz-Mondolfi, A.E. Lobomycosis in man and lobomycosis-like disease in bottlenose dolphin, Venezuela. Emerg. Infect. Dis. 2009, 15, 1301–1303. [Google Scholar] [CrossRef]
- de Moura, J.F.; Hauser-Davis, R.A.; Lemos, L.; Emin-Lima, R.; Siciliano, S. Guiana dolphins (Sotalia guianensis) as marine ecosystem sentinels: Ecotoxicology and emerging diseases. Rev. Environ. Contam. Toxicol. 2014, 228, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Esperón, F.; García-Párraga, D.; Bellière, E.N.; Sánchez-Vizcaíno, J.M. Molecular diagnosis of lobomycosis-like disease in a bottlenose dolphin in captivity. Med. Mycol. 2012, 50, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Kiszka, J.; Van Bressem, M.F.; Pusineri, C. Lobomycosis-like disease and other skin conditions in Indo-Pacific bottlenose dolphins Tursiops aduncus from the Indian Ocean. Dis. Aquat. Organ. 2009, 84, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Lane, E.P.; de Wet, M.; Thompson, P.; Siebert, U.; Wohlsein, P.; Plön, S. A systematic health assessment of Indian Ocean bottlenose (Tursiops aduncus) and Indo-Pacific humpback (Sousa plumbea) dolphins incidentally caught in shark nets off the KwaZulu-Natal Coast, South Africa. PLoS ONE 2014, 9, e107038. [Google Scholar] [CrossRef]
- Minakawa, T.; Ueda, K.; Tanaka, M.; Tanaka, N.; Kuwamura, M.; Izawa, T.; Konno, T.; Yamate, J.; Itano, E.N.; Sano, A.; et al. Detection of Multiple Budding Yeast Cells and a Partial Sequence of 43-kDa Glycoprotein Coding Gene of Paracoccidioides brasiliensis from a Case of Lacaziosis in a Female Pacific White-Sided Dolphin (Lagenorhynchus obliquidens). Mycopathologia 2016, 181, 523–529. [Google Scholar] [CrossRef]
- Grotta, G.; Couppie, P.; Demar, M.; Alsibai, K.D.; Blaizot, R. Fungal Density in Lobomycosis in French Guiana: A Proposal for a New Clinico-Histological and Therapeutic Classification. J. Fungi 2023, 9, 1005. J. Fungi 2023, 10, 18. [Google Scholar] [CrossRef]
- Ueda, K.; Sano, A.; Yamate, J.; Itano, E.N.; Kuwamura, M.; Izawa, T.; Tanaka, M.; Hasegawa, Y.; Chibana, H.; Izumisawa, Y.; et al. Two cases of lacaziosis in bottlenose dolphins (Tursiops truncatus) in Japan. Case Rep. Vet. Med. 2013, 2013, 318548. [Google Scholar] [CrossRef]
- Reif, J.S.; Mazzoil, M.S.; McCulloch, S.D.; Varela, R.A.; Goldstein, J.D.; Fair, P.A.; Bossart, G.D. Lobomycosis in Atlantic bottlenose dolphins from the Indian River Lagoon, Florida. J. Am. Vet. Med. Assoc. 2006, 228, 104–108. [Google Scholar] [CrossRef]
- Rotstein, D.S.; West, K.; Levine, G.; Lockhart, S.R.; Raverty, S.; Morshed, M.G.; Rowles, T. Cryptococcus gattiivgi in a spinner dolphin (Stenella longirostris) from Hawaii. J. Zoo Wildl. Med. 2010, 41, 181–183. [Google Scholar] [CrossRef]
- Grotta, G.; Couppie, P.; Demar, M.; Drak Alsibai, K.; Blaizot, R. Fungal Density in Lobomycosis in French Guiana: A Proposal for a New Clinico-Histological and Therapeutic Classification. J. Fungi 2023, 9, 1005. [Google Scholar] [CrossRef]
- Thomas-Rüddel, D.O.; Schlattmann, P.; Pletz, M.; Kurzai, O.; Bloos, F. Risk Factors for Invasive Candida Infection in Critically Ill Patients: A Systematic Review and Meta-analysis. Chest 2022, 161, 345–355. [Google Scholar] [CrossRef]
- d’Enfert, C.; Kaune, A.K.; Alaban, L.R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Fróis-Martins, R.; Morelli, M.; et al. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives. FEMS Microbiol. Rev. 2021, 45, fuaa060. [Google Scholar] [CrossRef]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- McCarty, T.P.; White, C.M.; Pappas, P.G. Candidemia and Invasive Candidiasis. Infect. Dis. Clin. N. Am. 2021, 35, 389–413. [Google Scholar] [CrossRef]
- Barantsevich, N.; Barantsevich, E. Diagnosis and Treatment of Invasive Candidiasis. Antibiotics 2022, 11, 718. [Google Scholar] [CrossRef]
- Pappas, P.G.; Lionakis, M.S.; Arendrup, M.C.; Ostrosky-Zeichner, L.; Kullberg, B.J. Invasive candidiasis. Nat. Rev. Dis. Prim. 2018, 4, 18026. [Google Scholar] [CrossRef]
- Garcia-Bustos, V.; Cabanero-Navalon, M.D.; Ruiz-Saurí, A.; Ruiz-Gaitán, A.C.; Salavert, M.; Tormo, M.Á.; Pemán, J. What Do We Know about Candida auris? State of the Art, Knowledge Gaps, and Future Directions. Microorganisms 2021, 9, 2177. [Google Scholar] [CrossRef] [PubMed]
- Paiva, J.A.; Pereira, J.M. Treatment of invasive candidiasis in the era of Candida resistance. Curr. Opin. Crit. Care 2023, 29, 457–462. [Google Scholar] [CrossRef] [PubMed]
- Gómez-López, A. Antifungal therapeutic drug monitoring: Focus on drugs without a clear recommendation. Clin. Microbiol. Infect. 2020, 26, 1481–1487. [Google Scholar] [CrossRef]
- Ohno, Y.; Akune, Y.; Inoshima, Y.; Kano, R. First isolation of voriconazole-resistant Candida albicans, C. tropicalis, and Aspergillus niger from the blowholes of bottlenose dolphins (Tursiops truncatus). J. Vet. Med. Sci. 2019, 81, 1628–1631. [Google Scholar] [CrossRef] [PubMed]
- Nakeeb, S.; Targowski, S.P.; Spotte, S. Chronic cutaneous candidiasis in bottle-nosed dolphins. J. Am. Vet. Med. Assoc. 1977, 171, 961–965. [Google Scholar]
- Dunn, J.L.; Buck, J.D.; Spotte, S. Candidiasis in captive cetaceans. J. Am. Vet. Med. Assoc. 1982, 181, 1316–1321. [Google Scholar]
- Fothergill, M.; Jogessar, V.B. Hematological changes in two Lagenorhynchus obscurus treated with. Aquat. Mamm. 1986, 12, 87–91. [Google Scholar]
- Takahashi, H.; Ueda, K.; Itano, E.N.; Yanagisawa, M.; Murata, Y.; Murata, M.; Yaguchi, T.; Murakami, M.; Kamei, K.; Inomata, T.; et al. Candida albicans and C. tropicalis Isolates from the Expired Breathes of Captive Dolphins and Their Environments in an Aquarium. Vet. Med. Int. 2010, 2010, 349364. [Google Scholar] [CrossRef]
- Lee, C.; Jensen, E.D.; Meegan, J.; Ivančić, M.; Bailey, J.; Hendrickson, D.; Weiss, J.; Grindley, J.; Costidis, A.M.; Wisbach, G. Surgical Management of a Chronic Neck Abscess in a U.S. Navy Bottlenose Dolphin. Mil. Med. 2019, 184, e360–e364. [Google Scholar] [CrossRef] [PubMed]
- Nollens, H.H.; Wellehan, J.F.; Saliki, J.T.; Caseltine, S.L.; Jensen, E.D.; Van Bonn, W.; Venn-Watson, S. Characterization of a parainfluenza virus isolated from a bottlenose dolphin (Tursiops truncatus). Vet. Microbiol. 2008, 128, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Buck, J.D.; Overstrom, N.A.; Patton, G.W.; Anderson, H.F.; Gorzelany, J.F. Bacteria associated with stranded cetaceans from the northeast USA and southwest Florida Gulf coasts. Dis. Aquat. Org. 1991, 10, 147–152. [Google Scholar] [CrossRef]
- Haulena, M.; Huff, D.; Ivančić, M.; Muhammad, M.; Hoang, L.; Zabek, E.; Raverty, S. Intestinal torsion secondary to chronic candidiasis caused by Candida krusei in a Pacific white-sided dolphin (Lagenorhynchus obliquidens). Proc. Int. Assoc. Aquat. Anim. Med. 2010, 41. [Google Scholar] [CrossRef]
- Schmid, J.; Hunter, P.R.; White, G.C.; Nand, A.K.; Cannon, R.D. Physiological traits associated with success of Candida albicans strains as commensal colonizers and pathogens. J. Clin. Microbiol. 1995, 33, 2920–2926. [Google Scholar] [CrossRef]
- Shotts, E.B., Jr.; Albert, T.F.; Wooley, R.E.; Brown, J. Microflora associated with the skin of the bowhead whale (Balaena mysticetus). J. Wildl. Dis. 1990, 26, 351–359. [Google Scholar] [CrossRef]
- Buck, J.D.; Bubucis, P.M.; Spotte, S. Microbiological characterization of three Atlantic whiteside dolphins (Lagenorhynchus acutus) from stranding through captivity with subsequent rehabilitation and release of one animal. Zoo Biol. 1988, 7, 133–138. [Google Scholar] [CrossRef]
- Morris, P.J.; Johnson, W.R.; Pisani, J.; Bossart, G.D.; Adams, J.; Reif, J.S.; Fair, P.A. Isolation of culturable microorganisms from free-ranging bottlenose dolphins (Tursiops truncatus) from the southeastern United States. Vet. Microbiol. 2011, 148, 440–447. [Google Scholar] [CrossRef]
- Buck, J.D. Occurrence of human-associated yeasts in the feces and pool waters of captive bottlenosed dolphins (Tursiops truncatus). J. Wildl. Dis. 1980, 16, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Hof, H. The Medical Relevance of Fusarium spp. J. Fungi 2020, 6, 117. [Google Scholar] [CrossRef] [PubMed]
- Nucci, M.; Anaissie, E. Invasive fusariosis. Clin. Microbiol. Rev. 2023, 36, e0015922. [Google Scholar] [CrossRef]
- Frasca, S., Jr.; Dunn, J.L.; Cooke, J.C.; Buck, J.D. Mycotic dermatitis in an Atlantic white-sided dolphin, a pygmy sperm whale, and two harbor seals. J. Am. Vet. Med. Assoc. 1996, 208, 727–729. [Google Scholar] [CrossRef]
- Naples, L.M.; Poll, C.P.; Berzins, I.K. Successful treatment of a severe case of fusariomycosis in a beluga whale (Delphinapterus leucas leucas). J. Zoo Wildl. Med. 2012, 43, 596–602. [Google Scholar] [CrossRef]
- Tanaka, M.; Izawa, T.; Kuwamura, M.; Nakao, T.; Maezono, Y.; Ito, S.; Murata, M.; Murakami, M.; Sano, A.; Yamate, J. Deep granulomatous dermatitis of the fin caused by Fusarium solani in a false killer whale (Pseudorca crassidens). J. Vet. Med. Sci. 2012, 74, 779–782. [Google Scholar] [CrossRef]
- Staggs, L.; St Leger, J.; Bossart, G.; Townsend, F.I., Jr.; Hicks, C.; Rinaldi, M. A novel case of Fusarium oxysporum infection in an Atlantic bottlenose dolphin (Tursiops truncatus). J. Zoo Wildl. Med. 2010, 41, 287–290. [Google Scholar] [CrossRef]
- Kohata, E.; Kano, R.; Akune, Y.; Ohno, Y.; Soichi, M.; Yanai, T.; Hasegawa, A.; Kamata, H. Environmental isolates of fungi from aquarium pools housing killer whales (Orcinus orca). Mycopathologia 2013, 176, 403–408. [Google Scholar] [CrossRef]
- Thompson, G.R., 3rd; Young, J.H. Aspergillus Infections. N. Engl. J. Med. 2021, 385, 1496–1509. [Google Scholar] [CrossRef] [PubMed]
- Latgé, J.P.; Chamilos, G. Aspergillus fumigatus and Aspergillosis in 2019. Clin. Microbiol. Rev. 2019, 33, e00140-18. [Google Scholar] [CrossRef] [PubMed]
- Kanaujia, R.; Singh, S.; Rudramurthy, S.M. Aspergillosis: An Update on Clinical Spectrum, Diagnostic Schemes, and Management. Curr. Fungal Infect. Rep. 2023, 17, 144–155. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Cantero, A.; López-Fernández, L.; Guarro, J.; Capilla, J. Azole resistance mechanisms in Aspergillus: Update and recent advances. Int. J. Antimicrob. Agents 2020, 55, 105807. [Google Scholar] [CrossRef]
- Elad, D.; Segal, E. Diagnostic Aspects of Veterinary and Human Aspergillosis. Front. Microbiol. 2018, 9, 1303. [Google Scholar] [CrossRef]
- Groch, K.R.; Díaz-Delgado, J.; Sacristán, C.; Oliveira, D.E.; Souza, G.; Sánchez-Sarmiento, A.M.; Costa-Silva, S.; Marigo, J.; Castilho, P.V.; Cremer, M.J.; et al. Pulmonary and systemic fungal infections in an Atlantic spotted dolphin and a Bryde’s whale, Brazil. Dis. Aquat. Organ. 2018, 128, 73–79. [Google Scholar] [CrossRef]
- Balik, S.E.; Ossiboff, R.J.; Stacy, N.I.; Wellehan, J.F.X.; Huguet, E.E.; Gallastegui, A.; Childress, A.L.; Baldrica, B.E.; Dolan, B.A.; Adler, L.E.; et al. Case report: Sarcocystis speeri, Aspergillus fumigatus, and novel Treponema sp. infections in an adult Atlantic spotted dolphin (Stenella frontalis). Front. Vet. Sci. 2023, 10, 1132161. [Google Scholar] [CrossRef]
- Hamel, P.E.S.; Giglio, R.F.; Cassle, S.E.; Farina, L.L.; Leone, A.M.; Walsh, M.T. Postmortem computed tomography and magnetic resonance imaging findings in a case of coinfection of dolphin morbillivirus and Aspergillus fumigatus in a juvenile bottlenose dolphin (Tursiops truncatus). J. Zoo Wildl. Med. 2020, 51, 448–454. [Google Scholar] [CrossRef]
- Cassle, S.E.; Landrau-Giovannetti, N.; Farina, L.L.; Leone, A.; Wellehan, J.F., Jr.; Stacy, N.I.; Thompson, P.; Herring, H.; Mase-Guthrie, B.; Blas-Machado, U.; et al. Coinfection by Cetacean morbillivirus and Aspergillus fumigatus in a juvenile bottlenose dolphin (Tursiops truncatus) in the Gulf of Mexico. J. Vet. Diagn. Investig. 2016, 28, 729–734. [Google Scholar] [CrossRef]
- Ohno, Y.; Akune, Y.; Nitto, H.; Inoshima, Y. Leukopenia induced by micafungin in a bottlenose dolphin (Tursiops truncatus): A case report. J. Vet. Med. Sci. 2019, 81, 449–453. [Google Scholar] [CrossRef] [PubMed]
- Delaney, M.A.; Terio, K.A.; Colegrove, K.M.; Briggs, M.B.; Kinsel, M.J. Occlusive fungal tracheitis in 4 captive bottlenose dolphins (Tursiops truncatus). Vet. Pathol. 2013, 50, 172–176. [Google Scholar] [CrossRef]
- Desoubeaux, G.; Le-Bert, C.; Fravel, V.; Clauss, T.; Delaune, A.J.; Soto, J.; Jensen, E.D.; Flower, J.E.; Wells, R.; Bossart, G.D.; et al. Evaluation of a genus-specific ELISA and a commercial Aspergillus Western blot IgG® immunoblot kit for the diagnosis of aspergillosis in common bottlenose dolphins (Tursiops truncatus). Med. Mycol. 2018, 56, 847–856. [Google Scholar] [CrossRef]
- Bunskoek, P.E.; Seyedmousavi, S.; Gans, S.J.; van Vierzen, P.B.; Melchers, W.J.; van Elk, C.E.; Mouton, J.W.; Verweij, P.E. Successful treatment of azole-resistant invasive aspergillosis in a bottlenose dolphin with high-dose posaconazole. Med. Mycol. Case Rep. 2017, 16, 16–19. [Google Scholar] [CrossRef]
- Abdo, W.; Kawachi, T.; Sakai, H.; Fukushi, H.; Kano, R.; Shibahara, T.; Shirouzu, H.; Kakizoe, Y.; Tuji, H.; Yanai, T. Disseminated mycosis in a killer whale (Orcinus orca). J. Vet. Diagn. Investig. 2012, 24, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Prahl, S.; Jepson, P.D.; Sanchez-Hanke, M.; Deaville, R.; Siebert, U. Aspergillosis in the middle ear of a harbour porpoise (Phocoena phocoena): A case report. Mycoses 2011, 54, e260–e264. [Google Scholar] [CrossRef] [PubMed]
- Seibel, H.; Beineke, A.; Siebert, U. Mycotic otitis media in a harbour porpoise (Phocoena phocoena). J. Comp. Pathol. 2010, 143, 294–296. [Google Scholar] [CrossRef] [PubMed]
- Dagleish, M.P.; Patterson, I.A.; Foster, G.; Reid, R.J.; Linton, C.; Buxton, D. Intracranial granuloma caused by asporogenic Aspergillus fumigatus in a harbour porpoise (Phocoena phocoena). Vet. Rec. 2006, 159, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Barley, J.; Foster, G.; Reid, B.; Dagleish, M.; Howie, F. Encephalitis in a northern bottlenose whale. Vet. Rec. 2007, 160, 452. [Google Scholar] [CrossRef]
- Dagleish, M.P.; Foster, G.; Howie, F.E.; Reid, R.J.; Barley, J. Fatal mycotic encephalitis caused by Aspergillus fumigatus in a northern bottlenose whale (Hyperoodon ampullatus). Vet. Rec. 2008, 163, 602–604. [Google Scholar] [CrossRef]
- Domingo, M.; Visa, J.; Pumarola, M.; Marco, A.J.; Ferrer, L.; Rabanal, R.; Kennedy, S. Pathologic and immunocytochemical studies of morbillivirus infection in striped dolphins (Stenella coeruleoalba). Vet. Pathol. 1992, 29, 1–10. [Google Scholar] [CrossRef]
- Grattarola, C.; Giorda, F.; Iulini, B.; Pautasso, A.; Ballardini, M.; Zoppi, S.; Marsili, L.; Peletto, S.; Masoero, L.; Varello, K.; et al. Occlusive mycotic tracheobronchitis and systemic Alphaherpesvirus coinfection in a free-living striped dolphin Stenella coeruleoalba in Italy. Dis. Aquat. Organ. 2018, 127, 137–144. [Google Scholar] [CrossRef]
- Hong, S.B.; Go, S.J.; Shin, H.D.; Frisvad, J.C.; Samson, R.A. Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 2005, 97, 1316–1329. [Google Scholar] [CrossRef]
- Hong, S.B.; Kim, D.H.; Park, I.C.; Choi, Y.J.; Shin, H.D.; Samson, R. Re-identification of Aspergillus fumigatus sensu lato based on a new concept of species delimitation. J. Microbiol. 2010, 48, 607–615. [Google Scholar] [CrossRef]
- Gushiken, A.C.; Saharia, K.K.; Baddley, J.W. Cryptococcosis. Infect. Dis. Clin. N. Am. 2021, 35, 493–514. [Google Scholar] [CrossRef]
- Gullo, F.P.; Rossi, S.A.; Sardi Jde, C.; Teodoro, V.L.; Mendes-Giannini, M.J.; Fusco-Almeida, A.M. Cryptococcosis: Epidemiology, fungal resistance, and new alternatives for treatment. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1377–1391. [Google Scholar] [CrossRef] [PubMed]
- Howard-Jones, A.R.; Sparks, R.; Pham, D.; Halliday, C.; Beardsley, J.; Chen, S.C. Pulmonary Cryptococcosis. J. Fungi 2022, 8, 1156. [Google Scholar] [CrossRef]
- Chang, C.C.; Chen, S.C. Colliding Epidemics and the Rise of Cryptococcosis. J. Fungi 2015, 2, 1. [Google Scholar] [CrossRef] [PubMed]
- Danesi, P.; Falcaro, C.; Schmertmann, L.J.; de Miranda, L.H.M.; Krockenberger, M.; Malik, R. Cryptococcus in Wildlife and Free-Living Mammals. J. Fungi 2021, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Meyer, W.; Sorrell, T.C. Cryptococcus gattii infections. Clin. Microbiol. Rev. 2014, 27, 980–1024. [Google Scholar] [CrossRef]
- Rathore, S.S.; Sathiyamoorthy, J.; Lalitha, C.; Ramakrishnan, J. A holistic review on Cryptococcus neoformans. Microb. Pathog. 2022, 166, 105521. [Google Scholar] [CrossRef]
- Teman, S.J.; Gaydos, J.K.; Norman, S.A.; Huggins, J.L.; Lambourn, D.M.; Calambokidis, J.; Ford, J.K.B.; Hanson, M.B.; Haulena, M.; Zabek, E.; et al. Epizootiology of a Cryptococcus gattii outbreak in porpoises and dolphins from the Salish Sea. Dis. Aquat. Organ. 2021, 146, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Stephen, C.; Lester, S.; Black, W.; Fyfe, M.; Raverty, S. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 2002, 43, 792–794. [Google Scholar] [PubMed]
- Kidd, S.E.; Bach, P.J.; Hingston, A.O.; Mak, S.; Chow, Y.; MacDougall, L.; Kronstad, J.W.; Bartlett, K.H. Cryptococcus gattii dispersal mechanisms, British Columbia, Canada. Emerg. Infect. Dis. 2007, 13, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.G.; Padhye, A.A.; van Bonn, W.; Jensen, E.; Brandt, M.E.; Ridgway, S.H. Cryptococcosis in a bottlenose dolphin (Tursiops truncatus) caused by Cryptococcus neoformans var. gattii. J. Clin. Microbiol. 2002, 40, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Gales, N.; Wallace, G.; Dickson, J. Pulmonary cryptococcosis in a striped dolphin (Stenella coeruleoalba). J. Wildl. Dis. 1985, 21, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Norman, S.A.; Raverty, S.; Zabek, E.; Etheridge, S.; Ford, J.K.; Hoang, L.M.; Morshed, M. Maternal-fetal transmission of Cryptococcus gattii in harbor porpoise. Emerg. Infect. Dis. 2011, 17, 304–305. [Google Scholar] [CrossRef] [PubMed]
- Mouton, M.; Reeb, D.; Botha, A.; Best, P. Yeast infection in a beached southern right whale (Eubalaena australis) neonate. J. Wildl. Dis. 2009, 45, 692–699. [Google Scholar] [CrossRef]
- Fenton, H.; Daoust, P.Y.; Forzán, M.J.; Vanderstichel, R.V.; Ford, J.K.; Spaven, L.; Lair, S.; Raverty, S. Causes of mortality of harbor porpoises Phocoena phocoena along the Atlantic and Pacific coasts of Canada. Dis. Aquat. Organ. 2017, 122, 171–183. [Google Scholar] [CrossRef]
- Wan, X.L.; McLaughlin, R.W.; Zheng, J.S.; Hao, Y.J.; Fan, F.; Tian, R.M.; Wang, D. Microbial communities in different regions of the gastrointestinal tract in East Asian finless porpoises (Neophocaena asiaeorientalis sunameri). Sci. Rep. 2018, 8, 14142. [Google Scholar] [CrossRef]
- Hobi, S.; Cafarchia, C.; Romano, V.; Barrs, V.R. Malassezia: Zoonotic Implications, Parallels and Differences in Colonization and Disease in Humans and Animals. J. Fungi 2022, 8, 708. [Google Scholar] [CrossRef]
- Theelen, B.; Cafarchia, C.; Gaitanis, G.; Bassukas, I.D.; Boekhout, T.; Dawson, T.L., Jr. Malassezia ecology, pathophysiology, and treatment. Med. Mycol. 2018, 56, S10–S25. [Google Scholar] [CrossRef] [PubMed]
- Velegraki, A.; Cafarchia, C.; Gaitanis, G.; Iatta, R.; Boekhout, T. Malassezia infections in humans and animals: Pathophysiology, detection, and treatment. PLoS Pathog. 2015, 11, e1004523. [Google Scholar] [CrossRef]
- Huang, C.Y.; Peng, C.C.; Hsu, C.H.; Chang, J.H.; Chiu, N.C.; Chi, H. Systemic Infection Caused by Malassezia pachydermatis in Infants: Case Series and Review of the Literature. Pediatr. Infect. Dis. J. 2020, 39, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Guillot, J.; Petit, T.; Degorce-Rubiales, F.; Guého, E.; Chermette, R. Dermatitis caused by Malassezia pachydermatis in a California sea lion (Zalophus californianus). Vet. Rec. 1998, 142, 311–312. [Google Scholar] [CrossRef]
- Nakagaki, K.; Hata, K.; Iwata, E.; Takeo, K. Malassezia pachydermatis isolated from a South American sea lion (Otaria byronia) with dermatitis. J. Vet. Med. Sci. 2000, 62, 901–903. [Google Scholar] [CrossRef]
- Gupta, I.; Baranwal, P.; Singh, G.; Gupta, V. Mucormycosis, past and present: A comprehensive review. Future Microbiol. 2023, 18, 217–234. [Google Scholar] [CrossRef] [PubMed]
- Cornely, O.A.; Alastruey-Izquierdo, A.; Arenz, D.; Chen, S.C.A.; Dannaoui, E.; Hochhegger, B.; Hoenigl, M.; Jensen, H.E.; Lagrou, K.; Lewis, R.E.; et al. Global guideline for the diagnosis and management of mucormycosis: An initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect. Dis. 2019, 19, e405–e421. [Google Scholar] [CrossRef]
- Alqarihi, A.; Kontoyiannis, D.P.; Ibrahim, A.S. Mucormycosis in 2023: An update on pathogenesis and management. Front. Cell. Infect. Microbiol. 2023, 13, 1254919. [Google Scholar] [CrossRef]
- Robeck, T.R.; Dalton, L.M. Saksenaea vasiformis and Apophysomyces elegans zygomycotic infections in bottlenose dolphins (Tursiops truncatus), a killer whale (Orcinus orca), and pacific white-sided dolphins (Lagenorhynchus obliquidens). J. Zoo Wildl. Med. 2002, 33, 356–366. [Google Scholar] [CrossRef]
- Bragulat, M.R.; Castellá, G.; Isidoro-Ayza, M.; Domingo, M.; Cabañes, F.J. Characterization and phylogenetic analysis of a Cunninghamella bertholletiae isolate from a bottlenose dolphin (Tursiops truncatus). Rev. Iberoam. Micol. 2017, 34, 215–219. [Google Scholar] [CrossRef]
- Isidoro-Ayza, M.; Pérez, L.; Cabañes, F.J.; Castellà, G.; Andrés, M.; Vidal, E.; Domingo, M. Central nervous system mucormycosis caused by Cunninghamella bertholletiae in a bottlenose dolphin (Tursiops truncatus). J. Wildl. Dis. 2014, 50, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Qi, Y.; Wang, Y.; Liu, C.H.; Chen, S.; Miao, B.; Tong, D. Systemic mucormycosis caused by Rhizopus microsporus in a captive bottlenose dolphin. Vet. Med. Sci. 2021, 7, 2404–2409. [Google Scholar] [CrossRef] [PubMed]
- Cerezo, A.; Quesada-Canales, O.; Sierra, E.; Díaz-Delgado, J.; Fernández, A.; Henningson, J.; Arbelo, M. Pyogranulomatous obliterative laryngotracheitis by Rhizopus arrhizus (syn. R. oryzae) in a free-ranging Atlantic spotted dolphin Stenella frontalis. Dis Aquat Organ. 2018, 10, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Wünschmann, A.; Siebert, U.; Weiss, R. Rhizopusmycosis in a harbor porpoise from the Baltic Sea. J. Wildl. Dis. 1999, 35, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Marques, G.N.; Silva, N.U.; Leal, M.O.; Flanagan, C.A. The use of posaconazole delayed-release tablets in the successful treatment of suspected mucormycosis in a bottlenose dolphin (Tursiops truncatus) calf. Med Mycol Case Rep. 2021, 26, 77–80. [Google Scholar] [CrossRef]
- Hermosilla, C.; Hirzmann, J.; Silva, L.M.R.; Brotons, J.M.; Cerdà, M.; Prenger-Berninghoff, E.; Ewers, C.; Taubert, A. Occurrence of anthropozoonotic parasitic infections and faecal microbes in free-ranging sperm whales (Physeter macrocephalus) from the Mediterranean Sea. Parasitol. Res. 2018, 117, 2531–2541. [Google Scholar] [CrossRef]
- Zalar, P.; de Hoog, G.S.; Schroers, H.J.; Crous, P.W.; Groenewald, J.Z.; Gunde-Cimerman, N. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments. Stud. Mycol. 2007, 58, 157–183. [Google Scholar] [CrossRef]
- Gugnani, H.C. Entomophthoromycosis due to Conidiobolus. Eur. J. Epidemiol. 1992, 8, 391–396. [Google Scholar] [CrossRef]
- Migaki, G.; Font, R.L.; Kaplan, W.; Asper, E.D. Sporotrichosis in a Pacific white-sided dolphin (Lagenorhynchus obliquidens). Am. J. Vet. Res. 1978, 39, 1916–1919. [Google Scholar]
Fungal Genus | Characteristics | Impact on Cetaceans | Zoonotic Potential |
---|---|---|---|
Blastomyces | Dimorphic fungi, historically endemic to certain regions but now expanding geographically | Cases reported in dolphins and other marine mammals; can cause systemic infections | Documented zoonotic transmission from marine mammals to humans |
Histoplasma | Associated with soil enriched by avian or bat droppings; expanding due to climate and land use changes | Histoplasmosis in cetaceans similar to human cases, with potential for both pulmonary and disseminated forms | Potential zoonotic transmission, especially in coastal areas |
Coccidioides | Endemic to arid soils, resilient in saline environments; expanding geographically | Documented infections in marine mammals, including severe cases in dolphins | Zoonotic implications due to environmental adaptability and expansion |
Paracoccidioides | Causes paracoccidioidomycosis ceti; distinct species identified in cetaceans and humans | Nodular or verrucous lesions on dolphins; taxonomic distinctions indicate complex zoonotic implications | Limited direct transmission, but zoonotic aspects need careful consideration |
Candida | Commensals that can become pathogenic; notable for antifungal resistance | Infections range from superficial to systemic; increasing reports in both captive and wild cetaceans | Possible zoonotic transmission, especially in captive environments |
Fusarium | Opportunistic pathogens; notable in agriculture and human medicine | Cutaneous to systemic infections reported in cetaceans; challenging due to drug resistance | Environmental presence suggests zoonotic transmission risk |
Aspergillus | Ubiquitous fungi causing a range of infections; issue of antifungal resistance | Various species causing infections in cetaceans, ranging from pulmonary to systemic | Zoonotic potential, especially given similar pathogenic patterns in humans and cetaceans |
Cryptococcus | Causes cryptococcosis; thrives in diverse environments | Non-typical colonizers in cetaceans but linked to invasive diseases with high mortality | Zoonotic aspect significant, with potential for outbreaks affecting multiple species |
Malassezia | Commonly found as commensals; associated with dermatological conditions | No direct evidence in cetaceans, but recent findings suggest potential presence and impact | Zoonotic importance due to shared environments and close contact |
Mucorales | Opportunistic fungi causing severe infections in immunocompromised hosts | Emerging concern in cetaceans with reports of systemic and fatal infections | Indirect zoonotic risk due to environmental reservoirs; direct transmission less likely |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Bustos, V.; Acosta-Hernández, B.; Cabañero-Navalón, M.D.; Ruiz-Gaitán, A.C.; Pemán, J.; Rosario Medina, I. Potential Fungal Zoonotic Pathogens in Cetaceans: An Emerging Concern. Microorganisms 2024, 12, 554. https://doi.org/10.3390/microorganisms12030554
Garcia-Bustos V, Acosta-Hernández B, Cabañero-Navalón MD, Ruiz-Gaitán AC, Pemán J, Rosario Medina I. Potential Fungal Zoonotic Pathogens in Cetaceans: An Emerging Concern. Microorganisms. 2024; 12(3):554. https://doi.org/10.3390/microorganisms12030554
Chicago/Turabian StyleGarcia-Bustos, Victor, Begoña Acosta-Hernández, Marta Dafne Cabañero-Navalón, Alba Cecilia Ruiz-Gaitán, Javier Pemán, and Inmaculada Rosario Medina. 2024. "Potential Fungal Zoonotic Pathogens in Cetaceans: An Emerging Concern" Microorganisms 12, no. 3: 554. https://doi.org/10.3390/microorganisms12030554