Bacterial IAA-Delivery into Medicago Root Nodules Triggers a Balanced Stimulation of C and N Metabolism Leading to a Biomass Increase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Growth Conditions, and Plasmids
2.2. Nucleic Acid Preparation from Bacteroids
2.3. Sequencing
2.4. Mapping of Sequenced Reads and Data Analysis
2.5. SNV Validation by Sanger Sequencing
2.6. qRT-PCR Analysis
2.7. Plant Material
2.8. IAA Content
2.9. Quantification of Chlorophylls and Carotenoids
2.10. Chlorophyll a Fluorescence and Non-Photochemical Quenching Measurements
2.11. Acetylene Reduction Assays (ARA)
2.12. Total C and N Analysis
2.13. Analysis of Plant-Soluble Proteins
2.14. GC-MS Analysis
3. Results
3.1. Endogenous Biosynthesis of IAA does not Induce Genomic Changes
3.2. IAA Influences the Expression of Bacterial Genes within Root Nodules
3.3. The IAA-Overproducing E. Meliloti RD64 Strain Improves the Phenotype of the Medicago Host Plant
3.3.1. IAA Analysis
3.3.2. Nitrogenase Activity
3.3.3. Total N and C Content
3.3.4. Pigment Determination
3.3.5. Photosystem II (PSII) Activity in Response to Light
3.4. Soluble Proteins and Rubisco Content
3.5. Metabolomic Profiles
3.6. Plant Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avery, G.S. Isolation of an auxin precursor and an auxin (indoleacetic acid) from Maize. Am. J. Bot. 1944, 31, 199–203. [Google Scholar]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd-Allah, E.F.; Hashem, A. Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Front Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef] [PubMed]
- Gupta, B.; Joshi, R.; Pareek, A.; Singla-Pareek, S.L. Transgenic approaches to improve crop productivity via phytohormonal research: A focus on the mechanisms of phytohormone action. Mech. Plant. Horm. Signal. Under Stress 2017, 2, 533–567. [Google Scholar]
- Vance, C.P. Carbon and nitrogen metabolism in legume nodules. Nitrogen-fixing Legum. Symbioses 2008, 293–320. [Google Scholar]
- Udvardi, M.; Poole, P.S. Transport and metabolism in legume-rhizobia symbioses. Ann. Rev. Plant. Biol. 2013, 64, 781–805. [Google Scholar] [CrossRef]
- Erice, G.E.; Sanz-Saez, A.; Aroca, R.; Ruiz-Lozano, J.M.; Avice, J.C.; Irigoyen, J.J.; Sanchez-Diaz, M.; Aranjuelo, I. Photosynthetic down-regulation in N2-fixing alfalfa under elevated CO2 alters rubisco content and decreases nodule metabolism via nitrogenase and tricarboxylic acid cycle. Act. Physiol Plant. 2014, 36, 2607–2617. [Google Scholar] [CrossRef]
- Hisokava, K. Interspecific difference in the photosynthesis-nitrogen relationship: Patterns, physiological causes, and ecological importance. J. Plant. Research. 2004, 117, 481–494. [Google Scholar] [CrossRef]
- Rogers, A.; Gibon, Y.; Stitt, M.; Morgan, P.B.; Bernacchi, C.J.; Ort, D.R.; Long, S.P. Increased C availability at elevated carbon dioxide concentration improves N assimilation in a legume. Plant Cell Environ. 2006, 29, 1651–1658. [Google Scholar] [CrossRef] [Green Version]
- Kant, S.; Seneweera, S.; Rodin, J.; Materne, M.; Burch, D.; Rothstein, S.; Spangenberg, G. Improving yield potential in crops under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies. Front. Plant Sci. 2012, 3, 162. [Google Scholar] [CrossRef]
- Tsikou, D.; Kalloniati, C.; Fotelli, M.N.; Nikolopoulos, D.; Katinakis, P.; Udvardi, M.K.; Rennenberg, H.; Flemetakis, E. Cessation of photosynthesis in Lotus japonicus leaves leads to reprogramming of nodule metabolism. J. Exp. Bot. 2013, 64, 1317–1332. [Google Scholar] [CrossRef]
- Mmbaga, G.W.; Mtei, K.M.; Ndakidemi, P.A. Extrapolation on the use of rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of legumes. Agric. Sci. 2014, 5, 1207–1226. [Google Scholar] [CrossRef]
- Carmo-Silva, E.; Scales, J.C.; Madgwick, P.J.; Parry, M.A. Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ. 2015, 38, 1817–1832. [Google Scholar] [CrossRef] [PubMed]
- Irving, L.J. Carbon assimilation, biomass partitioning and productivity in Grasses. Agriculture 2015, 5, 1116–1134. [Google Scholar] [CrossRef]
- Lin, M.T.; Occhialini, A.; Andralojc, P.J.; Parry, M.A.J.; Hanson, M.R. A faster Rubisco with potential to increase photosynthesis in crops. Nature 2014, 513, 547–550. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.J.; Norris, J.R.; Shipman, L.L.; Thurnauer, M.C.; Wasielewski, M.R. Chlorophyll function in the photosynthetic reaction center. Ann. Rev. Biophys. Bioeng. 1978, 7, 393–434. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, B.H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Method Enzymol. 1987, 148, 350–382. [Google Scholar]
- Demming-Adams, B. Carotenoids and photoprotection in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta. 1990, 1020, 1–24. [Google Scholar] [CrossRef]
- Lodish, H.; Berk, A.; Zipursky, S.L. Photosynthetic Stages and Light-Absorbing Pigments. Mol. Cell Biol. 2000. [Google Scholar]
- Richardson, A.D.; Diugan, S.P.; Berlyn, G.P. An evaluation of non-invasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153, 185–194. [Google Scholar] [CrossRef]
- Frank, H.A.; Brudvig, G.W. Redox function of carotenoids in photosynthesis. Biochem. 2004, 43, 8607–8615. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Ann. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef] [PubMed]
- Defez, R.; Spena, A. Method to Control Gene Expression in Bacteria, Namely Rhizobiaceae, to Improve Root Nodule Development, Nitrogen Fixation and Plant Biomass Production. EP98/830674.2. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20041118&CC=US&NR=2004229365A1&KC=A1 (accessed on 9 November 1998).
- Pandolfini, T.; Storlazzi, A.; Calabria, E.; Defez, R.; Spena, A. The spliceosomal intron of the rolA gene of Agrobacterium rhizogenes is a prokaryotic promoter. Mol. Microbiol. 2000, 35, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Imperlini, E.; Bianco, C.; Lonardo, E.; Camerini, S.; Cermola, M.; Moschetti, G.; Defez, R. Effect of indole-3-acetic acid on Sinorhizobium meliloti survival and on symbiotic nitrogen fixation and stem dry weight production. Appl. Microbiol. Biotechnol. 2009, 83, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Bianco, C.; Senatore, B.; Arbucci, S.; Pieraccini, G.; Defez, R. Modulation of endogenous indole-3-acetic acid biosynthesis in bacteroids within Medicago sativa nodules. Appl. Environ. Microbiol. 2014, 80, 4286–4293. [Google Scholar] [CrossRef]
- Bianco, C.; Defez, R. Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J. Exp. Bot. 2009, 60, 3097–3107. [Google Scholar] [CrossRef]
- Bianco, C.; Defez, R. A Sinorhizobium meliloti IAA-overproducing strain improves phosphate solubilization and Medicago plant yield. Appl. Environ. Microbiol. 2010, 76, 4626–4632. [Google Scholar] [CrossRef]
- Galibert, F.; Finan, T.M.; Long, S.R.; Puhler, A.; Abola, P.; Ampe, F.; Barloy-Hubler, F.; Barnett, M.J.; Becker, A.; Boistard, P.; et al. The composite genome of the legume symbiont Sinorhizobium meliloti. Science 2001, 293, 668–672. [Google Scholar] [CrossRef]
- Patel, R.K.; Jain, M. NGS QC Toolkit: A toolkit for quality control of next generation sequencing data. PLoS ONE 2012, 7, e30619. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [Green Version]
- Koboldt, D.C.; Chen, K.; Wylie, T.; Larson, D.E.; McLellan, M.D.; Mardis, E.R.; Weinstock, G.M.; Wilson, R.K.; Ding, L. VarScan: Variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 2009, 25, 2283–2285. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, 1207, 3907. [Google Scholar]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup, The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nature Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Defez, R.; Esposito, R.; Angelini, A.; Bianco, C. Overproduction of indole-3-acetic acid in free-living rhizobia induces transcriptional changes resembling those occurring in nodule bacteroids. Mol. Plant-Microbe Interact. 2016, 29, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Bucciarelli, B.; Hanan, J.; Palmquist, D.; Vance, C.P. A standardized method for analysis of Medicago truncatula phenotype development. Plant Physiol. 2006, 142, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Pesaresi, P.; Hertle, A.; Pribil, M.; Kleine, T.; Wagner, R.; Strissel, H.; Ihnatowicz, A.; Bonardi, V.; Scharfenberg, M.; Schneider, A.; et al. Arabidopsis STN7 kinase provides a link between short- and long-term photosynthetic acclimation. Plant Cell 2009, 21, 2402–2423. [Google Scholar] [CrossRef] [PubMed]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Camerini, S.; Senatore, B.; Lonardo, E.; Imperlini, E.; Bianco, C.; Moschetti, G.; Rotino, G.L.; Campion, B.; Defez, R. Introduction of novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch. Microbiol. 2008, 190, 67–77. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Fisher, H.M. Genetic regulation of nitrogen fixation in rhizobia. Microbiol. Rev. 1994, 58, 352–386. [Google Scholar]
- Barnett, M.J.; Fisher, R.F.; Jones, T.; Komp, C.; Abola, A.P.; Barloy-Hubler, F.; Bowser, L.; Capela, D.; Galibert, F.; Gouzy, J.; et al. Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc. Natl. Acad.Sci. USA. 2001, 98, 9883–9888. [Google Scholar] [CrossRef] [PubMed]
- Bobik, C.; Meilhoc, E.; Batut, J. FixJ: A major regulator of the oxygen limitation response and late symbiotic functions of Sinorhizobium meliloti. J. Bacteriol. 2006, 188, 4890–4902. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.J.; Hidalgo-Garcia, A.; Bedmar, E.J.; Delgado, M.J. Functional analysis of the copy 1 of the fixNOQP operon of Ensifer meliloti under free-living micro-oxic symbiotic conditions. J. Appl. Microbiol. 2013, 114, 1772–1781. [Google Scholar] [CrossRef] [PubMed]
- Mitsui, H.; Sato, T.; Ito, N.; Minamisawa, K. Sinorhizobium meliloti RpoH1 is required foe effective nitrogen-fixing symbiosis with alfalfa. Mol. Gen. Genomics. 2004. [CrossRef]
- Yang, Y.; Yue, R.; Sun, T.; Zhang, L.; Chen, W.; Zeng, H.; Wang, H.; Shen, C. Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti. Appl. Microbiol. Biotechol. 2015. [Google Scholar] [CrossRef] [PubMed]
- Kisker, C.; Kuper, J.; Van Houten, B. Prokaryotic nucleotide excision repair. Cold Spring Harb Perspect Biol. 2013. [Google Scholar] [CrossRef]
- Pii, Y.; Crimi, M.; Cremonese, G.; Spena, A.; Pandolfini, T. Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol. 2007, 7, 21. [Google Scholar] [CrossRef]
- White, J.; Prell, J.; James, E.K.; Poole, P. Nutrient sharing between symbionts. Plant Physiol. 2007, 144, 604–614. [Google Scholar] [CrossRef]
- Defez, R.; Andreozzi, A.; Dickinson, M.; Charlton, A.; Tadini, L.; Pesaresi, P.; Bianco, C. Improved drought stress response in alfalfa plants nodulated by an IAA over-producing Rhizobium strain. Front. Microbiol. 2017. [CrossRef]
- Oldroyd, G.E.D.; Downie, J.A. Coordinating nodule morphogenesis with rhizobial infection in legumes. Ann. Rev. Plant Biol. 2008, 59, 519–546. [Google Scholar] [CrossRef]
- Richards, R.A. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R. Improving photosynthesis. Plant Physiol. 2013, 162, 1780–1793. [Google Scholar] [CrossRef] [PubMed]
- Cornic, G.; Fresneau, C. Photosynthetic carbon reduction and carbon oxidation cycles are main electron sinks for photosystem II activity during mild drought. Ann. Bot. 2002, 89, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Feller, U.; Anders, I.; Mae, T. Rubiscolytics: Fate of Rubisco after enzymatic function in a cell is terminated. J. Exp. Bot. 2008, 59, 1615–1624. [Google Scholar] [CrossRef]
- Jagadish, K.S.V.; Kavi Kishor, P.B.; Bahuguna, R.N.; von Wiren, N.; Sreenivasulu, N. Staying alive or going to die during terminal senescence–An enigma surrounding yield stability. Front. Plant Sci. 2015. [CrossRef]
Sample | IAA Content (µmol g FW−1) | Ratio | P Value |
---|---|---|---|
Ms-1021 Leaf | 60.1 ± 6.5 | ||
Ms-1021 Root | 19.4 ± 2.2 | 0.3 | <0.01 |
Ms-RD64 Leaf | 59.7 ± 7.4 | ||
Ms-RD64 Root | 63.2 ± 11.1 | 1.1 | <0.01 |
Compound | §Relative Abundance (Ms-RD64/Ms-1021) |
---|---|
Malic acid | 1.8 |
Citric acid | 2.9 |
Sucrose | 1.3 |
Fructose | 1.9 |
Glucose | 1.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Defez, R.; Andreozzi, A.; Romano, S.; Pocsfalvi, G.; Fiume, I.; Esposito, R.; Angelini, C.; Bianco, C. Bacterial IAA-Delivery into Medicago Root Nodules Triggers a Balanced Stimulation of C and N Metabolism Leading to a Biomass Increase. Microorganisms 2019, 7, 403. https://doi.org/10.3390/microorganisms7100403
Defez R, Andreozzi A, Romano S, Pocsfalvi G, Fiume I, Esposito R, Angelini C, Bianco C. Bacterial IAA-Delivery into Medicago Root Nodules Triggers a Balanced Stimulation of C and N Metabolism Leading to a Biomass Increase. Microorganisms. 2019; 7(10):403. https://doi.org/10.3390/microorganisms7100403
Chicago/Turabian StyleDefez, Roberto, Anna Andreozzi, Silvia Romano, Gabriella Pocsfalvi, Immacolata Fiume, Roberta Esposito, Claudia Angelini, and Carmen Bianco. 2019. "Bacterial IAA-Delivery into Medicago Root Nodules Triggers a Balanced Stimulation of C and N Metabolism Leading to a Biomass Increase" Microorganisms 7, no. 10: 403. https://doi.org/10.3390/microorganisms7100403
APA StyleDefez, R., Andreozzi, A., Romano, S., Pocsfalvi, G., Fiume, I., Esposito, R., Angelini, C., & Bianco, C. (2019). Bacterial IAA-Delivery into Medicago Root Nodules Triggers a Balanced Stimulation of C and N Metabolism Leading to a Biomass Increase. Microorganisms, 7(10), 403. https://doi.org/10.3390/microorganisms7100403