Temporal Dynamics in Rumen Bacterial Community Composition of Finishing Steers during an Adaptation Period of Three Months
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experimental Design and Sample Collection
2.3. DNA Extraction
2.4. PCR Amplification and MiSeq Sequencing
2.5. Sequencing Analysis
2.6. Statistical Analysis
3. Results
3.1. Temperature, Humidity, DMI and Their Correlations between Genera
3.2. Sequencing Depth and Coverage
3.3. Operational Taxonomic Unit Cluster Analysis
3.4. Alpha Diversity Analysis
3.5. Taxonomic Analysis
3.6. Beta Diversity
4. Discussion
4.1. Correlations between Genera and DMI, Humidity and Temperature
4.2. Differential Evaluation by Alpha Diversity and Beta Diversity
4.3. Adaptation Period and Stabilization of the Microbiota
4.4. Rumen Ecosystem Diversity as Time Advances
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pitta, D.W.; Indugu, N.; Baker, L.; Vecchiarelli, B.; Attwood, G. Symposium review: Understanding diet-microbe interactions to enhance productivity of dairy cows. J. Dairy Sci. 2018, 101, 7661–7679. [Google Scholar] [CrossRef] [PubMed]
- McCann, J.C.; Wickersham, T.A.; Loor, J.J. High-throughput methods redefine the rumen microbiome and its relationship with nutrition and metabolism. Bioinform. Biol. Insights 2014, 8, 109–125. [Google Scholar] [CrossRef] [PubMed]
- Sasson, G.; Kruger Ben-Shabat, S.; Seroussi, E.; Doron-Faigenboim, A.; Shterzer, N.; Yaacoby, S.; Berg Miller, M.E.; White, B.A.; Halperin, E.; Mizrahi, I. Heritable bovine rumen bacteria are phylogenetically related and correlated with the cow’s capacity to harvest energy from its feed. MBio 2017, 8, e00703–e00717. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Munro, J.C.; Zhou, M.; Guan, L.L.; Schenkel, F.S.; Steele, M.A.; Miller, S.P.; Montanholi, Y.R. Associations of rumen parameters with feed efficiency and sampling routine in beef cattle. Animal 2018, 12, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Myer, P.R. Bovine genome-microbiome interactions: Metagenomic frontier for the selection of efficient productivity in cattle systems. Msystems 2019, 4, e00103–e00119. [Google Scholar] [CrossRef]
- Weimer, P.J.; Cox, M.S.; de Paula, T.V.; Lin, M.; Hall, M.B.; Suen, G. Transient changes in milk production efficiency and bacterial community composition resulting from near-total exchange of ruminal contents between high- and low-efficiency Holstein cows. J. Dairy Sci. 2017, 100, 7165–7182. [Google Scholar] [CrossRef]
- Tapio, I.; Snelling, T.J.; Strozzi, F.; Wallace, R.J. The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol. 2017, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Pitta, D.W.; Kumar, S.; Vecchiarelli, B.; Shirley, D.J.; Bittinger, K.; Baker, L.D.; Ferguson, J.D.; Thomsen, N. Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. J. Anim. Sci. 2014, 92, 4014–4022. [Google Scholar] [CrossRef]
- Li, M.; Penner, G.B.; Hernandez-Sanabria, E.; Oba, M.; Guan, L.L. Effects of sampling location and time, and host animal on assessment of bacterial diversity and fermentation parameters in the bovine rumen. J. Appl. Microbiol. 2009, 107, 1924–1934. [Google Scholar] [CrossRef]
- Weimer, P.J.; Stevenson, D.M.; Mantovani, H.C.; Man, S.L.C. Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents. J. Dairy Sci. 2010, 93, 5902–5912. [Google Scholar] [CrossRef]
- Mohammed, R.; Stevenson, D.M.; Weimer, P.J.; Penner, G.B.; Beauchemin, K.A. Individual animal variability in ruminal bacterial communities and ruminal acidosis in primiparous Holstein cows during the periparturient period. J. Dairy Sci. 2012, 95, 6716–6730. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Peng, Y.J.; Chen, Y.H.; Klinger, C.M.; Oba, M.; Liu, J.X.; Guan, L.L. Assessment of microbiome changes after rumen transfaunation: Implications on improving feed efficiency in beef cattle. Microbiome 2018, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.G.; Detmann, E.; Mantovani, H.C.; Valadares, S.C.; Bento, C.B.P.; Marcondes, M.I.; Assuncao, A.S. Evaluation of the length of adaptation period for changeover and crossover nutritional experiments with cattle fed tropical forage-based diets. Anim. Feed Sci. Tech. 2016, 222, 132–148. [Google Scholar] [CrossRef]
- Noel, S.J.; Attwood, G.T.; Rakonjac, J.; Moon, C.D.; Waghorn, G.C.; Janssen, P.H. Seasonal changes in the digesta-adherent rumen bacterial communities of dairy cattle grazing pasture. PLoS ONE 2017, 12, e0173819. [Google Scholar] [CrossRef] [PubMed]
- Jewell, K.A.; McCormick, C.A.; Odt, C.L.; Weimer, P.J.; Suen, G. Ruminal bacterial community composition in dairy cows is dynamic over the course of two lactations and correlates with feed efficiency. Appl. Environ. Microbiol. 2015, 81, 4697–4710. [Google Scholar] [CrossRef] [PubMed]
- Clemmons, B.A.; Martino, C.; Schneider, L.G.; Lefler, J.; Embree, M.M.; Myer, P.R. Temporal stability of the ruminal bacterial communities in beef steers. Sci. Rep. 2019, 9, 9522. [Google Scholar] [CrossRef]
- Dias, J.; Marcondes, M.I.; Noronha, M.F.; Resende, R.T.; Machado, F.S.; Mantovani, H.C.; Dill-McFarland, K.A.; Suen, G. Effect of pre-weaning diet on the ruminal archaeal, bacterial, and fungal communities of dairy calves. Front. Microbiol. 2017, 8, 1553. [Google Scholar] [CrossRef] [PubMed]
- Anderson, C.L.; Schneider, C.J.; Erickson, G.E.; MacDonald, J.C.; Fernando, S.C. Rumen bacterial communities can be acclimated faster to high concentrate diets than currently implemented feedlot programs. J. Appl. Microbiol. 2016, 120, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Palmonari, A.; Stevenson, D.M.; Mertens, D.R.; Cruywagen, C.W.; Weimer, P.J. pH dynamics and bacterial community composition in the rumen of lactating dairy cows. J. Dairy Sci. 2010, 93, 279–287. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Li, H.; Wu, F.; Qiu, Q.; Niu, W.; Gao, Z.; Su, H.; Cao, B. Rumen fermentation, intramuscular fat fatty acid profiles and related rumen bacterial populations of Holstein bulls fed diets with different energy levels. Appl. Microbiol. Biotechnol. 2019, 103, 4931–4942. [Google Scholar] [CrossRef]
- Qiu, Q.; Zhu, Y.; Qiu, X.; Gao, C.; Wang, J.; Wang, H.; He, Y.; Muhammad Aziz ur, R.; Cao, B.; Su, H. Dynamic variations in fecal bacterial community and fermentation profile of Holstein steers in response to three stepwise density diets. Animals 2019, 9, 560. [Google Scholar] [CrossRef] [PubMed]
- Paz, H.A.; Anderson, C.L.; Muller, M.J.; Kononoff, P.J.; Fernando, S.C. Rumen bacterial community composition in Holstein and Jersey cows is different under same dietary condition and is not affected by sampling method. Front. Microbiol. 2016, 7, 1206. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, L.; Osman, O.A.; Bertilsson, S.; Eiler, A. Microbial community composition and diversity via 16s rRNA gene amplicons: Evaluating the illumina platform. PLoS ONE 2015, 10, e0116955. [Google Scholar] [CrossRef] [PubMed]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Schloss, P.D.; Westcott, S.L.; Thomas, R.; Hall, J.R.; Martin, H.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [PubMed]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Qiong, W.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar] [CrossRef]
- Petri, R.M.; Vahmani, P.; Yang, H.E.; Dugan, M.E.R.; McAllister, T.A. Changes in rumen microbial profiles and subcutaneous fat composition when feeding extruded flaxseed mixed with or before hay. Front. Microbiol. 2018, 9, 1055. [Google Scholar] [CrossRef]
- Zhu, Z.G.; Noel, S.J.; Difford, G.F.; Abu Al-Soud, W.; Brejnrod, A.; Sorensen, S.J.; Lassen, J.; Lovendahl, P.; Hojberg, O. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period. PLoS ONE 2017, 12, e0187858. [Google Scholar] [CrossRef] [PubMed]
- Klevenhusen, F.; Petri, R.M.; Kleefisch, M.T.; Khiaosa-ard, R.; Metzler-Zebeli, B.U.; Zebeli, Q. Changes in fibre-adherent and fluid-associated microbial communities and fermentation profiles in the rumen of cattle fed diets differing in hay quality and concentrate amount. FEMS Microbiol. Ecol. 2017, 93, fix100. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.T.; Han, H.Y.; Yu, Z.; Tsuruta, T.; Nishino, N. Variability, stability, and resilience of fecal microbiota in dairy cows fed whole crop corn silage. Appl. Microbiol. Biotechnol. 2017, 101, 6355–6364. [Google Scholar] [CrossRef] [PubMed]
- Bach, A.; Lopez-Garcia, A.; Gonzalez-Recio, O.; Elcoso, G.; Fabregas, F.; Chaucheyras-Durand, F.; Castex, M. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. J. Dairy Sci. 2019, 102, 6180–6198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabris, T.F.; Laporta, J.; Skibiel, A.L.; Corra, F.N.; Senn, B.D.; Wohigemuth, S.E.; Dahl, G.E. Effect of heat stress during early, late, and entire dry period on dairy cattle. J. Dairy Sci. 2019, 102, 5647–5656. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, R.H. Evolution and measurement of species diversity. Taxon 1972, 21, 213–251. [Google Scholar] [CrossRef]
- Veech, J.A.; Summerville, K.S.; Crist, T.O.; Gering, J.C. The additive partitioning of species diversity: Recent revival of an old idea. Oikos 2002, 99, 3–9. [Google Scholar] [CrossRef]
- Brown, M.S.; Ponce, C.H.; Pulikanti, R. Adaptation of beef cattle to high-concentrate diets: Performance and ruminal metabolism. J. Anim. Sci. 2006, 84, E25–E33. [Google Scholar] [CrossRef]
- Swanson, K.C.; Gaspers, J.J.; Keomanivong, F.A.; Gilbery, T.C.; Lardy, G.P.; Bauer, M.L.; Stokka, G.L. Influence of feeding direct-fed microbial supplementation on growth performance and feeding behavior in naturally fed and conventionally fed finishing cattle with different dietary adaptation periods. J. Anim. Sci. 2018, 96, 3370–3380. [Google Scholar] [CrossRef]
- Welkie, D.G.; Stevenson, D.M.; Weimer, P.J. ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe 2010, 16, 94–100. [Google Scholar] [CrossRef]
- Smets, W.; Leff, J.W.; Bradford, M.A.; Mcculley, R.L.; Lebeer, S.; Fierer, N. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 2016, 96, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Wu, D.; Yan, T.; Wang, L. The impact of rumen cannulation on the microbial community of goat rumens as measured using 16S rRNA high-throughput sequencing. J. Anim. Physiol. Anim. Nutr. 2018, 102, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Elekwachi, C.; Jiao, J.; Wang, M.; Tang, S.; Zhou, C.; Tan, Z.; Forster, R.J. Changes in metabolically active bacterial community during rumen development, and their alteration by rhubarb root powder revealed by 16S rRNA amplicon sequencing. Front. Microbiol. 2017, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Jami, E.; Israel, A.; Kotser, A.; Mizrahi, I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013, 7, 1069–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minato, H.; Otsuka, M.; Shirasaka, S.; Itabashi, H.; Mitsumori, M. Colonization of microorganisms in the rumen of young calves. J. Gen. Appl. Microbiol. 1992, 38, 447–456. [Google Scholar] [CrossRef]
- Li, R.W.; Connor, E.E.; Li, C.J.; Baldwin, R.L.; Sparks, M.E. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 2012, 14, 129–139. [Google Scholar] [CrossRef]
- Bowen, J.M.; McCabe, M.S.; Lister, S.J.; Cormican, P.; Dewhurst, R.J. Evaluation of microbial communities associated with the liquid and solid phases of the rumen of cattle offered a diet of perennial ryegrass or white clover. Front. Microbiol. 2018, 9, 2389. [Google Scholar] [CrossRef] [PubMed]
- Ogunade, I.; Schweickart, H.; Andries, K.; Lay, J.; Adeyemi, J. Monensin alters the functional and metabolomic profile of rumen microbiota in beef cattle. Animals 2018, 8, 211. [Google Scholar] [CrossRef]
- Ransom-Jones, E.; Jones, D.L.; Mccarthy, A.J.; Mcdonald, J.E. The Fibrobacteres: An important phylum of cellulose-degrading bacteria. Microb. Ecol. 2012, 63, 267–281. [Google Scholar] [CrossRef]
- Wang, H.; Chen, X.; Wang, M. Effect of Yucca schidigera saponin and tea saponin mixture on the rumen fermentation and its fibrolytic bacterial activity in the rusitec substrates with different concentrate to forage ratio. Sci. Agric. Sin. 2011, 44, 1710–1719. [Google Scholar] [CrossRef]
- Zened, A.; Combes, S.; Cauquil, L.; Mariette, J.; Klopp, C.; Bouchez, O.; Troegeler-Meynadier, A.; Enjalbert, F. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol. Ecol. 2013, 83, 504–514. [Google Scholar] [CrossRef]
- Krause, D.O.; Denman, S.E.; Mackie, R.I.; Morrison, M.; Rae, A.L.; Attwood, G.T.; McSweeney, C.S. Opportunities to improve fiber degradation in the rumen: Microbiology, ecology, and genomics. FEMS Microbiol. Rev. 2003, 27, 663–693. [Google Scholar] [CrossRef]
- Tong, J.J.; Zhang, H.; Yang, D.L.; Zhang, Y.H.; Xiong, B.H.; Jiang, L.S. Illumina sequencing analysis of the ruminal microbiota in high-yield and low-yield lactating dairy cows. PLoS ONE 2018, 13, e0198225. [Google Scholar] [CrossRef] [PubMed]
- Freier, T.A.; Beitz, D.C.; Li, L.; Hartman, P.A. Characterization of Eubacterium coprostanoligenes Sp-Nov a cholesterol-reducing anaerobe. Int. J. Syst. Bacteriol. 1994, 44, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Penner, G.B.; Li, M.J.; Oba, M.; Guan, L.L. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a high-grain diet. Appl. Environ. Microbiol. 2011, 77, 5770–5781. [Google Scholar] [CrossRef] [PubMed]
- Koringa, P.G.; Thakkar, J.R.; Pandit, R.J.; Hinsu, A.T.; Parekh, M.J.; Shah, R.K.; Jakhesara, S.J.; Joshi, C.G. Metagenomic characterisation of ruminal bacterial diversity in buffaloes from birth to adulthood using 16S rRNA gene amplicon sequencing. Funct. Integr. Genomics 2019, 19, 237–247. [Google Scholar] [CrossRef] [PubMed]
Item | Diets 1 | |||
---|---|---|---|---|
C | L | P | ||
Ingredients, % of DM | Corn | 41.44 | 29.94 | 35.69 |
Wheat | 5.73 | 4.14 | 4.94 | |
Soybean meal | 7.37 | 5.32 | 6.34 | |
Leymus chinensis | 43.78 | 59.38 | 51.58 | |
Calcium carbonate | 0.56 | 0.41 | 0.48 | |
Sodium chloride | 0.56 | 0.40 | 0.48 | |
Vitamin-mineral premix 2 | 0.56 | 0.41 | 0.49 | |
Nutrient composition, % of DM | Metabolizable energy (ME), Mcal/kg | 2.53 | 2.35 | 2.44 |
Crude protein (CP) | 11.9 | 10.5 | 11.2 | |
Neutral detergent fiber (NDF) | 37.1 | 46.4 | 41.8 | |
Acid detergent fiber (ADF) | 20.2 | 25.8 | 23.0 | |
Starch | 34.8 | 25.9 | 30.4 | |
Calcium | 0.48 | 0.50 | 0.49 | |
Phosphorous | 0.26 | 0.23 | 0.25 |
Item 1 | C 2 | L 3 | SEM 4 | p-Value 5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | Mean | L1 | L2 | L3 | Mean | Diet | Period | Diet × Period | ||
OTUs | 1248 | 1354 | 1379 | 1327 | 1530 | 1686 | 1414 | 1543 | 73.08 | 0.023 | 0.227 | 0.192 |
Chao1 | 1658 | 1866 | 1832 | 1786 | 1998 | 1888 | 2355 | 2080 | 124.9 | 0.064 | 0.199 | 0.247 |
Observed species | 1204 | 1330 | 1306 | 1280 | 1478 | 1363 | 1622 | 1488 | 69.11 | 0.021 | 0.225 | 0.182 |
PD whole tree | 93.51 | 99.07 | 98.30 | 96.96 | 107.5 | 101.1 | 114.6 | 107.7 | 4.076 | 0.034 | 0.309 | 0.275 |
Shannon index | 7.816 | 7.996 | 8.121 | 7.978 | 8.340 | 7.995 | 8.419 | 8.251 | 0.139 | 0.095 | 0.092 | 0.118 |
Phylum Name | C 1 | L 2 | SEM 3 | p-Value 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | Mean | L1 | L2 | L3 | Mean | Diet | Period | D × P | ||
Bacteroidetes | 68.04 | 69.36 | 61.90 | 66.44 | 67.71 | 69.95 | 65.43 | 67.69 | 2.707 | 0.579 | 0.128 | 0.717 |
Firmicutes | 27.33 | 22.35 | 25.80 | 25.16 | 23.64 | 19.00 | 20.76 | 21.13 | 2.795 | 0.057 | 0.311 | 0.913 |
Proteobacteria | 0.702 b | 1.788 ab | 5.332 a | 2.607 | 1.608 | 2.718 | 2.947 | 2.424 | 0.785 | 0.818 | 0.034 | 0.168 |
Fibrobacteres | 0.560 b | 1.505 a | 1.245 ab | 1.103 | 1.284 b | 2.302 ab | 3.569 a | 2.385 | 0.349 | 0.002 | 0.008 | 0.112 |
Kiritimatiellaeota | 0.832 | 1.204 | 1.485 | 1.174 | 1.842 | 1.514 | 2.334 | 1.897 | 0.469 | 0.180 | 0.402 | 0.702 |
Spirochaetes | 0.723 | 0.953 | 0.887 | 0.854 | 1.085 | 1.050 | 1.100 | 1.078 | 0.199 | 0.197 | 0.851 | 0.791 |
Cyanobacteria | 0.138 b | 0.751 a | 0.903 a | 0.597 | 0.833 | 1.304 | 1.828 | 1.322 | 0.222 | 0.009 | 0.008 | 0.726 |
Tenericutes | 0.398 | 0.674 | 0.916 | 0.663 | 0.577 | 0.658 | 0.464 | 0.566 | 0.095 | 0.170 | 0.134 | 0.024 |
Patescibacteria | 0.479 | 0.665 | 0.551 | 0.565 | 0.485 | 0.546 | 0.540 | 0.524 | 0.083 | 0.452 | 0.402 | 0.712 |
Genus Name | C 1 | L 2 | SEM 3 | p-Value 4 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | Mean | L1 | L2 | L3 | Mean | Diet | Period | D × P | ||
Prevotella | 33.29 | 32.94 | 29.07 | 31.77 | 23.45 | 34.16 | 30.80 | 29.47 | 4.337 | 0.475 | 0.531 | 0.391 |
Rikenellaceae_RC9_gut_group | 10.20 | 7.27 | 6.41 | 7.96 | 16.21 a | 9.12 b | 7.54 b | 10.95 | 1.236 | 0.021 | 0.001 | 0.151 |
Prevotellaceae_UCG-003 | 2.008 | 3.884 | 3.393 | 3.095 | 4.677 | 4.417 | 4.764 | 4.619 | 0.690 | 0.062 | 0.372 | 0.270 |
Succiniclasticum | 3.414 | 2.588 | 3.232 | 3.078 | 2.111 | 1.392 | 1.870 | 1.791 | 0.445 | 0.004 | 0.279 | 0.979 |
Prevotellaceae_UCG-001 | 1.682 | 3.124 | 1.738 | 2.181 | 1.674 | 1.852 | 1.783 | 1.770 | 0.417 | 0.402 | 0.276 | 0.363 |
uncultured_bacterium | 1.854 | 2.665 | 1.783 | 2.101 | 1.670 | 1.576 | 1.652 | 1.633 | 0.390 | 0.166 | 0.548 | 0.428 |
Ruminococcaceae_NK4A214_group | 3.127 a | 1.433 b | 2.040 ab | 2.200 | 1.876 a | 1.169 b | 1.095 b | 1.380 | 0.261 | <0.001 | 0.025 | 0.318 |
Fibrobacter | 0.552 b | 1.500 a | 1.243 ab | 1.098 | 1.273 b | 2.299 ab | 3.565 a | 2.379 | 0.348 | 0.002 | 0.008 | 0.111 |
Ruminococcus_2 | 1.759 | 1.486 | 1.874 | 1.706 | 0.959 | 0.999 | 0.437 | 0.798 | 0.311 | 0.014 | 0.765 | 0.277 |
Christensenellaceae_R-7_group | 1.386 | 1.214 | 1.301 | 1.300 | 1.156 | 0.923 | 1.139 | 1.073 | 0.234 | 0.137 | 0.686 | 0.948 |
Ruminococcaceae_UCG-011 | 1.149 | 1.505 | 1.069 | 1.241 | 1.250 | 0.991 | 1.076 | 1.106 | 0.259 | 0.572 | 0.794 | 0.478 |
Prevotellaceae_UCG-004 | 0.984 | 1.310 | 1.267 | 1.187 | 0.613 | 1.385 | 0.965 | 0.988 | 0.307 | 0.499 | 0.252 | 0.660 |
Ruminococcaceae_UCG-014 | 0.549 | 0.842 | 1.295 | 0.895 | 1.055 | 1.043 | 0.727 | 0.942 | 0.197 | 0.823 | 0.480 | 0.043 |
Succinivibrionaceae_UCG-002 | 0.105 | 0.493 | 2.534 | 1.044 | 0.579 | 0.837 | 0.948 | 0.788 | 0.508 | 0.623 | 0.106 | 0.204 |
Treponema | 0.654 | 0.860 | 0.789 | 0.768 | 0.962 | 0.932 | 0.970 | 0.955 | 0.195 | 0.266 | 0.873 | 0.816 |
Prevotellaceae_NK3B31_group | 1.227 | 0.692 | 0.897 | 0.939 | 0.645 | 0.277 | 0.733 | 0.552 | 0.271 | 0.216 | 0.276 | 0.721 |
Eubacterium_coprostanoligenes_group | 1.079 | 0.689 | 0.573 | 0.780 | 0.914 a | 0.501 b | 0.441 b | 0.619 | 0.120 | 0.141 | 0.013 | 0.907 |
Veillonellaceae_UCG-001 | 0.952 | 0.493 | 0.544 | 0.663 | 0.774 | 0.537 | 0.798 | 0.703 | 0.132 | 0.707 | 0.119 | 0.362 |
Ruminococcus_1 | 0.400 | 0.675 | 0.882 | 0.652 | 0.822 | 0.520 | 0.728 | 0.690 | 0.162 | 0.794 | 0.399 | 0.205 |
Lachnospiraceae_NK3A20_group | 0.752 | 0.786 | 0.871 | 0.803 | 0.449 | 0.510 | 0.565 | 0.508 | 0.127 | 0.043 | 0.542 | 0.967 |
Selenomonas | 0.615 | 0.634 | 0.869 | 0.706 | 0.465 | 0.723 | 0.568 | 0.585 | 0.119 | 0.309 | 0.341 | 0.312 |
Ruminococcaceae_UCG-010 | 0.659 | 0.647 | 0.455 | 0.587 | 0.998 a | 0.509 b | 0.524 b | 0.677 | 0.116 | 0.361 | 0.040 | 0.177 |
Saccharofermentans | 0.934 | 0.549 | 0.536 | 0.673 | 0.789 | 0.505 | 0.459 | 0.584 | 0.127 | 0.354 | 0.053 | 0.903 |
Moryella | 0.819 | 0.827 | 0.935 | 0.860 | 0.589 | 0.248 | 0.289 | 0.375 | 0.124 | 0.004 | 0.374 | 0.188 |
unidentified_rumen_bacterium_RFN46 | 0.261 | 1.766 | 0.301 | 0.776 | 0.244 | 0.148 | 0.710 | 0.367 | 0.315 | 0.197 | 0.211 | 0.067 |
CAG-352 | 0.385 | 0.684 | 0.875 | 0.648 | 0.520 | 0.552 | 0.285 | 0.452 | 0.149 | 0.175 | 0.495 | 0.071 |
Candidatus_Saccharimonas | 0.470 | 0.633 | 0.525 | 0.543 | 0.446 | 0.513 | 0.527 | 0.495 | 0.081 | 0.388 | 0.429 | 0.714 |
Ruminobacter | 0.027 b | 0.364 ab | 0.985 a | 0.459 | 0.270 | 0.700 | 0.692 | 0.554 | 0.166 | 0.536 | 0.023 | 0.243 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Q.; Gao, C.; Gao, Z.; Rahman, M.A.u.; He, Y.; Cao, B.; Su, H. Temporal Dynamics in Rumen Bacterial Community Composition of Finishing Steers during an Adaptation Period of Three Months. Microorganisms 2019, 7, 410. https://doi.org/10.3390/microorganisms7100410
Qiu Q, Gao C, Gao Z, Rahman MAu, He Y, Cao B, Su H. Temporal Dynamics in Rumen Bacterial Community Composition of Finishing Steers during an Adaptation Period of Three Months. Microorganisms. 2019; 7(10):410. https://doi.org/10.3390/microorganisms7100410
Chicago/Turabian StyleQiu, Qinghua, Chaoyu Gao, Zhibiao Gao, Muhammad Aziz ur Rahman, Yang He, Binghai Cao, and Huawei Su. 2019. "Temporal Dynamics in Rumen Bacterial Community Composition of Finishing Steers during an Adaptation Period of Three Months" Microorganisms 7, no. 10: 410. https://doi.org/10.3390/microorganisms7100410
APA StyleQiu, Q., Gao, C., Gao, Z., Rahman, M. A. u., He, Y., Cao, B., & Su, H. (2019). Temporal Dynamics in Rumen Bacterial Community Composition of Finishing Steers during an Adaptation Period of Three Months. Microorganisms, 7(10), 410. https://doi.org/10.3390/microorganisms7100410