Wild Nutria (Myocastor coypus) Is a Potential Reservoir of Carbapenem-Resistant and Zoonotic Aeromonas spp. in Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolation and Culture Conditions
2.2. Species Discrimination
2.3. Determination of Virulence-Associated Genes
2.4. Antimicrobial Susceptibility Testing
2.5. Determination of Antibiotic Resistance Genes and Phylogenetic Analysis of the cphA Gene
2.6. Nucleotide Sequence and Strain Deposition
3. Results and Discussion
3.1. Wild Nutria Is a Potential Reservoir of Zoonotic Aeromonas spp.
3.2. Wild Nutria Is a Potential Reservoir of Antimicrobial-Resistant Aeromonas spp.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Colwell, R.R.; MacDonell, M.T.; De Ley, J. Proposal to recognize the family Aeromonadaceae fam. nov. Int. J. Syst. Evol. Microbiol. 1986, 36, 473–477. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [PubMed]
- Igbinosa, I.H.; Igumbor, E.U.; Aghdasi, F.; Tom, M.; Okoh, A.I. Emerging Aeromonas species infections and their significance in public health. Sci. World J. 2012, 2012, 625023. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Przygodzińska, D.; Matyjewicz, K.; Popowska, M. Occurrence and variety of β-lactamase genes among Aeromonas spp. isolated from urban wastewater treatment plant. Front. Microbiol. 2017, 8, 863. [Google Scholar] [CrossRef] [PubMed]
- Khajanchi, B.K.; Fadl, A.A.; Borchardt, M.A.; Berg, R.L.; Horneman, A.J.; Stemper, M.E.; Joseph, S.W.; Moyer, N.P.; Sha, J.; Chopra, A.K. Distribution of virulence factors and molecular fingerprinting of Aeromonas species isolates from water and clinical samples: suggestive evidence of water-to-human transmission. Appl. Environ. Microbiol. 2010, 76, 2313–2325. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.M. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 1991, 4, 397–410. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.L.; Lamy, B.; Ko, W.C. Aeromonas dhakensis, an increasingly recognized human pathogen. Front. Microbiol. 2016, 7, 793. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, E.; Berktas, M.; Ağaoğlu, Z. The occurrence and antibiotic resistance of motile Aeromonas in livestock. Trop. Anim. Health Prod. 2009, 41, 199–204. [Google Scholar] [CrossRef]
- Gowda, T.K.; Reddy, V.R.; Devleesschauwer, B.; Zade, N.N.; Chaudhari, S.P.; Khan, W.A.; Shinde, S.V.; Patil, A.R. Isolation and seroprevalence of Aeromonas spp. among common food animals slaughtered in Nagpur, Central India. Foodborne Pathog. Dis. 2015, 12, 626–630. [Google Scholar] [CrossRef]
- Dias, C.; Borges, A.; Saavedra, M.J.; Simões, M. Biofilm formation and multidrug resistant Aeromonas spp. from wild animals. J. Glob. Antimicrob. Resist. 2018, 12, 227–234. [Google Scholar] [CrossRef]
- Jindal, N.; Garg, S.R.; Kumar, A. Comparison of Aeromonas spp. isolated from human, livestock and poultry faeces. Israel J. Vet. Med. 1993, 48, 80. [Google Scholar]
- Dias, C.; Serra, C.R.; Simões, L.C.; Simões, M.; Martinez-Murcia, A.; Saavedra, M.J. Extended-spectrum β-lactamase and carbapenemase-producing Aeromonas species in wild animals from Portugal. Vet. Rec. 2014, 174, 532. [Google Scholar] [CrossRef]
- Laviad-Shitrit, S.; Izhaki, I.; Arakawa, E.; Halpern, M. Wild waterfowl as potential vectors of Vibrio cholerae and Aeromonas species. Trop. Med. Int. Health 2018, 23, 758–764. [Google Scholar] [CrossRef]
- Parker, J.L.; Shaw, J.G. Aeromonas spp. clinical microbiology and disease. J. Infect. 2011, 62, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Aravena-Román, M.; Inglis, T.J.; Henderson, B.; Riley, T.V.; Chang, B.J. Distribution of 13 virulence genes among clinical and environmental Aeromonas spp. in Western Australia. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 1889–1895. [Google Scholar]
- Figueira, V.; Vaz-Moreira, I.; Silva, M.; Manaia, C.M. Diversity and antibiotic resistance of Aeromonas spp. in drinking and waste water treatment plants. Water Res. 2011, 45, 5599–5611. [Google Scholar] [CrossRef] [PubMed]
- Skwor, T.; Shinko, J.; Augustyniak, A.; Gee, C.; Andraso, G. Aeromonas hydrophila and Aeromonas veronii predominate among potentially pathogenic ciprofloxacin- and tetracycline-resistant Aeromonas isolates from Lake Erie. Appl. Environ. Microbiol. 2014, 80, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Giraud, E.; Blanc, G.; Bouju-Albert, A.; Weill, F.X.; Donnay-Moreno, C. Mechanisms of quinolone resistance and clonal relationship among Aeromonas salmonicida strains isolated from reared fish with furunculosis. J. Med. Microbiol. 2004, 53, 895–901. [Google Scholar] [CrossRef]
- Kim, J.H.; Hwang, S.Y.; Son, J.S.; Han, J.E.; Jun, J.W.; Shin, S.P.; Choresca, C., Jr.; Choi, Y.J.; Park, Y.H.; Park, S.C. Molecular characterization of tetracycline- and quinolone-resistant Aeromonas salmonicida isolated in Korea. J. Vet. Sci. 2011, 12, 41–48. [Google Scholar] [CrossRef]
- Chen, P.L.; Ko, W.C.; Wu, C.J. Complexity of β-lactamases among clinical Aeromonas isolates and its clinical implications. J. Microbiol. Immunol. Infect. 2012, 45, 398–403. [Google Scholar] [CrossRef]
- Fosse, T.; Giraud-Morin, C.; Madinier, I. Phénotypes de résistance aux β-lactamines dans le genre Aeromonas β-lactam-resistance phenotypes in the genus Aeromonas. Pathol. Biol. 2003, 51, 290–296. [Google Scholar] [CrossRef]
- Girlich, D.; Poirel, L.; Nordmann, P. Diversity of clavulanic acid-inhibited extended-spectrum β-lactamases in Aeromonas spp. from the Seine River, Paris, France. Antimicrob. Agents Chemother. 2012, 55, 1256–1261. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Neville, W.A.; Haran, M.H.; Tolson, D.; Payne, D.J.; Bateson, J.H.; MacGowan, A.P.; Bennett, P.M. Nucleotide and amino acid sequences of the metallo-β-lactamase, ImiS, from Aeromonas veronii bv. sobria. Antimicrob. Agents Chemother. 1998, 42, 436–439. [Google Scholar] [PubMed]
- Niumsup, P.; Simm, A.M.; Nurmahomed, K.; Walsh, T.R.; Bennett, P.M.; Avison, M.B. Genetic linkage of the penicillinase gene, amp, and blrAB, encoding the regulator of beta-lactamase expression in Aeromonas spp. J. Antimicrob. Chemother. 2003, 51, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Alksne, L.E.; Rasmussen, B.A. Expression of the AsbA1, OXA-12, and AsbM1 beta-lactamases in Aeromonas jandaei AER 14 is coordinated by a two-component regulon. J. Bacteriol. 1997, 179, 2006–2013. [Google Scholar] [CrossRef]
- Neuwirth, C.; Siebor, E.; Robin, F.; Bonnet, R. First occurrence of an IMP metallo-β-lactamase in Aeromonas caviae: IMP-19 in an isolate from France. Antimicrob. Agents Chemother. 2007, 51, 4486–4488. [Google Scholar] [CrossRef]
- Libisch, B.; Giske, C.G.; Kovács, B.; Tóth, T.G.; Füzi, M. Identification of the first VIM metallo-beta-lactamase-producing multiresistant Aeromonas hydrophila strain. J. Clin. Microbiol. 2008, 46, 1878–1880. [Google Scholar] [CrossRef]
- Massidda, O.; Rossolini, G.M.; Satta, G. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-β-lactamases. J. Bacteriol. 1991, 173, 4611–4617. [Google Scholar] [CrossRef]
- Lupo, A.; Coyne, S.; Berendonk, T.U. Origin and evolution of antibiotic resistance: the common mechanisms of emergence and spread in water bodies. Front. Microbiol. 2012, 3, 18. [Google Scholar] [CrossRef]
- Patel, G.; Bonomo, R.A. ‘‘Stormy waters ahead’’: global emergence of carbapenemases. Front. Microbiol. 2013, 4, 48. [Google Scholar] [CrossRef]
- Kopf, R.K.; Nimmo, D.G.; Humphries, P.; Baumgartner, L.J.; Bode, M.; Bond, N.R.; Byrom, A.E.; Cucherousset, J.; Keller, R.P.; King, A.J.; et al. Confronting the risks of large-scale invasive species control. Nat. Ecol. Evol. 2017, 1, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Lowe, S.; Browne, M.; Boudjelas, S.; De Poorter, M. 100 of the World’s Worst Invasive Alien Species. A Selection from the Global Invasive Species Database; The World Conservation Union (IUCN): Gland, Switzerland, 2000. [Google Scholar]
- Hong, S.; Do, Y.; Kim, J.Y.; Kim, D.; Joo, G. Distribution, spread and habitat preferences of nutria (Myocastor coypus) invading the lower Nakdong River, South Korea. Biol. Invasions 2015, 17, 1485–1496. [Google Scholar] [CrossRef]
- Bertolino, S.; Genovesi, P. Semiaquatic mammals introduced into Italy: case studies in biological invasion. In Biological Invaders in Inland Waters: Profiles, Distribution, and Threats; Gherardi, F., Ed.; Springer: Berlin, Germany, 2007; pp. 175–191. [Google Scholar]
- Lee, D.H.; Lee, M.S.; Kim, Y.C.; Kim, I.R.; Kim, H.K.; Jeong, D.G.; Lee, J.R.; Kim, J.H. Complete mitochondrial genome of the invasive semi-aquatic mammal, nutria Myocastor coypus (Rodentia; Myocastoridae). Conserv. Genet. Resour. 2018, 10, 613–616. [Google Scholar] [CrossRef]
- Martino, P.E.; Stanchi, N.O.; Silvestrini, M.; Brihuega, B.; Samartino, L.; Parrado, E. Seroprevalence for selected pathogens of zoonotic importance in wild nutria (Myocastor coypus). Eur. J. Wildl. 2014, 60, 551–554. [Google Scholar] [CrossRef]
- Bollo, E.; Pregel, P.; Gennero, S.; Pizzoni, E.; Rosati, S.; Nebbia, P.; Biolatti, B. Health status of a population of nutria (Myocastor coypus) living in a protected area in Italy. Res. Vet. Sci. 2003, 75, 21–25. [Google Scholar] [CrossRef]
- Zanzani, S.A.; Cerbo, A.D.; Gazzonis, A.L.; Epis, S.; Invernizzi, A.; Tagliabue, S.; Manfredi, M.T. Parasitic and bacterial infections of Myocastor coypus in a metropolitan area of northwestern Italy. J. Wildl. Dis. 2016, 52, 126–130. [Google Scholar] [CrossRef] [PubMed]
- Yanez, M.A.; Catalán, V.; Apraiz, D.; Figueras, M.J.; Martinez-Murcia, A.J. Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int. J. Syst. Evol. Microbiol. 2003, 53, 875–883. [Google Scholar] [CrossRef]
- Korczak, B.; Christensen, H.; Emler, S.; Frey, J.; Kuhnert, P. Phylogeny of the family Pasteurellaceae based on rpoB sequences. Int. J. Syst. Evol. Microbiol. 2004, 54, 1393–1399. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria; Approved Guideline M45-A CLSI; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2010. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria-Third Edition; Approved Guideline M45, 3rd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Lyon, W.J.; Milliet, J.B. Microbial flora associated with Louisiana processed frozen and fresh nutria (Myocastor coypus) carcasses. J. Food Sci. 2000, 65, 1041–1045. [Google Scholar] [CrossRef]
- Oliveira, M.; Sales-Luís, T.; Duarte, A.; Nunes, S.F.; Carneiro, C.; Tenreiro, T.; Tenreiro, R.; Santos-Reis, M.; Tavares, L.; Vilela, C.L. First assessment of microbial diversity in faecal microflora of Eurasian otter (Lutra lutra Linnaeus, 1758) in Portugal. Eur. J. Wildl. 2008, 54, 245–252. [Google Scholar] [CrossRef]
- Navarro, A.; Martínez-Murcia, A. Phylogenetic analyses of the genus Aeromonas based on housekeeping gene sequencing and its influence on systematics. J. Appl. Microbiol. 2018, 125, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Köhler, B.; Wendland, B.; Winkler, M.; Kunter, E.; Horn, G. Occurrence of bacterial infectious diseases in coypu. 3. Streptococcus, Staphylococcus, Aeromonas and Actinobacillus infections. Arch. Exp. Veterinarmed. 1988, 42, 877–889. [Google Scholar]
- Cullen, C.L. Normal ocular features, conjunctival microflora and intraocular pressure in the Canadian beaver (Castor canadensis). Vet. Ophthalmol. 2003, 6, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Chopra, A.K.; Houston, C.W.; Peterson, J.W.; Jin, J.F. Cloning, expression, and sequence analysis of a cytolytic enterotoxin gene from Aeromonas hydrophila. Can. J. Microbiol. 1993, 39, 513–523. [Google Scholar] [CrossRef]
- Sha, J.; Kozlova, E.V.; Chopra, A.K. Role of various enterotoxins in Aeromonas hydrophila-induced gastroenteritis: Generation of enterotoxin gene-deficient mutants and evaluation of their enterotoxin activity. Infect. Immun. 2002, 70, 1924–1935. [Google Scholar] [CrossRef]
- Chopra, A.K.; Pham, R.; Houston, C.W. Cloning and expression of putative cytotonic enterotoxin-encoding genes from Aeromonas hydrophila. Gene 1994, 139, 87–91. [Google Scholar] [CrossRef]
- Albert, M.J.; Ansaruzzaman, M.; Talukder, K.A.; Chopra, A.K.; Kuhn, I.; Rahman, M.; Faruque, A.S.; Islam, M.S.; Sack, R.B.; Mollby, R. Prevalence of enterotoxin genes in Aeromonas spp. isolated from children with diarrhea, healthy controls, and the environment. J. Clin. Microbiol. 2000, 38, 3785–3790. [Google Scholar]
- Kirov, S.M.; Castrisios, M.; Shaw, J.G. Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect. Immun. 2004, 72, 1939–1945. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wen, Y.M. The role of bacterial biofilm in persistent infections and control strategies. Int. J. Oral Sci. 2011, 3, 66–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.Y.; Lim, S.R.; Son, J.S.; Kim, H.K.; Yoon, S.W.; Jeong, D.G.; Lee, M.; Lee, J.R.; Lee, D.; Kim, J.H. Complete genome sequence of Aeromonas rivipollensis KN-Mc-11N1, isolated from a wild nutria (Myocastor coypus) in South Korea. Microbiol. Resour. Announc. 2018, 7, e00907–e00918. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, W.; Zhu, Z.; Chen, A.; Du, P.; Wang, R.; Chen, H.; Hu, Y.; Li, J.; Kan, B.; et al. Distribution, virulence-associated genes and antimicrobial resistance of Aeromonas isolates from diarrheal patients and water, China. J. Inf. Secur. 2015, 70, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Marco, F.; Soler, L.; Chacon, M.; Figueras, M.J. In vitro antimicrobial susceptibility of clinical isolates of Aeromonas caviae, Aeromonas hydrophila and Aeromonas veronii biotype sobria. J Antimicrob. Chemother. 2002, 49, 701–702. [Google Scholar] [CrossRef]
- Tena, D.; Gonzalez-Praetorius, A.; Gimeno, C.; Pérez-Pomata, M.T.; Bisquert, J. Extraintestinal infection due to Aeromonas spp.: review of 38 cases. Enferm. Infecc. Microbiol. Clin. 2007, 25, 235–241. [Google Scholar] [CrossRef]
- Ghenghesh, K.S.; Rahouma, A.; Zorgani, A.; Tawil, K.; Al Tomi, A.; Franka, E. Aeromonas in Arab countries: 1995–2014. Comp. Immunol. Microbiol. Infect. Dis. 2015, 42, 8–14. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, L.; Nan, Z.; Zhang, P.; Kan, B.; Yan, D.; Su, J. Taxonomy, virulence genes and antimicrobial resistance of Aeromonas isolated from extra-intestinal and intestinal infections. BMC Infect. Dis. 2019, 19, 158. [Google Scholar] [CrossRef]
- Zottola, T.; Montagnaro, S.; Magnapera, C.; Sasso, S.; De Martino, L.; Bragagnolo, A.; D’Amici, L.; Condoleo, R.; Pisanelli, G.; Iovane, G.; et al. Prevalence and antimicrobial susceptibility of Salmonella in European wild boar (Sus scrofa); Latium Region–Italy. Comp. Immunol. Microbiol. Infect. Dis. 2013, 36, 161–168. [Google Scholar] [CrossRef]
- Jijón, S.; Wetzel, A.; LeJeune, J. Salmonella enterica isolated from wildlife at two Ohio rehabilitation centers. J. Zoo Wildl. Med. 2007, 38, 409–414. [Google Scholar]
- Oliveira, M.; Sales-Luís, T.; Semedo-Lemsaddek, T.; Ribeiro, T.; Pedroso, N.M.; Tavares, L.; Vilela, C.L. Antimicrobial resistant Aeromonas isolated from Eurasian Otters (Lutra lutra Linnaeus, 1758) in Portugal. In Perspectives in animal ecology and reproduction, 2nd ed.; Verma, A.K., Singh, G.D., Eds.; Daya Publishing House: Delhi, India, 2010; Volume 6, pp. 123–144. [Google Scholar]
- De Been, M.; Lanza, V.F.; de Toro, M.; Scharringa, J.; Dohmen, W.; Du, Y.; Hu, J.; Lei, Y.; Li, N.; Tooming-Klunderud, A.; et al. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages. PLoS Genet. 2014, 10, e1004776. [Google Scholar] [CrossRef] [PubMed]
- Goñi-Urriza, M.; Pineau, L.; Capdepuy, M.; Roques, C.; Caumette, P.; Quentin, C. Antimicrobial resistance of mesophilic Aeromonas spp. isolated from two European rivers. J. Antimicrob. Chemother. 2000, 46, 297–301. [Google Scholar]
- Penders, J.; Stobberingh, E.E. Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. Int. J. Antimicrob. Agents 2008, 31, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.J.; Chen, P.L.; Wu, J.J.; Yan, J.J.; Lee, C.C.; Lee, H.C.; Lee, N.Y.; Chang, C.M.; Lin, Y.T.; Chiu, Y.C.; et al. Distribution and phenotypic and genotypic detection of a metallo-β-lactamase, CphA, among bacteraemic Aeromonas isolates. J. Med. Microbiol. 2012, 61, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Rossolini, G.M.; Zanchi, A.; Chiesurin, A.; Amicosante, G.; Satta, G.; Guglielmetti, P. Distribution of cphA or related carbapenemase-encoding genes and production of carbapenemase activity in members of the genus Aeromonas. Antimicrob. Agents Chemother. 1995, 39, 346–349. [Google Scholar] [CrossRef]
- Sinclair, H.A.; Heney, C.; Sidjabat, H.E.; George, N.M.; Bergh, H.; Anuj, S.N.; Nimmo, G.R.; Paterson, D.L. Genotypic and phenotypic identification of Aeromonas species and CphA-mediated carbapenem resistance in Queensland, Australia. Diagn. Microbiol. Infect. Dis. 2016, 85, 98–101. [Google Scholar] [CrossRef]
- Yi, S.W.; You, M.J.; Cho, H.S.; Lee, C.S.; Kwon, J.K.; Shin, G.W. Molecular characterization of Aeromonas species isolated from farmed eels (Anguilla japonica). Vet. Microbiol. 2013, 164, 195–200. [Google Scholar] [CrossRef]
- Yi, S.W.; Chung, T.H.; Joh, S.J.; Park, C.; Park, B.Y.; Shin, G.W. High prevalence of blaCTX-M group genes in Aeromonas dhakensis isolated from aquaculture fish species in South Korea. J. Vet. Med. Sci. 2014, 14, 0274. [Google Scholar] [CrossRef]
- Shin, G.W.; You, M.J.; Cho, H.S.; Yi, S.W.; Lee, C.S. Severe sepsis due to Aeromonas aquariorum in a patient with liver cirrhosis. Jpn. J. Infect. Dis. 2013, 66, 519–522. [Google Scholar] [CrossRef]
- Jo, Y.S.; Derbridge, J.J.; Baccus, J.T. History and current status of invasive nutria and common muskrat in Korea. Wetlands 2017, 37, 363–369. [Google Scholar] [CrossRef]
No. | Bacterial Strains | Hemolysis | Isolated Year | Source | Deposition Number ** |
---|---|---|---|---|---|
1 | Aeromonas hydrophila KN-Mc-1R1 | β | 2016 | Rectal cavity | KCCM 90327 |
2 | Aeromonas hydrophila KN-Mc-1R2 * | β | 2016 | Rectal cavity | KCCM 90286 |
3 | Aeromonas cavieae KN-Mc-1R3 | β | 2016 | Rectal cavity | KCCM 90328 |
4 | Aeromonas hydrophila KN-Mc-2R1 | β | 2016 | Rectal cavity | KCCM 90329 |
5 | Aeromonas cavieae KN-Mc-3R1 | β | 2016 | Rectal cavity | KCCM 90330 |
6 | Aeromonas hydrophila KN-Mc-4N1 | β | 2016 | Nasal cavity | KCCM 90331 |
7 | Aeromonas hydrophila KN-Mc-4N3 | β | 2016 | Nasal cavity | KCCM 90332 |
8 | Aeromonas hydrophila KN-Mc-5R1 | β | 2016 | Rectal cavity | KCCM 90333 |
9 | Aeromonas hydrophila KN-Mc-5R2 | β | 2016 | Rectal cavity | KCCM 90334 |
10 | Aeromonas hydrophila KN-Mc-6U2 | β | 2016 | External wound | KCCM 90335 |
11 | Aeromonas dhakensis KN-Mc-6U21 * | β | 2016 | External wound | KCCM 90283 |
12 | Aeromonas hydrophila KN-Mc-6U22 | β | 2016 | External wound | KCCM 90336 |
13 | Aeromonas hydrophila KN-Mc-10N1 | β | 2017 | Nasal cavity | KCCM 90337 |
14 | Aeromonas rivipollensis KN-Mc-11N1 * | β | 2017 | Nasal cavity | KCCM 90285 |
15 | Aeromonas hydrophila ATCC 7966 | – | – | – |
Strains | Virulence-Related Genes | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
act | aspA | alt | ast | aexT | ascV | vasH | lafA | flaA | BfpA | BfpG | stx-1 | stx-2 | |
KN-Mc-1R1 | + | + | + | + | − | − | + | + | + | − | − | − | − |
KN-Mc-1R2 | + | + | + | + | − | − | + | + | + | − | − | − | − |
KN-Mc-1R3 | − | − | + | + | − | − | + | + | + | − | − | − | − |
KN-Mc-2R1 | − | + | + | + | + | − | + | + | + | − | − | − | − |
KN-Mc-3R1 | − | − | + | + | − | − | − | + | + | − | − | − | − |
KN-Mc-4N1 | + | + | + | + | − | − | + | + | + | − | − | − | − |
KN-Mc-4N3 | + | + | + | + | − | − | + | + | + | − | − | − | − |
KN-Mc-5R1 | + | + | + | + | − | − | + | + | + | − | − | − | − |
KN-Mc-5R2 | + | + | + | + | − | − | + | + | + | − | − | − | − |
KN-Mc-6U2 | + | + | + | + | − | − | + | − | + | − | − | − | − |
KN-Mc-6U21 | + | − | + | + | + | − | + | − | + | − | − | − | − |
KN-Mc-6U22 | + | + | + | + | − | − | + | − | + | − | − | − | − |
KN-Mc-10N1 | + | + | + | + | − | − | + | + | + | − | − | − | − |
KN-Mc-11N1 | − | − | − | + | + | − | − | − | + | − | − | − | − |
Strains | Antimicrobial agent [disk content (μg)] | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
β-lactams | Ceph | Carb | Mo | Am | Tet | Fq | F | P | ||||||||||||
SAM (20) | AMC (30) | TZP (110) | KF (30) | KZ (30) | FOX (30) | CXM (30) | CAZ (30) | CTX (30) | FEP (30) | IPM (10) | MEM (10) | ATM (30) | AK (30) | CN (10) | TE (30) | CIP (5) | LEV (5) | STX (25) | C (30) | |
KN-Mc-1R1 | ||||||||||||||||||||
KN-Mc-1R2 | ||||||||||||||||||||
KN-Mc-1R3 | ||||||||||||||||||||
KN-Mc-2R1 | ||||||||||||||||||||
KN-Mc-3R1 | ||||||||||||||||||||
KN-Mc-4N1 | ||||||||||||||||||||
KN-Mc-4N3 | ||||||||||||||||||||
KN-Mc-5R1 | ||||||||||||||||||||
KN-Mc-5R2 | ||||||||||||||||||||
KN-Mc-6U2 | ||||||||||||||||||||
KN-Mc-6U21 | ||||||||||||||||||||
KN-Mc-6U22 | ||||||||||||||||||||
KN-Mc-10N1 | ||||||||||||||||||||
KN-Mc-11N1 |
Strains | Antimicrobial Agent (MIC (μg/mL)) | |||||
---|---|---|---|---|---|---|
β-Lactam/β-Lactamase Inhibitor Combinations | Cephalo-Sporins | Carbapenems | ||||
AM | AMC | AMP | CTX | IPM | MEM | |
KN-Mc-1R1 | 128 (R) | 16 (I) | >256 (R) | 0.12 | 2 (I) | 0.06 |
KN-Mc-1R2 | 256 (R) | 64 (R) | >256 (R) | 0.06 | 8 (R) | 1 |
KN-Mc-1R3 | 128 (R) | 16 (I) | >256 (R) | 0.25 | 0.5 | 0.015 |
KN-Mc-2R1 | >256 (R) | 32 (R) | >256 (R) | 0.06 | 8 (R) | 0.5 |
KN-Mc-3R1 | 128 (R) | 16 (I) | >256 (R) | 0.12 | 0.5 | 0.03 |
KN-Mc-4N1 | 128 (R) | 16 (I) | >256 (R) | 0.12 | 2 (I) | 0.12 |
KN-Mc-4N3 | 64 (R) | 32 (R) | >256 (R) | 0.06 | 2 (I) | 0.12 |
KN-Mc-5R1 | 256 (R) | 32 (R) | >256 (R) | 0.12 | 8 (R) | 0.25 |
KN-Mc-5R2 | 256 (R) | 32 (R) | >256 (R) | 0.06 | 4 (R) | 0.03 |
KN-Mc-6U2 | 64 (R) | 16 (I) | >256 (R) | 0.06 | 0.5 | 0.03 |
KN-Mc-6U21 | 128 (R) | 16 (I) | >256 (R) | 0.5 | 32 (R) | 8 (R) |
KN-Mc-6U22 | 32 (R) | 16 (I) | >256 (R) | 0.06 | 2 (I) | 0.06 |
KN-Mc-10N1 | 64 (R) | 16 (I) | >256 (R) | 0.06 | 4 (R) | 0.06 |
KN-Mc-11N1 | 128 (R) | 32 (R) | >256 (R) | 0.25 | 0.12 | 0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, S.R.; Lee, D.-H.; Park, S.Y.; Lee, S.; Kim, H.Y.; Lee, M.-S.; Lee, J.R.; Han, J.E.; Kim, H.K.; Kim, J.H. Wild Nutria (Myocastor coypus) Is a Potential Reservoir of Carbapenem-Resistant and Zoonotic Aeromonas spp. in Korea. Microorganisms 2019, 7, 224. https://doi.org/10.3390/microorganisms7080224
Lim SR, Lee D-H, Park SY, Lee S, Kim HY, Lee M-S, Lee JR, Han JE, Kim HK, Kim JH. Wild Nutria (Myocastor coypus) Is a Potential Reservoir of Carbapenem-Resistant and Zoonotic Aeromonas spp. in Korea. Microorganisms. 2019; 7(8):224. https://doi.org/10.3390/microorganisms7080224
Chicago/Turabian StyleLim, Se Ra, Do-Hun Lee, Seon Young Park, Seungki Lee, Hyo Yeon Kim, Moo-Seung Lee, Jung Ro Lee, Jee Eun Han, Hye Kwon Kim, and Ji Hyung Kim. 2019. "Wild Nutria (Myocastor coypus) Is a Potential Reservoir of Carbapenem-Resistant and Zoonotic Aeromonas spp. in Korea" Microorganisms 7, no. 8: 224. https://doi.org/10.3390/microorganisms7080224
APA StyleLim, S. R., Lee, D. -H., Park, S. Y., Lee, S., Kim, H. Y., Lee, M. -S., Lee, J. R., Han, J. E., Kim, H. K., & Kim, J. H. (2019). Wild Nutria (Myocastor coypus) Is a Potential Reservoir of Carbapenem-Resistant and Zoonotic Aeromonas spp. in Korea. Microorganisms, 7(8), 224. https://doi.org/10.3390/microorganisms7080224