Comparative Analysis of Blood Clot, Plasma Rich in Growth Factors and Platelet-Rich Fibrin Resistance to Bacteria-Induced Fibrinolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Blood Plasma
2.2. Preparation of Blood Clot
2.3. Preparation of Plasma Rich in Growth Factors (PRGF)
2.4. Preparation of Platelet-Rich Fibrin (PRF)
2.5. Preparation of Bacteria and Fungus Suspension
2.6. PRF, PRGF, and Blood Clot Fibrinolysis Activity Assay
2.7. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Blum, I.R. Contemporary views on dry socket (alveolar osteitis): A clinical appraisal of standardization, aetiopathogenesis and management: A critical review. Int. J. Oral Maxillofac. Surg. 2002, 31, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Field, E.A.; Speechley, J.A.; Rotter, E.; Scott, J. Dry socket incidence compared after a 12 year interval. Br. J. Oral Maxillofac. Surg. 1985, 23, 419–427. [Google Scholar] [CrossRef]
- Daly, B.; Sharif, M.O.; Newton, T.; Jones, K.; Worthington, H.V. Local interventions for the management of alveolar osteitis (dry socket). Cochrane Database Syst. Rev. 2012, 12. [Google Scholar] [CrossRef] [PubMed]
- Punia, S.C.A.; Garg, S.; Yadav, R. Clinical Aspects of Dry Socket. Rama Univ. J. Dent. Sci. 2016, 3, 21–26. [Google Scholar]
- Haraji, A.; Lassemi, E.; Motamedi, M.H.; Alavi, M.; Adibnejad, S. Effect of plasma rich in growth factors on alveolar osteitis. Natl. J. Maxillofac. Surg. 2012, 3, 38–41. [Google Scholar]
- Cannon, R.D.; Chaffin, W.L. Oral Colonization by Candida Albicans. Crit. Rev. Oral Biol. Med. 2016, 10, 359–383. [Google Scholar] [CrossRef]
- Bottone, E.J. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 2010, 23, 382–398. [Google Scholar] [CrossRef]
- Beaufort, N.; Wojciechowski, P.; Sommerhoff, C.P.; Szmyd, G.; Dubin, G.; Eick, S.; Kellermann, J.; Schmitt, M.; Potempa, J.; Magdolen, V. The human fibrinolytic system is a target for the staphylococcal metalloprotease aureolysin. Biochem. J. 2008, 410, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Fulde, M.; Steinert, M.; Bergmann, S. Interaction of streptococcal plasminogen binding proteins with the host fibrinolytic system. Front. Cell Infect. Microbiol. 2013, 3, 85. [Google Scholar] [CrossRef] [Green Version]
- Loof, T.G.; Deicke, C.; Medina, E. The role of coagulation/fibrinolysis during Streptococcus pyogenes infection. Front. Cell Infect. Microbiol. 2014, 4, 128. [Google Scholar] [CrossRef]
- Jong, A.Y.; Chen, S.H.; Stins, M.F.; Kim, K.S.; Tuan, T.L.; Huang, S.H. Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J. Med. Microbiol. 2003, 52, 615–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vijayaraghavan, P.; Vincent, S.G. Statistical optimization of fibrinolytic enzyme production using agroresidues by Bacillus cereus IND1 and its thrombolytic activity in vitro. Biomed. Res. Int. 2014, 2014, 725064. [Google Scholar] [CrossRef] [PubMed]
- Kolokythas, A.; Olech, E.; Miloro, M. Alveolar osteitis: A comprehensive review of concepts and controversies. Int. J. Dent. 2010, 2010, 249073. [Google Scholar] [CrossRef] [PubMed]
- Jensen, J.O. Alveolar osteitis (dry socket)—A review. Aust. Dent. J. 1978, 23, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Alkhraisat, M.H.; Orive, G. Perspectives and challenges in regenerative medicine using plasma rich in growth factors. J. Control. Release 2012, 157, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Su, C.Y.; Kuo, Y.P.; Tseng, Y.H.; Su, C.H.; Burnouf, T. In vitro release of growth factors from platelet-rich fibrin (PRF): A proposal to optimize the clinical applications of PRF. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 56–61. [Google Scholar] [CrossRef]
- Sharma, A.; Aggarwal, N.; Rastogi, S.; Choudhury, R.; Tripathi, S. Effectiveness of platelet-rich fibrin in the management of pain and delayed wound healing associated with established alveolar osteitis (dry socket). Eur. J. Dent. 2017, 11, 508–513. [Google Scholar] [Green Version]
- Giusto, G.; Vercelli, C.; Iussich, S.; Tursi, M.; Perona, G.; Gandini, M. Comparison of the effects of platelet-rich or growth factor-rich plasma on intestinal anastomosis healing in pigs. BMC Vet. Res. 2017, 13, 188. [Google Scholar] [CrossRef]
- Sammartino, G.; Tia, M.; Gentile, E.; Marenzi, G.; Claudio, P.P. Platelet-rich plasma and resorbable membrane for prevention of periodontal defects after deeply impacted lower third molar extraction. J. Oral Maxillofac. Surg. 2009, 67, 2369–2373. [Google Scholar] [CrossRef]
- Unsal, H.; GN, H.E. Evaluation of the Effect of Platelet-Rich Fibrin on the Alveolar Osteitis Incidence and Periodontal Probing Depth after Extracting Partially Erupted Mandibular Third Molars Extraction. Niger. J. Clin. Pract. 2018, 21, 201–205. [Google Scholar]
- Eshghpour, M.; Dastmalchi, P.; Nekooei, A.H.; Nejat, A. Effect of platelet-rich fibrin on frequency of alveolar osteitis following mandibular third molar surgery: A double-blinded randomized clinical trial. J. Oral Maxillofac. Surg. 2014, 72, 1463–1467. [Google Scholar] [CrossRef] [PubMed]
- King, E.M.; Cerajewska, T.L.; Locke, M.; Claydon, N.C.A.; Davies, M.; West, N.X. The Efficacy of Plasma Rich in Growth Factors for the Treatment of Alveolar Osteitis: A Randomized Controlled Trial. J. Oral Maxillofac. Surg. 2018, 76, 1150–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieslik-Bielecka, A.; Bold, T.; Ziolkowski, G.; Pierchala, M.; Krolikowska, A.; Reichert, P. Antibacterial Activity of Leukocyte and Platelet-Rich Plasma: An In Vitro Study. Biomed. Res. Int. 2018, 2018, 9471723. [Google Scholar] [CrossRef] [PubMed]
- Kour, P.; Pudakalkatti, P.S.; Vas, A.M.; Das, S.; Padmanabhan, S. Comparative Evaluation of Antimicrobial Efficacy of Platelet-rich Plasma, Platelet-rich Fibrin, and Injectable Platelet-rich Fibrin on the Standard Strains of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Contemp. Clin. Dent. 2018, 9, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Bates, S.M. d-dimer assays in diagnosis and management of thrombotic and bleeding disorders. Semin. Thromb. Hemost. 2012, 38, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, A. d-dimer testing in laboratory practice. Clin. Chem. 2011, 57, 1256–1262. [Google Scholar] [CrossRef]
- Pulivarthi, S.; Gurram, M.K. Effectiveness of d-dimer as a screening test for venous thromboembolism: An update. N. Am. J. Med. Sci. 2014, 6, 491–499. [Google Scholar] [PubMed]
- Olson, J.D. d-dimer: An Overview of Hemostasis and Fibrinolysis, Assays, and Clinical Applications. Adv. Clin. Chem. 2015, 69, 1–46. [Google Scholar]
- Elnager, A.; Abdullah, W.Z.; Hassan, R.; Idris, Z.; Wan Arfah, N.; Sulaiman, S.A.; Mustafa, Z. In Vitro Whole Blood Clot Lysis for Fibrinolytic Activity Study Using d-Dimer and Confocal Microscopy. Adv. Hematol. 2014, 2014, 814684. [Google Scholar]
- Shaw, G.J.; Dhamija, A.; Bavani, N.; Wagner, K.R.; Holland, C.K. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis. Phys. Med. Biol. 2007, 52, 2953–2967. [Google Scholar] [CrossRef]
- Kim, S.H.; Chun, H.S.; Han, M.H.; Park, N.Y.; Suk, K. A novel variant of staphylokinase gene from Staphylococcus aureus ATCC 29213. Thromb. Res. 1997, 87, 387–395. [Google Scholar] [CrossRef]
- Huang, T.T.; Malke, H.; Ferretti, J.J. Heterogeneity of the streptokinase gene in group A streptococci. Infect. Immun. 1989, 57, 502–506. [Google Scholar] [PubMed]
- Prasad, S.; Kashyap, R.S.; Deopujari, J.Y.; Purohit, H.J.; Taori, G.M.; Daginawala, H.F. Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thromb. J. 2006, 4, 14. [Google Scholar] [CrossRef] [PubMed]
- Bonnard, T.; Law, L.S.; Tennant, Z.; Hagemeyer, C.E. Development and validation of a high throughput whole blood thrombolysis plate assay. Sci. Rep. 2017, 7, 2346. [Google Scholar] [CrossRef] [PubMed]
- Cellai, A.P.; Lami, D.; Magi, A.; Liotta, A.A.; Rogolino, A.; Antonucci, E.; Bandinelli, B.; Abbate, R.; Prisco, D. Assessment of fibrinolytic activity by measuring the lysis time of a tissue-factor-induced clot: A feasibility evaluation. Clin. Appl. Thromb. Hemost. 2010, 16, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Dohan Ehrenfest, D.M.; Andia, I.; Zumstein, M.A.; Zhang, C.Q.; Pinto, N.R.; Bielecki, T. Classification of platelet concentrates (Platelet-Rich Plasma-PRP, Platelet-Rich Fibrin-PRF) for topical and infiltrative use in orthopedic and sports medicine: Current consensus, clinical implications and perspectives. Muscles Ligaments Tendons J. 2014, 4, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Anitua, E.; Zalduendo, M.; Troya, M.; Padilla, S.; Orive, G. Leukocyte inclusion within a platelet rich plasma-derived fibrin scaffold stimulates a more pro-inflammatory environment and alters fibrin properties. PLoS ONE 2015, 10, e0121713. [Google Scholar] [CrossRef] [PubMed]
- Marenzi, G.; Riccitiello, F.; Tia, M.; di Lauro, A.; Sammartino, G. Influence of Leukocyte- and Platelet-Rich Fibrin (L-PRF) in the Healing of Simple Postextraction Sockets: A Split-Mouth Study. Biomed. Res. Int. 2015, 2015, 369273. [Google Scholar] [CrossRef] [PubMed]
- Cerletti, C.; de Gaetano, G.; Lorenzet, R. Platelet–leukocyte interactions: Multiple links between inflammation, blood coagulation and vascular risk. Mediterr. J. Hematol. Infect. Dis. 2010, 2, e2010023. [Google Scholar] [CrossRef]
- Scott, D.A.; Krauss, J. Neutrophils in periodontal inflammation. Front. Oral Biol. 2012, 15, 56–83. [Google Scholar]
- McArthur, J.D.; McKay, F.C.; Ramachandran, V.; Shyam, P.; Cork, A.J.; Sanderson-Smith, M.L.; Cole, J.N.; Ringdahl, U.; Sjobring, U.; Ranson, M.; et al. Allelic variants of streptokinase from Streptococcus pyogenes display functional differences in plasminogen activation. FASEB J. 2008, 22, 3146–3153. [Google Scholar] [CrossRef] [PubMed]
- Cook, S.M.; Skora, A.; Gillen, C.M.; Walker, M.J.; McArthur, J.D. Streptokinase variants from Streptococcus pyogenes isolates display altered plasminogen activation characteristics—Implications for pathogenesis. Mol. Microbiol. 2012, 86, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Wezenet Twodros, M.N. Goran Kronvall, Streptokinase activity among group A streptococci in relation to streptokinase genotype, plasminogen binding, and disease manifestations. Microbial. Pathogenesis. 1995, 18, 53–65. [Google Scholar] [CrossRef]
- Cleary, P.; Cheng, Q. Medically Important Beta-Hemolytic Streptococci; Springer: Berlin/Heidelberg, Germany, 2006; pp. 108–148. [Google Scholar]
- Hoffmann, S.; Moesgaard, F. Bacterial lysis of fibrin seal in vitro. Eur. Surg. Res. 1988, 20, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Lahteenmaki, K.; Kuusela, P.; Korhonen, T.K. Bacterial plasminogen activators and receptors. FEMS Microbiol. Rev. 2001, 25, 531–552. [Google Scholar] [CrossRef] [PubMed]
- Robert, R.; Nail, S.; Marot-Leblond, A.; Cottin, J.; Miegeville, M.; Quenouillere, S.; Mahaza, C.; Senet, J.M. Adherence of platelets to Candida species in vivo. Infect. Immun. 2000, 68, 570–576. [Google Scholar] [CrossRef]
- Alzahrani, A.A.; Murriky, A.; Shafik, S. Influence of platelet rich fibrin on post-extraction socket healing: A clinical and radiographic study. Saudi. Dent. J. 2017, 29, 149–155. [Google Scholar] [CrossRef]
- Solakoglu, O.; Goetz, W. PRGF for periodontal regeneration: A clinical pilot study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2012, 134, 24–27. [Google Scholar]
- Temmerman, A.; Vandessel, J.; Castro, A.; Jacobs, R.; Teughels, W.; Pinto, N.; Quirynen, M. The use of leucocyte and platelet-rich fibrin in socket management and ridge preservation: A split-mouth, randomized, controlled clinical trial. J. Clin. Periodontol. 2016, 43, 990–999. [Google Scholar] [CrossRef]
- Zhang, Y.; Ruan, Z.; Shen, M.; Tan, L.; Huang, W.; Wang, L.; Huang, Y. Clinical effect of platelet-rich fibrin on the preservation of the alveolar ridge following tooth extraction. Exp. Ther. Med. 2018, 15, 2277–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weisel, J.W.; Litvinov, R.I. The biochemical and physical process of fibrinolysis and effects of clot structure and stability on the lysis rate. Cardiovasc. Hematol. Agents Med. Chem. 2008, 6, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Sridhar, V.; Wali, G.G.; Shyla, H.N. Evaluation of the perioperative use of 0.2% chlorhexidine gluconate for the prevention of alveolar osteitis after the extraction of impacted mandibular third molars: A clinical study. J. Maxillofac. Oral Surg. 2011, 10, 101–111. [Google Scholar] [CrossRef] [PubMed]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puidokas, T.; Kubilius, M.; Nomeika, D.; Januzis, G.; Skrodeniene, E. Comparative Analysis of Blood Clot, Plasma Rich in Growth Factors and Platelet-Rich Fibrin Resistance to Bacteria-Induced Fibrinolysis. Microorganisms 2019, 7, 328. https://doi.org/10.3390/microorganisms7090328
Puidokas T, Kubilius M, Nomeika D, Januzis G, Skrodeniene E. Comparative Analysis of Blood Clot, Plasma Rich in Growth Factors and Platelet-Rich Fibrin Resistance to Bacteria-Induced Fibrinolysis. Microorganisms. 2019; 7(9):328. https://doi.org/10.3390/microorganisms7090328
Chicago/Turabian StylePuidokas, Tomas, Mantas Kubilius, Donatas Nomeika, Gintaras Januzis, and Erika Skrodeniene. 2019. "Comparative Analysis of Blood Clot, Plasma Rich in Growth Factors and Platelet-Rich Fibrin Resistance to Bacteria-Induced Fibrinolysis" Microorganisms 7, no. 9: 328. https://doi.org/10.3390/microorganisms7090328