Effects of Collection Durations on the Determination of Energy Values and Nutrient Digestibility of High-Fiber Diets in Growing Pigs by Total Fecal Collection Method
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Diets and Experimental Design
2.3. Chemical Analysis
2.4. Calculations and Statistical Analysis
3. Results
3.1. Nutrient Composition of Ingredients and Diets
3.2. Effect of Experimental Diets and Collection Duration on Energy Balance in Growing Pigs
3.3. Effect of Experimental Diets and Collection Duration on the ATTD of Nutrient in Diets
3.4. Effect of Collection Duration on the Concentration of DE, ME, and ATTD of GE, DM, OM, CP, and CHO in High-Fiber Ingredients
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zijlstra, R.T.; Beltranena, E. Swine convert co-products from food and biofuel industries into animal protein for food. Anim Front. 2013, 3, 48–53. [Google Scholar] [CrossRef]
- Longland, A.; Carruthers, J.; Low, A. The ability of piglets 4 to 8 weeks old to digest and perform on diets containing two contrasting sources of non-starch polysaccharide. Anim. Sci. 1994, 58, 405–410. [Google Scholar] [CrossRef]
- Flis, M.; Sobotka, W.; Antoszkiewicz, Z. Fiber substrates in the nutrition of weaned piglets—A review. Ann. Anim. Sci. 2017, 17, 627–644. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Xie, J.; Zhang, H. Dietary fibers influence the intestinal SCFAs and plasma metabolites profiling in growing pigs. Food. Funct. 2016, 7, 4644–4654. [Google Scholar] [CrossRef] [PubMed]
- Ramonet, Y.; Meunier-Salaün, M.C.; Dourmad, J.Y. High-fiber diets in pregnant sows: Digestive utilization and effects on the behavior of the animals. J. Anim. Sci. 1999, 77, 591–599. [Google Scholar] [CrossRef] [PubMed]
- O’shea, C.J.; Lynch, B.; Lynch, M.B.; Callan, J.J.; O’Doherty, J.V. Ammonia emissions and dry matter of separated pig manure fractions as affected by crude protein concentration and sugar beet pulp inclusion of finishing pig diets. Agr. Ecosyst. Envir. 2009, 131, 154–160. [Google Scholar] [CrossRef]
- Le Goff, G.; Le Groumellec, L.; Van Milgen, J.; Dubois, S.; Noblet, J. Digestibility and metabolic utilisation of dietary energy in adult sows: Influence of addition and origin of dietary fibre. Brit J Nutr. 2002, 87, 325–335. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, H.; Gao, L.; Zhao, F.; Lu, Q.; Sa, R. Effect of graded levels of fiber from alfalfa meal on intestinal nutrient and energy flow, and hindgut fermentation in growing pigs. J. Anim. Sci. 2013, 91, 4757–4764. [Google Scholar] [CrossRef]
- Chen, L.; Gao, L.; Zhang, H. Effect of graded levels of fiber from alfalfa meal on nutrient digestibility and flow of fattening pigs. J. Integr. Agr. 2014, 13, 1746–1752. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, I.C.; Aldrich, C.G.; Ou, Z. Comparison of four digestibility markers to estimate fecal output of dogs. J. Anim. Sci. 2019, 97, 1036–1041. [Google Scholar] [CrossRef]
- da Teixeira, C.S.C.; de Carvalho, G.G.P.; Nicory, I.C.M.; Santos, A.V.; Dos Pina, D.S.; de Junior, J.E.F.; de Araujo, M.; de Rufino, L.M.A.; Cirne, L.G.A.; Pires, A.J.V. Evaluation of days of total collection and use of internal markers in nutritional trials with small ruminants. Trop. Anim. Health. Prod. 2018, 50, 815–823. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.S.; Tran, H.; Bundy, J.W.; Burkey, T.E.; Kerr, B.J.; Nielsen, M.K.; Miller, P.S. Evaluation of collection method and diet effects on apparent digestibility and energy values of swine diets. J. Anim. Sci. 2016, 94, 2415–2424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adeola, O.; Lewis, A.; Southern, L. Digestion and balance techniques in pigs. In Swine Nutrition; CRC Press: Washington, DC, USA, 2001; pp. 903–916. [Google Scholar]
- Zhang, F.; Adeola, O. Techniques for evaluating digestibility of energy, amino acids, phosphorus, and calcium in feed ingredients for pigs. Anim. Nutr. 2017, 3, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, H.; Lindberg, J.E.; Andersson, C. Diurnal variation in the composition of ileal digesta and the ileal digestibilities of nutrients in growing pigs. J. Sci. Food. Agr. 1997, 74, 244–250. [Google Scholar] [CrossRef]
- Potkins, Z.V.; Lawrence, T.L.J.; Thomlinson, J.R.; Potkins, Z.; Lawrence, T.; Thomlinson, J. Effects of structural and non-structural polysaccharides in the diet of the growing pig on gastric emptying rate and rate of passage of digesta to the terminal ileum and through the total gastrointestinal tract. Brit. J. Nutr. 1991, 65, 391–413. [Google Scholar] [CrossRef] [Green Version]
- Freire, J.P.B.; Guerreiro, A.J.G.; Cunha, L.F.; Aumaitre, A. Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet. Anim. Feed Sci. Technol. 2000, 87, 71–83. [Google Scholar] [CrossRef]
- Le Goff, G.; Van Milgen, J.; Noblet, J. Influence of dietary fibre on digestive utilization and rate of passage in growing pigs, finishing pigs and adult sows. Anim. Sci. 2002, 74, 503–515. [Google Scholar] [CrossRef]
- Navarro, D.M.D.L.; Bruininx, E.M.A.N.; de Jong, L.; Stein, H.H. The contribution of digestible and metabolizable energy from high-fiber dietary ingredients is not affected by inclusion rate in mixed diets fed to growing pigs. J. Anim. Sci. 2018, 96, 1860–1868. [Google Scholar] [CrossRef]
- Morel, P.C.H.; Lee, T.S.; Moughan, P.J. Effect of feeding level, live weight and genotype on the apparent faecal digestibility of energy and organic matter in the growing pig. Anim. Feed Sci. Technol. 2006, 126, 63–74. [Google Scholar] [CrossRef]
- Wilfart, A.; Montagne, L.; Simmins, H.; Noblet, J.; van Milgen, J. Effect of fibre content in the diet on the mean retention time in different segments of the digestive tract in growing pigs. Livest. Sci. 2007, 109, 27–29. [Google Scholar] [CrossRef]
- Choi, H.; Kim, B.G. A low-fiber diet requires a longer adaptation period before collecting feces of pigs compared with a high-fiber diet in digestibility experiments using the inert marker method. Anim. Feed Sci. Technol. 2019, 256, 114254. [Google Scholar] [CrossRef]
- Wang, T.; Adeola, O. Digestibility index marker type, but not inclusion level affects apparent digestibility of energy and nitrogen and marker recovery in growing pigs regardless of added oat bran. J. Anim. Sci. 2018, 96, 2817–2825. [Google Scholar] [CrossRef] [PubMed]
- Moughan, P.J.; Smith, W.S.; Schrama, J.; Smits, C. Chromic oxide and acid-insoluble ash as faecal markers in digestibility studies with young growing pigs. New Zeal. J. Agr. Res. 1991, 34, 85–88. [Google Scholar] [CrossRef]
- Bakker, G.C.M.; Jongbloed, A.W. The effect of housing system on apparent digestibility in pigs, using the classical and marker (chromic oxide, acid-insoluble ash) techniques, in relation to dietary composition. J. Sci. Food. Agr. 1994, 64, 107–115. [Google Scholar] [CrossRef]
- Kerr, B.J.; Jha, R.; Urriola, P.E.; Shurson, G.C. Nutrient composition, digestible and metabolizable energy content, and prediction of energy for animal protein byproducts in finishing pig diets. J. Anim. Sci. 2017, 95, 2614–2626. [Google Scholar] [CrossRef]
- Stein, H.H.; Casas, G.A.; Abelilla, J.J.; Liu, Y.; Sulabo, R.C. Nutritional value of high fiber co-products from the copra, palm kernel, and rice industries in diets fed to pigs. J. Anim. Sci. Biotechnol. 2015, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Stein, H.H.; Lagos, L.V.; Casas, G.A. Nutritional value of feed ingredients of plant origin fed to pigs. Anim. Feed Sci. Technol. 2016, 218, 33–69. [Google Scholar] [CrossRef]
- Choi, H.; Sung, J.Y.; Kim, B.G. Neutral detergent fiber as an independent variable increases the accuracy of prediction equation for digestible energy in feeds for growing pigs. Asian-Australas J. Anim. Sci. 2019. [Google Scholar] [CrossRef]
- Sol, C.; Castillejos, L.; Lopez-Verge, S.; Muns, R.; Gasa, J. Effects of the Feed: Water Mixing Proportion on Diet Digestibility of Growing Pigs. Animals (Basel) 2019, 9, 791. [Google Scholar] [CrossRef] [Green Version]
- NRC. Nutrient Requirements of Swine, 11th ed.; National Academy Press: Washington, DC, USA, 2012. [Google Scholar]
- Jang, Y.D.; Lindemann, M.D.; Agudelo-Trujillo, J.H.; Escobar, C.S.; Kerr, B.J.; Inocencio, N.; Cromwell, G.L. Comparison of direct and indirect estimates of apparent total tract digestibility in swine with effort to reduce variation by pooling of multiple day fecal samples. J. Anim. Sci. 2014, 92, 4566–4576. [Google Scholar] [CrossRef]
- Agudelo, J.H.; Lindemann, M.D.; Cromwell, G.L. A comparison of two methods to assess nutrient digestibility in pigs. Livest. Sci. 2010, 133, 74–77. [Google Scholar] [CrossRef]
- Liu, J.; Xue, P.; Cao, S.; Liu, J.; Chen, L.; Zhang, H. Effects of dietary phosphorus concentration and body weight on postileal phosphorus digestion in pigs. Anim. Feed Sci. Technol. 2018, 242, 86–94. [Google Scholar] [CrossRef]
- Liu, J.; Yan, H.; Cao, S.; Hu, Y.; Zhang, H. Effects of absorbents on growth performance, blood profiles and liver gene expression in broilers fed diets naturally contaminated with aflatoxin. Asian-Australas J. Anim. Sci. 2020, 33, 294–304. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Chen, L.; Lv, S.; Liu, L.; Tang, X.; Zhang, H. Additivity of standardized ileal digestibility of amino acids in mixed diets containing multiple protein sources for growing pigs fed three crude protein levels. J. Anim. Physiol. Anim. Nutr. (Berl). 2018, 102, 1039–1052. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 19th ed.; Association of Official Agricultural Chemists: Arlington, VA, USA, 2012. [Google Scholar]
- Liu, J.; Liu, Z.; Chen, L.; Zhang, H. Effects of feed intake and dietary nutrient density on apparent ileal and total tract digestibility of nutrients and gross energy for growing pigs. J. Anim. Sci. 2016, 94, 4251–4258. [Google Scholar] [CrossRef] [Green Version]
- Soest, P.J.V.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci.. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Huang, C.; Li, P.; Ma, X.; Jaworski, N.W.; Stein, H.-H.; Lai, C.; Zhao, J.; Zhang, S. Methodology effects on determining the energy concentration and the apparent total tract digestibility of components in diets fed to growing pigs. Asian-Australas J. Anim. Sci. 2018, 31, 1315–1324. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Adeola, O. The combination of dietary fiber and time period affect ileal digestibility marker concentration in growing pigs. Anim. Feed Sci. Technol. 2017, 231, 160–163. [Google Scholar] [CrossRef]
- Wang, T.; Ragland, D.; Adeola, O. Combination of digestibility marker and fiber affect energy and nitrogen digestibility in growing pigs. Anim. Feed Sci. Technol. 2017, 230, 23–29. [Google Scholar] [CrossRef]
- Lyu, Z.; Huang, C.; Li, Y.; Li, P.; Liu, H.; Chen, Y.; Li, D.; Lai, C. Adaptation duration for net energy determination of high fiber diets in growing pigs. Anim. Feed Sci. Technol. 2018, 241, 15–26. [Google Scholar] [CrossRef]
- Lyu, Z.; Li, Y.; Liu, H.; Li, E.; Li, P.; Zhang, S.; Wang, F.; Lai, C. Net energy content of rice bran, defatted rice bran, corn gluten feed, and corn germ meal fed to growing pigs using indirect calorimetry. J. Anim. Sci. 2018, 96, 1877–1888. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, S.; Lai, C.; Zhao, J.; Zang, J.; Huang, C. Effects of adaptation time and inclusion level of sugar beet pulp on nutrient digestibility and evaluation of ileal amino acid digestibility of sugar beet pulp fed to growing pigs. Asian-Australas J. Anim. Sci. 2018, 32, 1414–1422. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Ding, J.; Liu, H.; Lyu, Z.; Dong, W.; Wang, Z.; Zhang, S.; Wang, F. Net energy content of five fiber-rich ingredients fed to pregnant sows. Anim. Sci. J. 2019. [Google Scholar] [CrossRef]
- Huang, B.; Huang, C.; Lyu, Z.; Chen, Y.; Li, P.; Liu, L.; Lai, C. Available energy and amino acid digestibility of defatted rice bran fed to growing pigs. J. Anim. Sci.. 2018, 96, 3138–3150. [Google Scholar]
- Nguyen, N.; Jacobs, M.; Li, J.; Huang, C.; Li, D.F.; Navarro, D.M.D.L.; Stein, H.H.; Jaworski, N.W. Technical note: Concentrations of soluble, insoluble, and total dietary fiber in feed ingredients determined using Method AOAC 991.43 are not different from values determined using Method AOAC 2011.43 with the AnkomTDF Dietary Fiber Analyzer. J. Anim. Sci. 2019, 97, 3972–3983. [Google Scholar] [CrossRef]
- Zhang, W.; Li, D.; Liu, L.; Zang, J.; Duan, Q.; Yang, W.; Zhang, L. The effects of dietary fiber level on nutrient digestibility in growing pigs. J. Anim. Sci. Biotechnol. 2013, 4, 17. [Google Scholar] [CrossRef] [Green Version]
- Gao, L.; Chen, L.; Huang, Q.; Meng, L.; Zhong, R.; Liu, C.; Tang, X.; Zhang, H. Effect of dietary fiber type on intestinal nutrient digestibility and hindgut fermentation of diets fed to finishing pigs. Livest. Sci. 2015, 174, 53–58. [Google Scholar] [CrossRef]
- Chen, L.; Gao, L.; Huang, Q.; Zhong, R.; Zhang, L.; Tang, X.; Zhang, H. Viscous and fermentable nonstarch polysaccharides affect intestinal nutrient and energy flow and hindgut fermentation in growing pigs. J. Anim. Sci. 2017, 95, 5054–5063. [Google Scholar] [CrossRef] [Green Version]
- Holzgraefe, D.P., Jr.; Fahey, G.C.; Jensen, A.H. Influence of dietary alfalfa:orchardgrass hay and lasalocid on in vitro estimates of dry matter digestibility and volatile fatty acid concentrations of cecal contents and rate of digesta passage in sows. J. Anim. Sci. 1985, 60, 1235–1246. [Google Scholar] [CrossRef] [Green Version]
- Cherbut, C.; Barry, J.L.; Wyers, M.; Delort-Laval, J. Effect of the nature of dietary fibre on transit time and faecal excretion in the growing pig. Anim. Feed Sci. Technol. 1988, 20, 327–333. [Google Scholar] [CrossRef]
- Varel, V.; Jung, H.; Pond, W.G. Effects of dietary fiber of young adult genetically lean, obese and contemporary pigs: Rate of passage, digestibility and microbiological data. J. Anim. Sci. 1988, 66, 707–712. [Google Scholar] [CrossRef] [Green Version]
- Agudelo, J.; Lindemann, M.; Cromwell, G.; Newman, M.; Nimmo, R.D. Virginiamycin improves phosphorus digestibility and utilization by growing-finishing pigs fed a phosphorus-deficient, corn-soybean meal diet. J. Anim. Sci. 2007, 85, 2173–2182. [Google Scholar] [CrossRef] [Green Version]
Item | Corn | Soybean Meal | Sugar Beet Pulp | Defatted Rice Bran |
---|---|---|---|---|
Dry matter, % | 87.46 | 89.54 | 93.39 | 91.06 |
Organic matter 2, % | 86.14 | 83.50 | 83.11 | 80.53 |
Crude protein, % | 7.67 | 42.15 | 9.58 | 16.80 |
Ether extract, % | 5.43 | 3.18 | 2.80 | 3.34 |
Ash, % | 1.32 | 6.04 | 10.28 | 10.53 |
Total carbohydrate 2, % | 73.04 | 38.17 | 70.73 | 60.39 |
Neutral detergent fiber, % | 8.89 | 16.43 | 38.56 | 23.05 |
Acid detergent fiber, % | 1.74 | 5.36 | 21.49 | 9.63 |
TDF, % | 11.18 | 16.94 | 61.68 | 32.02 |
IDF, % | 9.73 | 15.10 | 45.53 | 30.44 |
SDF 2, % | 1.45 | 1.84 | 16.15 | 1.58 |
SDF/TDF ratio, % | 13.0 | 10.9 | 26.2 | 4.9 |
Gross energy, kcal/kg | 3841 | 4117 | 3623 | 3834 |
Item | Diet | ||
---|---|---|---|
Basal | SBP | DFRB | |
Ingredients, % | |||
Corn | 66.50 | 52.43 | 52.43 |
Soybean meal | 25.00 | 19.71 | 19.71 |
Soybean oil | 3.00 | 2.36 | 2.36 |
Sugar beet pulp | 0.00 | 20.00 | 0.00 |
Defatted rice bran | 0.00 | 0.00 | 20.00 |
Dicalcium phosphate | 1.35 | 1.35 | 1.35 |
Limestone | 0.75 | 0.75 | 0.75 |
Premix * | 3.00 | 3.00 | 3.00 |
Salt | 0.40 | 0.40 | 0.40 |
Total | 100.00 | 100.00 | 100.00 |
Nutrient compositions | |||
Dry matter, % | 89.61 | 90.18 | 89.72 |
Organic matter 2, % | 82.61 | 82.42 | 81.32 |
Crude protein, % | 15.95 | 14.63 | 15.71 |
Ether extract, % | 7.53 | 6.47 | 6.38 |
Ash, % | 7.00 | 7.75 | 8.40 |
Total carbohydrate 2, % | 59.13 | 61.33 | 59.23 |
Neutral detergent fiber, % | 11.39 | 15.66 | 13.55 |
Acid detergent fiber, % | 3.62 | 7.25 | 4.90 |
TDF, % | 14.54 | 24.43 | 18.71 |
IDF, % | 12.81 | 20.66 | 17.49 |
SDF 2, % | 1.73 | 3.77 | 1.22 |
SDF/TDF ratio, % | 11.9 | 15.4 | 6.5 |
Gross energy, kcal/kg | 3930 | 3837 | 3854 |
Diet type | Collection Duration | n | Fecal Output, g DM/day | Energy Excreted in Feces, kcal/day | Urine Output, L/day | Energy Excreted in Urine, kcal/day | DE, kcal/kg as-fed basis | ME, kcal/kg as-fed basis | ATTD of GE, % |
---|---|---|---|---|---|---|---|---|---|
Basal | 3-day | 8 | 128.2 | 463.5 | 2.7 | 112.9 | 3528 | 3429 | 89.76 |
5-day | 8 | 138.3 | 499.6 | 3.0 | 116.6 | 3495 | 3393 | 88.92 | |
7-day | 8 | 142.3 | 515.3 | 3.1 | 117.8 | 3481 | 3382 | 88.57 | |
Sugar beet pulp | 3-day | 8 | 161.4 | 623.2 | 1.8 | 86.7 | 3277 | 3195 | 85.41 |
5-day | 8 | 166.1 | 641.7 | 2.0 | 90.0 | 3255 | 3172 | 84.84 | |
7-day | 8 | 171.0 | 661.8 | 2.0 | 89.0 | 3238 | 3157 | 84.40 | |
Defatted rice bran | 3-day | 8 | 187.5 | 686.2 | 2.5 | 92.9 | 3244 | 3159 | 84.16 |
5-day | 8 | 197.9 | 714.2 | 2.8 | 98.2 | 3217 | 3128 | 83.47 | |
7-day | 8 | 199.4 | 725.5 | 3.1 | 105.1 | 3209 | 3123 | 83.25 | |
Basal | 24 | 136.2 c | 492.8 b | 2.9 | 115.8 a | 3501 a | 3401 a | 89.08 a | |
Sugar beet pulp | 24 | 166.1 b | 642.3 a | 1.9 | 88.6 b | 3257 b | 3175 b | 84.89 b | |
Defatted rice bran | 24 | 194.9 a | 708.6 a | 2.8 | 98.7 b | 3223 c | 3137 b | 83.63 c | |
3-day | 24 | 159.0 | 591.0 | 2.3 | 97.5 | 3350 x | 3261 | 86.44 x | |
5-day | 24 | 167.4 | 618.5 | 2.6 | 101.6 | 3322 x,y | 3231 | 85.74 x,y | |
7-day | 24 | 170.9 | 634.2 | 2.7 | 104.0 | 3309 y | 3221 | 85.41 y | |
SEM | 4.6 | 17.3 | 0.2 | 2.9 | 15.6 | 15.6 | 0.31 | ||
p-Value | |||||||||
Diet | <0.001 | <0.001 | 0.136 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Duration | 0.424 | 0.467 | 0.758 | 0.634 | 0.014 | 0.077 | 0.013 | ||
Diet × Duration | 0.999 | 1.000 | 0.997 | 0.980 | 0.995 | 0.998 | 0.995 | ||
Linear | 0.205 | 0.225 | 0.347 | 0.461 | 0.004 | 0.030 | 0.004 | ||
Quadratic | 0.760 | 0.846 | 0.885 | 0.935 | 0.554 | 0.529 | 0.554 |
Diet Type | Collection Duration | n | Apparent Total Tract Digestibility, % | |||||||
---|---|---|---|---|---|---|---|---|---|---|
DM | OM | CHO | CP | EE | NDF | ADF | Ash | |||
Basal | 3-day | 8 | 87.65 | 90.99 | 92.92 | 86.71 | 84.87 | 76.56 | 74.91 | 48.34 |
5-day | 8 | 86.64 | 90.24 | 92.47 | 85.88 | 81.97 | 74.72 | 74.11 | 44.19 | |
7-day | 8 | 86.23 | 89.99 | 92.33 | 85.18 | 81.80 | 72.91 | 71.25 | 41.87 | |
SBP | 3-day | 8 | 83.91 | 87.54 | 90.40 | 78.58 | 80.71 | 81.15 | 83.41 | 45.38 |
5-day | 8 | 83.27 | 87.21 | 90.76 | 78.11 | 74.11 | 79.60 | 81.88 | 41.45 | |
7-day | 8 | 82.83 | 86.77 | 90.19 | 77.39 | 75.51 | 77.16 | 78.96 | 40.99 | |
DFRB | 3-day | 8 | 81.39 | 85.91 | 87.49 | 81.28 | 82.71 | 68.60 | 64.12 | 37.61 |
5-day | 8 | 80.33 | 85.02 | 86.94 | 80.77 | 77.63 | 65.02 | 59.21 | 34.91 | |
7-day | 8 | 80.21 | 85.02 | 87.10 | 80.38 | 77.06 | 61.94 | 56.43 | 33.68 | |
Basal | 24 | 86.84 a | 90.41 a | 92.56 a | 85.92 a | 82.88 a | 74.73 b | 73.42 b | 44.80 a | |
SBP | 24 | 83.34 b | 87.17 b | 90.45 b | 78.03 c | 76.78 b | 79.30 a | 81.42 a | 42.61 a | |
DFRB | 24 | 80.64 c | 85.32 c | 87.18 c | 80.81 b | 79.13 b | 65.19 c | 59.92 c | 35.40 b | |
3-day | 24 | 84.32 x | 88.15 x | 90.27 | 82.19 | 82.76 x | 75.44 x | 74.15 x | 43.78 x | |
5-day | 24 | 83.42 y | 87.49 x,y | 90.06 | 81.59 | 77.90 y | 73.11 x | 71.73 x,y | 40.18 y | |
7-day | 24 | 83.09 y | 87.26 y | 89.88 | 80.98 | 78.12 y | 70.67 y | 68.88 y | 38.85 y | |
SEM | 0.33 | 0.28 | 0.28 | 0.45 | 0.55 | 0.83 | 1.20 | 0.68 | ||
p-Value | ||||||||||
Diet | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Duration | 0.001 | 0.011 | 0.320 | 0.131 | <0.001 | <0.001 | 0.002 | <0.001 | ||
Diet × Duration | 0.974 | 0.943 | 0.581 | 0.994 | 0.571 | 0.757 | 0.712 | 0.878 | ||
Linear | <0.001 | 0.004 | 0.133 | 0.045 | <0.001 | <0.001 | <0.001 | <0.001 | ||
Quadratic | 0.308 | 0.408 | 0.951 | 0.999 | 0.004 | 0.946 | 0.856 | 0.247 |
Item | n | Collection Duration | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|---|
3-day | 5-day | 7-day | Linear | Quadratic | ||||
SBP | DE, kcal/kg as-fed basis | 8 | 2478 | 2499 | 2469 | 34.45 | 0.928 | 0.750 |
ME, kcal/kg as-fed basis | 8 | 2461 | 2482 | 2455 | 42.23 | 0.959 | 0.799 | |
ATTD of GE, % | 8 | 73.23 | 73.70 | 72.91 | 0.90 | 0.890 | 0.758 | |
ATTD of DM, % | 8 | 74.04 | 74.84 | 74.26 | 0.83 | 0.923 | 0.718 | |
ATTD of OM, % | 8 | 79.04 | 80.33 | 79.12 | 0.77 | 0.969 | 0.477 | |
ATTD of CP, % | 8 | 51.10 | 52.04 | 51.22 | 1.68 | 0.979 | 0.821 | |
ATTD of CHO, % | 8 | 85.72 | 89.30 | 87.01 | 0.68 | 0.430 | 0.047 | |
DFRB | DE, kcal/kg as-fed basis | 8 | 2313 | 2310 | 2323 | 34.61 | 0.913 | 0.913 |
ME, kcal/kg as-fed basis | 8 | 2280 | 2265 | 2282 | 57.40 | 0.992 | 0.902 | |
ATTD of GE, % | 8 | 66.99 | 66.81 | 67.15 | 0.90 | 0.944 | 0.901 | |
ATTD of DM, % | 8 | 61.46 | 60.10 | 61.16 | 0.97 | 0.907 | 0.587 | |
ATTD of OM, % | 8 | 70.93 | 69.36 | 70.36 | 0.78 | 0.782 | 0.473 | |
ATTD of CP, % | 8 | 64.62 | 65.32 | 66.17 | 1.70 | 0.729 | 0.985 | |
ATTD of CHO, % | 8 | 71.18 | 70.18 | 71.56 | 0.76 | 0.850 | 0.496 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Zhong, R.; Chen, L.; Xie, F.; Li, K.; Liu, L.; Zhang, H. Effects of Collection Durations on the Determination of Energy Values and Nutrient Digestibility of High-Fiber Diets in Growing Pigs by Total Fecal Collection Method. Animals 2020, 10, 228. https://doi.org/10.3390/ani10020228
Liu Z, Zhong R, Chen L, Xie F, Li K, Liu L, Zhang H. Effects of Collection Durations on the Determination of Energy Values and Nutrient Digestibility of High-Fiber Diets in Growing Pigs by Total Fecal Collection Method. Animals. 2020; 10(2):228. https://doi.org/10.3390/ani10020228
Chicago/Turabian StyleLiu, Zhengqun, Ruqing Zhong, Liang Chen, Fei Xie, Kai Li, Lei Liu, and Hongfu Zhang. 2020. "Effects of Collection Durations on the Determination of Energy Values and Nutrient Digestibility of High-Fiber Diets in Growing Pigs by Total Fecal Collection Method" Animals 10, no. 2: 228. https://doi.org/10.3390/ani10020228