The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Effect of Phytochemicals and Their Derivatives on Growth-Related Genes
3. The Effect of Herbal Extracts and Plant Components on Immune-Related Genes in Fish Species
4. The Effect of Herbal Extracts and Phytochemicals on Reproduction-Related Genes
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Fisheries and Aquaculture Information and Statistics Branch; FAO: Rome, Italy, 2020. [Google Scholar]
- Lieke, T.; Meinelt, T.; Hoseinifar, S.H.; Pan, B.; Straus, D.L.; Steinberg, C.E. Sustainable aquaculture requires environmental-friendly treatment strategies for fish diseases. Rev. Aquac. 2020, 12, 943–965. [Google Scholar] [CrossRef] [Green Version]
- Harikrishnan, R.; Balasundaram, C.; Heo, M.-S. Impact of plant products on innate and adaptive immune system of cultured finfish and shellfish. Aquaculture 2011, 317, 1–15. [Google Scholar] [CrossRef]
- Stratev, D.; Zhelyazkov, G.; Noundou, X.S.; Krause, R.W. Beneficial effects of medicinal plants in fish diseases. Aquac. Int. 2018, 26, 289–308. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Sun, Y.-Z.; Zhou, Z.; Van Doan, H.; Davies, S.J.; Harikrishnan, R. Boosting immune function and disease bio-control through environment-friendly and sustainable approaches in finfish aquaculture: Herbal therapy scenarios. Rev. Fish. Sci. Aquac. 2020, 28, 303–321. [Google Scholar] [CrossRef]
- Moles, G.; Carrillo, M.; Mananos, E.; Mylonas, C.; Zanuy, S. Temporal profile of brain and pituitary GnRHs, GnRH-R and gonadotropin mRNA expression and content during early development in European sea bass (Dicentrarchus labrax L.). Gen. Comp. Endocrinol. 2007, 150, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Pandian, T. Genetic Sex Differentiation in Fish; CRC Press: Boca Raton, FL, USA, 2012; Volume 1, p. 214. [Google Scholar]
- Reading, B.; Sullivan, C.; Schilling, J. Vitellogenesis in fishes. Encycl. Fish Physiol. 2011, 1, 635–646. [Google Scholar]
- Lubieniecki, K.P.; Botwright, N.A.; Taylor, R.S.; Evans, B.S.; Cook, M.T.; Davidson, W.S. Expression analysis of sex-determining pathway genes during development in male and female Atlantic salmon (Salmo salar). Physiol. Genom. 2015, 47, 581–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadifar, E.; Yousefi, M.; Karimi, M.; Fadaei Raieni, R.; Dadar, M.; Yilmaz, S.; Dawood, M.A.; Abdel-Latif, H.M. Benefits of dietary polyphenols and polyphenol-rich additives to aquatic animal health: An overview. Rev. Fish. Sci. Aquac. 2020, 1–34. [Google Scholar] [CrossRef]
- Lee, C.-S. Dietary Nutrients, Additives and Fish Health; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 333–346. [Google Scholar]
- Triantaphyllopoulos, K.A.; Cartas, D.; Miliou, H. Factors influencing GH and IGF-I gene expression on growth in teleost fish: How can aquaculture industry benefit? Rev. Aquac. 2020, 12, 1637–1662. [Google Scholar] [CrossRef]
- McDonald, P.; Edward, A.; Greenhalgh, J.; Morgan, C.; Sinclair, L.; Wilkinson, R. Animal Nutrition, 7th ed.; Longmans Scientific and Technological: London, UK, 2010. [Google Scholar]
- Awad, E.; Awaad, A. Role of medicinal plants on growth performance and immune status in fish. Fish Shellfish Immunol. 2017, 67, 40–54. [Google Scholar] [CrossRef]
- Golestan, I. Phytogenics as new class of feed additive in poultry industry. J. Anim. Vet. Adv. 2010, 9, 2295–2304. [Google Scholar]
- Chakraborty, S.B.; Horn, P.; Hancz, C. Application of phytochemicals as growth-promoters and endocrine modulators in fish culture. Rev. Aquac. 2014, 6, 1–19. [Google Scholar] [CrossRef]
- Elumalai, P.; Kurian, A.; Lakshmi, S.; Faggio, C.; Esteban, M.A.; Ringø, E. Herbal immunomodulators in aquaculture. Rev. Fish. Sci. Aquac. 2020, 29, 1–25. [Google Scholar] [CrossRef]
- Zhu, F. A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture 2020, 526, 735422. [Google Scholar] [CrossRef]
- Safari, R.; Hoseinifar, S.H.; Imanpour, M.R.; Mazandarani, M.; Sanchouli, H.; Paolucci, M. Effects of dietary polyphenols on mucosal and humoral immune responses, antioxidant defense and growth gene expression in beluga sturgeon (Huso huso). Aquaculture 2020, 528, 735494. [Google Scholar] [CrossRef]
- Midhun, S.J.; Arun, D.; Edatt, L.; Sruthi, M.; Thushara, V.; Oommen, O.V.; Kumar, V.S.; Divya, L. Modulation of digestive enzymes, GH, IGF-1 and IGF-2 genes in the teleost, Tilapia (Oreochromis mossambicus) by dietary curcumin. Aquac. Int. 2016, 24, 1277–1286. [Google Scholar] [CrossRef]
- Aanyu, M.; Betancor, M.B.; Monroig, O. Effects of dietary limonene and thymol on the growth and nutritional physiology of Nile tilapia (Oreochromis niloticus). Aquaculture 2018, 488, 217–226. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Dawood, M.A.; Moghadam, M.S.; Sheikhzadeh, N.; Hoseinifar, S.H.; Musthafa, M.S. Modulation of immune parameters and antioxidant defense in zebrafish (Danio rerio) using dietary apple cider vinegar. Aquaculture 2019, 513, 734412. [Google Scholar] [CrossRef]
- Berneis, K.; Keller, U. Metabolic actions of growth hormone: Direct and indirect. Bailliere’s Clin. Endocrinol. Metab. 1996, 10, 337–352. [Google Scholar] [CrossRef]
- Guo, H.; Lin, W.; Hou, J.; Wang, L.; Zhang, D.; Wu, X.; Li, L.; Li, D. The protective roles of dietary selenium yeast and tea polyphenols on growth performance and ammonia tolerance of juvenile Wuchang bream (Megalobrama amblycephala). Front. Physiol. 2018, 9, 1371. [Google Scholar] [CrossRef]
- Uchida, K.; Kajimura, S.; Riley, L.; Hirano, T.; Aida, K.; Grau, E. Effects of fasting on growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 134, 429–439. [Google Scholar] [CrossRef]
- Cruz, E.M.V.; Brown, C.L.; Luckenbach, J.A.; Picha, M.E.; Bolivar, R.B.; Borski, R.J. Insulin-like growth factor-I cDNA cloning, gene expression and potential use as a growth rate indicator in Nile tilapia, Oreochromis niloticus. Aquaculture 2006, 251, 585–595. [Google Scholar] [CrossRef]
- Furne, M.; Hidalgo, M.; Lopez, A.; Garcia-Gallego, M.; Morales, A.; Domezain, A.; Domezaine, J.; Sanz, A. Digestive enzyme activities in Adriatic sturgeon Acipenser naccarii and rainbow trout Oncorhynchus mykiss. A comparative study. Aquaculture 2005, 250, 391–398. [Google Scholar] [CrossRef]
- Tazikeh, T.; Abedian Kenari, A.; Esmaeili, M. Effects of fish meal replacement by meat and bone meal supplemented with garlic (Allium sativum) powder on biological indices, feeding, muscle composition, fatty acid and amino acid profiles of whiteleg shrimp (Litopenaeus vannamei). Aquac. Res. 2020, 51, 674–686. [Google Scholar] [CrossRef]
- Kamali Sangani, A.; Masoudi, A.A.; Hosseini, S.A. The effects of herbal plants on Mucin 2 gene expression and performance in ascetic broilers. Iran. J. Vet. Med. 2014, 8, 47–52. [Google Scholar]
- Pérez-Sánchez, J.; Benedito-Palos, L.; Estensoro, I.; Petropoulos, Y.; Calduch-Giner, J.A.; Browdy, C.L.; Sitjà-Bobadilla, A. Effects of dietary NEXT ENHANCE® 150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.). Fish Shellfish Immunol. 2015, 44, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Verri, T.; Terova, G.; Dabrowski, K.; Saroglia, M. Peptide transport and animal growth: The fish paradigm. Biol. Lett. 2011, 7, 597–600. [Google Scholar] [CrossRef]
- Tengjaroenkul, B.; Smith, B.J.; Caceci, T.; Smith, S.A. Distribution of intestinal enzyme activities along the intestinal tract of cultured Nile tilapia, Oreochromis niloticus L. Aquaculture 2000, 182, 317–327. [Google Scholar] [CrossRef]
- Georgiadi, A.; Kersten, S. Mechanisms of gene regulation by fatty acids. Adv. Nutr. 2012, 3, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Tan, J.Y.; Liu, H.; Zhou, X.; Xiang, X.; Wang, K. Evaluation of oregano essential oil (Origanum heracleoticum L.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel catfish (Ictalurus punctatus). Aquaculture 2009, 292, 214–218. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Sheikhzadeh, N.; Roshanaei, K.; Dargahi, N.; Faggio, C. Can dietary ginger (Zingiber officinale) alter biochemical and immunological parameters and gene expression related to growth, immunity and antioxidant system in zebrafish (Danio rerio)? Aquaculture 2019, 507, 341–348. [Google Scholar] [CrossRef]
- Citarasu, T. Herbal biomedicines: A new opportunity for aquaculture industry. Aquac. Int. 2010, 18, 403–414. [Google Scholar] [CrossRef]
- Li, Y.-X.; Wijesekara, I.; Li, Y.; Kim, S.-K. Phlorotannins as bioactive agents from brown algae. Process Biochem. 2011, 46, 2219–2224. [Google Scholar] [CrossRef]
- Okuda, T.; Ito, H. Tannins of constant structure in medicinal and food plants—hydrolyzable tannins and polyphenols related to tannins. Molecules 2011, 16, 2191. [Google Scholar] [CrossRef]
- Yazdi, F.G.; Soleimanian-Zad, S.; van den Worm, E.; Folkerts, G. Turmeric extract: Potential use as a prebiotic and anti-inflammatory compound? Plant Foods Human Nutr. 2019, 74, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Murali, R.; Karthikeyan, A.; Saravanan, R. Protective effects of D-limonene on lipid peroxidation and antioxidant enzymes in streptozotocin-induced diabetic rats. Basic Clin. Pharmacol. Toxicol. 2013, 112, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Sun, J. D-Limonene: Safety and clinical applications. Altern. Med. Rev. 2007, 12, 259. [Google Scholar]
- Wilson, M.J.; Lindgren, B.R.; Sinha, A.A. The effect of dietary supplementation with limonene or myo-inositol on the induction of neoplasia and matrix metalloproteinase and plasminogen activator activities in accessory sex organs of male Lobund–Wistar rats. Exp. Mol. Pathol. 2008, 85, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Bansal, N. D-Limonene ameliorates diabetic neuropathic pain in rats. Int. J. Med Health Res. 2016, 2, 34–49. [Google Scholar]
- Burnet, F.M. The Production of Antibodies. J. Immunol. 1951, 66, 485–486. [Google Scholar]
- Magnadóttir, B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006, 20, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Hoseinifar, S.H.; Shakouri, M.; Yousefi, S.; Van Doan, H.; Shafiei, S.; Yousefi, M.; Mazandarani, M.; Mozanzadeh, M.T.; Tulino, M.G.; Faggio, C. Humoral and skin mucosal immune parameters, intestinal immune related genes expression and antioxidant defense in rainbow trout (Oncorhynchus mykiss) fed olive (Olea europea L.) waste. Fish Shellfish Immunol. 2020, 100, 171–178. [Google Scholar] [CrossRef]
- Fernández-Alarcón, C.; Miranda, C.; Singer, R.; López, Y.; Rojas, R.; Bello, H.; Domínguez, M.; González-Rocha, G. Detection of the floR gene in a diversity of florfenicol resistant Gram-negative bacilli from freshwater salmon farms in Chile. Zoonoses Public Health 2010, 57, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Romero, J.; Feijoó, C.G.; Navarrete, P. Antibiotics in aquaculture–use, abuse and alternatives. In Health and Environment in Aquaculture; InTech: London, UK, 2012; pp. 159–198. [Google Scholar]
- Burdock, G.A.; Carabin, I.G. Generally recognized as safe (GRAS): History and description. Toxicol. Lett. 2004, 150, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Anderson, D.P. Immunostimulants, adjuvants, and vaccine carriers in fish: Applications to aquaculture. Annu. Rev. Fish Dis. 1992, 2, 281–307. [Google Scholar] [CrossRef]
- Paray, B.A.; Hoseini, S.M.; Hoseinifar, S.H.; Van Doan, H. Effects of dietary oak (Quercus castaneifolia) leaf extract on growth, antioxidant, and immune characteristics and responses to crowding stress in common carp (Cyprinus carpio). Aquaculture 2020, 524, 735276. [Google Scholar] [CrossRef]
- Wink, M. Evolution of toxins and antinutritional factors in plants with special emphasis on Leguminosae. In Poisonous Plants and Related Toxins; CABI Publishing: Oxford, UK, 2004; pp. 1–25. [Google Scholar]
- Wang, Q.; Shen, J.; Yan, Z.; Xiang, X.; Mu, R.; Zhu, P.; Yao, Y.; Zhu, F.; Chen, K.; Chi, S. Dietary Glycyrrhiza uralensis extracts supplementation elevated growth performance, immune responses and disease resistance against Flavobacterium columnare in yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. 2020, 97, 153–164. [Google Scholar] [CrossRef]
- Silva-Jara, J.; Angulo, C.; Macias, M.E.; Velazquez, C.; Guluarte, C.; Reyes-Becerril, M. First screening report of immune and protective effect of non-toxic Jatropha vernicosa stem bark against Vibrio parahaemolyticus in Longfin yellowtail Seriola rivoliana leukocytes. Fish Shellfish Immunol. 2020, 101, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Serradell, A.; Torrecillas, S.; Makol, A.; Valdenegro, V.; Fernández-Montero, A.; Acosta, F.; Izquierdo, M.; Montero, D. Prebiotics and phytogenics functional additives in low fish meal and fish oil based diets for European sea bass (Dicentrarchus labrax): Effects on stress and immune responses. Fish Shellfish Immunol. 2020, 100, 219–229. [Google Scholar] [CrossRef]
- Salomón, R.; Firmino, J.P.; Reyes-López, F.E.; Andree, K.B.; González-Silvera, D.; Esteban, M.A.; Tort, L.; Quintela, J.C.; Pinilla-Rosas, J.M.; Vallejos-Vidal, E. The growth promoting and immunomodulatory effects of a medicinal plant leaf extract obtained from Salvia officinalis and Lippia citriodora in gilthead seabream (Sparus aurata). Aquaculture 2020, 524, 735291. [Google Scholar] [CrossRef]
- Mansour, A.T.; Miao, L.; Espinosa, C.; García-Beltrán, J.M.; Francisco, D.C.C.; Esteban, M.Á. Effects of dietary inclusion of Moringa oleifera leaves on growth and some systemic and mucosal immune parameters of seabream. Fish Physiol. Biochem. 2018, 44, 1223–1240. [Google Scholar] [CrossRef]
- Al-Deriny, S.H.; Dawood, M.A.; Elbialy, Z.I.; Wael, F.; Mohamed, R.A. Selenium nanoparticles and spirulina alleviate growth performance, hemato-biochemical, immune-related genes, and heat shock protein in Nile tilapia (Oreochromis niloticus). Biol. trace Elem. Res. 2020, 198, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Gharaei, A.; Shafiei, M.; Harijani, J.M.; Hassanein, P.; Arshadi, A. Immune Responses and Haematological Parameters Changes of Rainbow Trout (Oncorhynchus mykiss) under Effects of Dietary Administration of Sumac (Rhus coriaria L.). J. Agric. Sci. Technol. 2020, 22, 173–186. [Google Scholar]
- Dawood, M.A.; Metwally, A.E.-S.; Elkomy, A.H.; Gewaily, M.S.; Abdo, S.E.; Abdel-Razek, M.A.; Soliman, A.A.; Amer, A.A.; Abdel-Razik, N.I.; Abdel-Latif, H.M. The impact of menthol essential oil against inflammation, immunosuppression, and histopathological alterations induced by chlorpyrifos in Nile tilapia. Fish Shellfish Immunol. 2020, 102, 316–325. [Google Scholar] [CrossRef]
- Mehrabi, Z.; Firouzbakhsh, F.; Rahimi-Mianji, G.; Paknejad, H. Immunity and growth improvement of rainbow trout (Oncorhynchus mykiss) fed dietary nettle (Urtica dioica) against experimental challenge with Saprolegnia parasitica. Fish Shellfish Immunol 2020, 104, 74–82. [Google Scholar] [CrossRef]
- Wang, F.; Liu, F.; Wang, X.; Chen, W.; Meng, X. Transcriptomic responses to yam (Dioscorea oppositifolia L.) extract dietary supplementation in rainbow trout (Oncorhynchus mykiss) liver. Aquac. Res. 2020, 51, 932–945. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhong, L.; Chen, T.; Shi, Y.; Hu, Y.; Zeng, J.G.; Liu, H.Y.; Xu, S.D. Dietary sanguinarine supplementation on the growth performance, immunity and intestinal health of grass carp (Ctenopharyngodon idellus) fed cottonseed and rapeseed meal diets. Aquaculture 2020, 528, 735521. [Google Scholar] [CrossRef]
- Zou, C.; Su, N.; Wu, J.; Xu, M.; Sun, Z.; Liu, Q.; Chen, L.; Zhou, Y.; Wang, A.; Ye, C. Dietary Radix Bupleuri extracts improves hepatic lipid accumulation and immune response of hybrid grouper (Epinephelus lanceolatus♂× Epinephelus fuscoguttatus♀). Fish Shellfish Immunol. 2019, 88, 496–507. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.S.; Sukumaran, V.; Park, S.C. Effects of bioactive substance from turmeric on growth, skin mucosal immunity and antioxidant factors in common carp, Cyprinus carpio. Fish Shellfish Immunol. 2019, 92, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Zargar, A.; Rahimi-Afzal, Z.; Soltani, E.; Taheri Mirghaed, A.; Ebrahimzadeh-Mousavi, H.A.; Soltani, M.; Yuosefi, P. Growth performance, immune response and disease resistance of rainbow trout (Oncorhynchus mykiss) fed Thymus vulgaris essential oils. Aquac. Res. 2019, 50, 3097–3106. [Google Scholar] [CrossRef]
- Edirisinghe, S.; Dananjaya, S.; Nikapitiya, C.; Liyanage, T.; Lee, K.-A.; Oh, C.; Kang, D.-H.; De Zoysa, M. Novel pectin isolated from Spirulina maxima enhances the disease resistance and immune responses in zebrafish against Edwardsiella piscicida and Aeromonas hydrophila. Fish Shellfish Immun 2019, 94, 558–565. [Google Scholar] [CrossRef]
- Abdellatief, S.A.; Abdel Rahman, A.N.; Abdallah, F.D. Evaluation of Immunostimulant Activity of Spirulina platensis (Arthrospira platensis) and Sage (Salvia officinalis) in Nile Tilapia (Oreochromis niloticus). Zagazig Vet. J. 2018, 46, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, S.; Ergün, S. Trans-cinnamic acid application for rainbow trout (Oncorhynchus mykiss): I. Effects on haematological, serum biochemical, non-specific immune and head kidney gene expression responses. Fish Shellfish Immunol. 2018, 78, 140–157. [Google Scholar] [CrossRef]
- Baba, E.; Acar, U.; Yilmaz, S.; Zemheri, F.; Ergun, S. Dietary olive leaf (Olea europea L.) extract alters some immune gene expression levels and disease resistance to Yersinia ruckeri infection in rainbow trout Oncorhynchus mykiss. Fish Shellfish Immunol. 2018, 79, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Mansour, A.T.; Espinosa, C.; García-Beltrán, J.M.; Miao, L.; Francisco, D.C.C.; Alsaqufi, A.S.; Esteban, M.Á. Dietary supplementation of drumstick tree, Moringa oleifera, improves mucosal immune response in skin and gills of seabream, Sparus aurata, and attenuates the effect of hydrogen peroxide exposure. Fish Physiol. Biochem. 2020, 46, 1–16. [Google Scholar] [CrossRef]
- Na-Phatthalung, P.; Teles, M.; Voravuthikunchai, S.P.; Tort, L.; Fierro-Castro, C. Immunomodulatory effects of Rhodomyrtus tomentosa leaf extract and its derivative compound, rhodomyrtone, on head kidney macrophages of rainbow trout (Oncorhynchus mykiss). Fish Physiol. Biochem. 2018, 44, 543–555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naiel, M.A.; Ismael, N.E.; Negm, S.S.; Ayyat, M.S.; Al-Sagheer, A.A. Rosemary leaf powder–supplemented diet enhances performance, antioxidant properties, immune status, and resistance against bacterial diseases in Nile Tilapia (Oreochromis niloticus). Aquaculture 2020, 526, 735370. [Google Scholar] [CrossRef]
- Yousefi, M.; Hoseini, S.M.; Vatnikov, Y.A.; Kulikov, E.V.; Drukovsky, S.G. Rosemary leaf powder improved growth performance, immune and antioxidant parameters, and crowding stress responses in common carp (Cyprinus carpio) fingerlings. Aquaculture 2019, 505, 473–480. [Google Scholar] [CrossRef]
- Ponce-Monter, H.; Fernández-Martínez, E.; Ortiz, M.I.; Ramírez-Montiel, M.L.; Cruz-Elizalde, D.; Pérez-Hernández, N.; Cariño-Cortés, R. Spasmolytic and anti-inflammatory effects of Aloysia triphylla and citral, in vitro and in vivo studies. J. Smooth Muscle Res. 2010, 46, 309–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva-Angulo, A.; Zanini, S.; Rosenthal, A.; Rodrigo, D.; Klein, G.; Martínez, A. Combined effect of carvacrol and citral on the growth of Listeria monocytogenes and Listeria innocua and on the occurrence of damaged cells. Food Control 2015, 53, 156–162. [Google Scholar] [CrossRef]
- de Freitas Souza, C.; Baldissera, M.D.; Bianchini, A.E.; da Silva, E.G.; Mourão, R.H.V.; da Silva, L.V.F.; Schmidt, D.; Heinzmann, B.M.; Baldisserotto, B. Citral and linalool chemotypes of Lippia alba essential oil as anesthetics for fish: A detailed physiological analysis of side effects during anesthetic recovery in silver catfish (Rhamdia quelen). Fish Physiol. Biochem. 2018, 44, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Mori, N.C.; Michelotti, B.T.; da Silva Pês, T.; Bressan, C.A.; Sutili, F.; Kreutz, L.C.; Garlet, Q.; Baldisserotto, B.; Pavanato, M.A.; Cerqueira, V.R. Citral as a dietary additive for Centropomus undecimalis juveniles: Redox, immune innate profiles, liver enzymes and histopathology. Aquaculture 2019, 501, 14–21. [Google Scholar] [CrossRef]
- Fernandez, M.; Saenz, M.; Garcia, M. Natural products: Anti-inflammatory activity in rats and mice of phenolic acids isolated from Scrophularia frutescens. J. Pharm. Pharmacol. 1998, 50, 1183–1186. [Google Scholar] [CrossRef] [PubMed]
- Sova, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev. Med. Chem. 2012, 12, 749–767. [Google Scholar] [CrossRef] [PubMed]
- Pontiki, E.; Hadjipavlou-Litina, D.; Litinas, K.; Geromichalos, G. Novel cinnamic acid derivatives as antioxidant and anticancer agents: Design, synthesis and modeling studies. Molecules 2014, 19, 9655. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, S.; Guo, W.; Xie, Z.; Zheng, Y.; Cao, Z.; Zhou, Y. Transcriptome analysis provides insights into the immune responsive pathways and genes in the head kidney of tiger grouper (Epinephelus fuscoguttatus) fed with Spatholobus suberectus, Phellodendron amurense, or Eclipta prostrata. Fish Shellfish Immunol. 2018, 73, 100–111. [Google Scholar] [CrossRef]
- Roohi, Z.; Imanpoor, M.R.; Jafari, V.; Taghizadeh, V. The use of fenugreek seed meal in fish diets: Growth performance, haematological and biochemical parameters, survival and stress resistance of common carp (Cyprinus carpio L.). Aquac. Res. 2017, 48, 1209–1215. [Google Scholar] [CrossRef]
- Mehboob, A.; Khan, N.; Atiq, U.; Iqbal, K.J.; Tayyab, R.; Batool, S.S.; Batool, H.S.; Amjad, S.; Tanveer, M. Effect of Fenugreek as a Feed Additive on the Growth, Body Composition and Apparent Nutrients Digestibility of Striped Catfish Pangasius hypophthalmus Fry. Pak. J. Zool. 2017, 49, 2037–2042. [Google Scholar] [CrossRef]
- Bahi, A.; Guardiola, F.; Messina, C.; Mahdhi, A.; Cerezuela, R.; Santulli, A.; Bakhrouf, A.; Esteban, M. Effects of dietary administration of fenugreek seeds, alone or in combination with probiotics, on growth performance parameters, humoral immune response and gene expression of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol. 2017, 60, 50–58. [Google Scholar] [CrossRef]
- Moustafa, E.M.; Dawood, M.A.; Assar, D.H.; Omar, A.A.; Elbialy, Z.I.; Farrag, F.A.; Shukry, M.; Zayed, M.M. Modulatory effects of fenugreek seeds powder on the histopathology, oxidative status, and immune related gene expression in Nile tilapia (Oreochromis niloticus) infected with Aeromonas hydrophila. Aquaculture 2020, 515, 734589. [Google Scholar] [CrossRef]
- da Costa Sarmento, N.; Worachartcheewan, A.; Pingaew, R.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Antimicrobial, antioxidant and anticancer activities of Strychnos lucida R. Br. Afr. J. Tradit. Complementary Altern. Med. 2015, 12, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Zubaidah, A.; Faidah, K.R.; Samsundari, S. Effectiveness of Strychnos ligustrina Bl. extract as feed supplementation to increase immune system of Nile Tilapia (Oreochromis niloticus) wich againts Streptococcus agalactiae. Indones. J. Trop. Aquat. 2018, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Cabot, P.J.; Shaw, P.N.; Hewavitharana, A.K. Anti-inflammatory and immunomodulatory properties of Carica papaya. J. Immunotoxicol. 2016, 13, 590–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owoyele, B.V.; Adebukola, O.M.; Funmilayo, A.A.; Soladoye, A.O. Anti-inflammatory activities of ethanolic extract of Carica papaya leaves. Inflammopharmacology 2008, 16, 168–173. [Google Scholar] [CrossRef]
- Mensah, J.K.; Amarh, M.A. Antioxidant, antimicrobial and anti-inflammation activities of Telfairia occidentalis seeds extract. Curr. Sci. Perspect. 2019, 5, 14–23. [Google Scholar]
- Fakoya, S.; Aderoboye, O.; Olusola, S. Phytobiotics Effects of Pawpaw (Carica papaya) Leaves and Fluted Pumpkin (Telferia ocidentalis) Leaves Extracts against Certain Aquatic Pathogens. Med. Aromat. Plants (Los Angeles) 2019, 8, 1–7. [Google Scholar]
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Sarkar, S. Isolation from argemone oil of dihydrosanguinarine and sanguinarine: Toxicity of sanguinarine. Nature 1948, 162, 265–266. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.; Fan, T.; Li, W.; Xing, W.; Huang, H. The anti-inflammatory effects of sanguinarine and its modulation of inflammatory mediators from peritoneal macrophages. Eur. J. Pharmacol. 2012, 689, 262–269. [Google Scholar] [CrossRef] [PubMed]
- ZOU, X.; LONG, Z. The Biological Characteristics and The Ecological Value of Macleaya cordata. J. Fujian For. Sci. Technol. 2009. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJLK200903060.htm (accessed on 1 April 2021).
- Liu, F.; Geng, C.; Qu, Y.-K.; Cheng, B.-X.; Zhang, Y.; Wang, A.-M.; Zhang, J.-H.; Liu, B.; Tian, H.-Y.; Yang, W.-P. The feeding of dietary Codonopsis pilosula polysaccharide enhances the immune responses, the expression of immune-related genes and the growth performance of red swamp crayfish (Procambarus clarkii). Fish Shellfish Immunol. 2020, 103, 321–331. [Google Scholar] [CrossRef]
- Jeong, D.; Yang, W.S.; Yang, Y.; Nam, G.; Kim, J.H.; Yoon, D.H.; Noh, H.J.; Lee, S.; Kim, T.W.; Sung, G.-H. In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract. J. Ethnopharmacol. 2013, 146, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-B.; Li, W.; Jiang, L.; Yang, L.; Chen, N.-H.; Wu, Z.-N.; Li, Y.-L.; Wang, G.-C. Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry 2018, 153, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, L.; Chen, L.-F.; Zhang, Y.-B.; Liu, Z.; Xiao, X.-H.; Tang, W.; Wang, G.-C.; Song, W.-J.; Li, Y.-L.; Li, M.-M. Watsonianone A from Rhodomyrtus tomentosa fruit attenuates respiratory-syncytial-virus-induced inflammation in vitro. J. Agric. Food Chem. 2017, 65, 3481–3489. [Google Scholar] [CrossRef]
- Siddhuraju, P.; Becker, K. Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food Chem. 2003, 51, 2144–2155. [Google Scholar] [CrossRef]
- Coppin, J.P.; Xu, Y.; Chen, H.; Pan, M.-H.; Ho, C.-T.; Juliani, R.; Simon, J.E.; Wu, Q. Determination of flavonoids by LC/MS and anti-inflammatory activity in Moringa oleifera. J. Funct. Foods 2013, 5, 1892–1899. [Google Scholar] [CrossRef]
- Schally, A.V.; Arimura, A.; Kastin, A.; Matsuo, H.; Baba, Y.; Redding, T.; Nair, R.; Debeljuk, L.; White, W. Gonadotropin-releasing hormone: One polypeptide regulates secretion of luteinizing and follicle-stimulating hormones. Science 1971, 173, 1036–1038. [Google Scholar] [CrossRef] [Green Version]
- Fallah, H.P.; Rodrigues, M.S.; Corchuelo, S.; Nóbrega, R.H.; Habibi, H.R. Role of GnRH isoforms in paracrine/autocrine control of zebrafish (Danio rerio) spermatogenesis. Endocrinology 2020, 161, bqaa004. [Google Scholar] [CrossRef]
- Low, B.-S.; Choi, S.-B.; Wahab, H.A.; Das, P.K.; Chan, K.-L. Eurycomanone, the major quassinoid in Eurycoma longifolia root extract increases spermatogenesis by inhibiting the activity of phosphodiesterase and aromatase in steroidogenesis. J. Ethnopharmacol. 2013, 149, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Low, B.-S.; Das, P.K.; Chan, K.-L. Standardized quassinoid-rich Eurycoma longifolia extract improved spermatogenesis and fertility in male rats via the hypothalamic–pituitary–gonadal axis. J. Ethnopharmacol. 2013, 145, 706–714. [Google Scholar] [CrossRef]
- Hinfray, N.; Tebby, C.; Piccini, B.; Bourgine, G.; Aït-Aïssa, S.; Porcher, J.-M.; Pakdel, F.; Brion, F. Mixture concentration-response modeling reveals antagonistic effects of estradiol and genistein in combination on brain aromatase gene (cyp19a1b) in zebrafish. Int. J. Mol. Sci. 2018, 19, 1047. [Google Scholar] [CrossRef] [Green Version]
- Thomas, P.; Tubbs, C.; Berg, H.; Dressing, G. Sex steroid hormone receptors in fish ovaries. In The Fish Oocyte; Springer: Berlin/Heidelberg, Germany, 2007; pp. 203–233. [Google Scholar]
- Nuzaiba, P.M.; Varghese, T.; Gupta, S.; Sahu, N.P.; Banani, M.; Srivastava, P.P.; Krishna, G. Dietary genistein disrupts sex steroid and vitellogenic response in female common carp, Cyprinus carpio L. Aquaculture 2020, 522, 735062. [Google Scholar] [CrossRef]
- Pinto, P.I.; Estêvão, M.D.; Andrade, A.; Santos, S.; Power, D.M. Tissue responsiveness to estradiol and genistein in the sea bass liver and scale. J. Steroid Biochem. Mol. Biol. 2016, 158, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Schiller, V.; Wichmann, A.; Kriehuber, R.; Muth-Köhne, E.; Giesy, J.P.; Hecker, M.; Fenske, M. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2013, 157, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Sarasquete, C.; Úbeda-Manzanaro, M.; Ortiz-Delgado, J.B. Soya isoflavones, genistein and daidzein, induce differential transcriptional modulation in the ovary and testis of zebrafish Danio rerio. Aquat. Biol. 2020, 29, 79–91. [Google Scholar] [CrossRef]
- Sarasquete, C.; Úbeda-Manzanaro, M.; Ortiz-Delgado, J.B. Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2018, 211, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, B.M.; Manor, M.L. Effects of phytoestrogens on growth-related and lipogenic genes in rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2015, 170, 28–37. [Google Scholar] [CrossRef]
- Bhat, I.A.; Ahmad, I.; Mir, I.N.; Bhat, R.A.H.; Gireesh-Babu, P.; Goswami, M.; Sundaray, J.; Sharma, R. Chitosan-eurycomanone nanoformulation acts on steroidogenesis pathway genes to increase the reproduction rate in fish. J. Steroid Biochem. Mol. Biol. 2019, 185, 237–247. [Google Scholar] [CrossRef]
- Bhat, I.A.; Ahmad, I.; Mir, I.N.; Yousf, D.J.; Ganie, P.A.; Bhat, R.A.H.; Gireesh-Babu, P.; Sharma, R. Evaluation of the in vivo effect of chitosan conjugated eurycomanone nanoparticles on the reproductive response in female fish model. Aquaculture 2019, 510, 392–399. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, S.; Zhou, Y.; Huang, C.; Mu, D.; Giesy, J.P.; Hu, J. Equol induces gonadal intersex in Japanese medaka (Oryzias latipes) at environmentally relevant concentrations: Comparison with 17β-estradiol. Environ. Sci. Technol. 2016, 50, 7852–7860. [Google Scholar] [CrossRef]
- Zhang, L.; Khan, I.A.; Foran, C.M. Characterization of the estrogenic response to genistein in Japanese medaka (Oryzias latipes). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2002, 132, 203–211. [Google Scholar] [CrossRef]
Phytochemicals/Derivatives | Dose | Type of Administration | Duration | Enhanced Gene Expression | Fish Species | Reference |
---|---|---|---|---|---|---|
Tannin | 0.05 or 0.1% diet | oral | 6 weeks | gh and igf-i | beluga sturgeon (Huso huso) | [19] |
Curcumin | 0.5 and 1% diet | oral | 35 days | gh, igf-1, and igf-2 | tilapia (Oreochromis mossambicus) | [20] |
D-limonene | 400 and 600 ppm diet | oral | 63 days | igf-1, muc, pept1, lpl and alp | Nile tilapia (O. niloticus) | [21] |
Apple cider vinegar | 3 and 4.5% diet | oral | 8 weeks | GHRL | zebrafish (Danio rerio) | [22] |
Bioactive Component | Family | Dose | Type of Administration | Duration | Effect | Fish Species | Reference |
---|---|---|---|---|---|---|---|
Glycyrrhiza uralensis (Chinese licorice) extract | Fabaceae | 6.9 mL/kg diet | Diet | 60 days | Increased superoxide dismutase activity and total antioxidant capacity. Increased expression of genes TLR2, TLR3, TLR5, TLR9, Myd88, and p65NFκB. Higher expression of IL-1β and IL-8 in the head kidney, not in the gill significantly. Up-regulated the expression of IgM and IgD in head kidney. Elevated disease resistance ability against F. cloumnare infection. | Yellow catfish (Pelteobagrus fulvidraco) | [53] |
Jatropha vernicosa stem bark | Euphorbiaceae | 50, 150 or 300 mg/L | Aqueous extract | 24 h | Immunostimulant increased phagocytosis, respiratory burns activity, superoxide dismutase, and catalase activities. Increased IL-1β and suppressed IL-10 gene expression potential to fight against vibriosis. | Longfin yellowtail Seriola rivoliana leukocytes | [54] |
a mixture of garlic and lamiaceae (mint) essential oils | Amaryllidaceae and Lamiaceae | 200 ppm | Diet | 9 weeks | Increased fish serum lysozyme after infection. Down-regulation of cyp11b, hif-1α, casp-3, and il-1β gene expression 2 h after stress test. Up-regulated StAR expression. | European sea bass | [55] |
leaf extract from Salvia officinalis (sage) and Lippia citriodora (lemon verbena) | Lamiaceae and Verbenaceae | MPLE; 10%, ursolic acid, 3% other triterpenic compounds; 2% verbascoside and <1% polyphenols | Extract | 92 days | No significant variations of bacteriolytic and complement and IgM in cell culture, 0.1% MPLE enhanced immune response to LPS by up-regulation of lys, IgM, tnf-α, il-1β, tgf-β1, il10, cd4, mn-sod, and cat provides immune protection after LPS treatment. | Gilthead seabream (Sparus aurata) splenocytes primary cell culture | [56] |
drumstick tree, Moringa oleifera leaf (MOL) | Moringaceae | 1, 2.5 or 5% | Diet | 3 weeks | Improved skin mucosal immunity including phosphatase, peroxidase, lysozyme activity, and IgM levels. Up-regulated expression of sod, cat, tgf-β, tight junction protein genes occludin and zo-1, c3, and IgM in skin and gills. MOL at the 5% level attenuated negative effects of H2O2 on the mucosal immune response in both the skin and gills. | Seabream (Sparus aurata) | [57] |
Spirulina or selenium nano particles | Cyanobacteria | 1 mg Se-NPs/kg diet, and 1 g SP/kg diet | Diet | 60 days | No significant differences between fish fed Se nanoparticles or/and SP. Blood Ig M was increased by feeding both Se-NPs and SP. The transcription of liver SOD and TNF-α genes was up-regulated significantly by Se-NPs or/and SP heat shock protein 70 gene transcription was down-regulated by Se-NPs or/and SP. | Nile Tilapia (Oreochromis niloticus) | [58] |
Sumac (Rhus coriaria) | Anacardiaceae | 0, 0.5, 2, and 5% | Diet | 56 days | Increased resistance to the pathogen WBC, RBC, lymphocyte, monocyte, and neutrophil value was significantly higher in sumac group. Serum lysozyme, and alternative complement pathway hemolytic activity and the hepatic expression of TNF-α and IL-1b were higher. mRNA expression of IL-10 significantly decreased in fish fed 5% sumac. 2% and 5%, may effectively enhance the immune system, resistance to the pathogen, and hematopoiesis. | Rainbow Trout (Oncorhynchus mykiss) | [59] |
Menthol essential oil after exposure with Chlorpyrifos | Lamiaceae | 0.25% diet | Diet | 30 days | The highest Hb, PCV, RBCs, and WBCs were observed in fish fed menthol. Had the highest total protein, albumin, and globulin, and the lowest urea, bilirubin, and creatinine after 15 and 30 days. The enzyme activities of ALP and ALT displayed low levels of menthol. Up-regulated transcription of CAT and GPX genes Menthol protected tissues from inflammation. Activated the immunity, antioxidative, and anti-inflammatory responses. | Nile tilapia | [60] |
nettle (Urtica dioica) | Urticaceae | 0.5,1 and 1.5% | Diet | 8 weeks | Significantly increased expressions of TNF-α, IL-1b, IL-6, and IL-8 genes. Improved growth and immunity parameters and fish resistance against S. parasitica. | Rainbow trout (Oncorhynchus mykiss) | [61] |
yam (Dioscorea oppositifolia) extract | Dioscoreaceae | 0, 0.2% and 0.4% | Diet | 8 weeks | Sixteen pathways in immune system were changed significantly. Platelet activation was the most enriched pathway. Yam extract might regulate platelet activation by regulating G protein-linked receptor-mediated signal transduction and PI3K signaling pathway. | Rainbow trout (Oncorhynchus mykiss) | [62] |
Sanguinarine from Sanguinaria canadensis | Papaveraceae | 0,0.2,0.4, and 0.8 g/kg | Diet | 8 weeks | The activity of malondialdehyde (MDA) was significantly lower. Down-regulated mRNA expression levels of MnSOD, claudin, occludin, ZO-1, and ZO-2 significantly up-regulated mRNA expression levels of TNF-α, IL-1β, TLR-7, and TLR-8. Can enhance mRNA expression levels of genes related to intestinal immunity. | Grass carp (Ctenopharyngodon idellus) | [63] |
Radix bupleuri (fennel) | Apiaceae | 200, 400 and 800 μg/mL in media 0, 200, 400, 800 and 1600 mg/kg diet | Added to culture media Diet | 8 weeks | Decreased serum ALP, ALT, AST, and LDH contents adipogenesis relative mRNA levels of DGAT2, G6PD, ME1, and DGKα in fish fed 200–400 mg/kg RBE diets were lower. Dietary supplementation with 200–800 mg/kg RBE diets up-regulated lipolysis-related genes (CPT1, LPL, and PPARα) expression in the liver. Dietary RBE down-regulated the expression of caspase-9, up-regulated the expression of CAT and MHC2, IKKα, and TGF-β1. Enhanced immune capability in hybrid grouper both in vitro and in vivo. | Hybrid grouper (Epinephelus lanceolatus♂ × Epinephelus fuscoguttatus♀) | [64] |
Turmeric (Curcuma longa) | Zingiberaceae | 0, 5, 10, and 15 g/kg | Diet | 8 weeks | 15 g/Kg: lysozyme, total immunoglobulin, protein level, alkaline phosphatase, and protease activity were significantly higher. 10 g/Kg peroxidase activity was higher. Malondialdehyde level decreased significantly, expression of pro-inflammatory cytokines (IL-1β, tumor necrosis factor-alpha), signaling molecule NF-κBp65 were down-regulated in the tested tissues in 10 and 15 g/Kg. Expression of TLR22 was down-regulated in head-kidney and intestine in 15 g/Kg. 15 g/Kg can significantly improve the growth performance, skin mucosal and serum antioxidant parameters, and strengthen immunity. | Common carp (Cyprinus carpio) | [65] |
Thymus vulgaris (thyme)essential oils | Lamiaceae | 0.5, 1.0 and 2.0 mL/kg feed | Diet | 2 months | 1 mL: the highest up-regulation of complement component 3 and CD4 expression. 2 mL: lysozyme gene expression level significantly increased and IL-1ß and lysozyme genes expression were decreased. 0.5 mL: the highest survival rate was observed at 0.5 mL/kg. | Rainbow trout (Oncorhynchus mykiss) | [66] |
Spirulina maxima (Microalgae) | Spirulinaceae | 25 and 50 μg/mL | In embryonic water | 96 h | Up-regulation of the antimicrobial enzyme (lyz, mucin, pro-inflammatory cytokines (il1β) and antioxidants (cat and sod1). The positive modulation of innate immune responses developing disease resistance against E. piscicida and A. hydrophila. | Zebrafish | [67] |
Spirulina platensis (Arthrospira platensis) and Sage (Salvia officinalis) | Spirulinaceae and Lamiaceae | 7.5 and 10 mg/kg diet | Diet | 28 days | Significant increases in lysozyme, nitric oxide activities, and IgM titer with enhancement of IL-1β and TNF-α expression. Improved immune response and protected Nile tilapia against infection. | Nile Tilapia (Oreochromis niloticus) | [68] |
Trans-cinnamic acid from Cinnamomum verum | Lauraceae | 250, 500, 750 or 1500 mg/kg | Diet | 60 days | Increased activities of phagocytic activity, respiratory burst, and potential killing. Increased the expression levels of immune-related genes SAA, IL-8, IL-1β, TGF-β, TNF-α, and IgT in head kidney of fish with 250 and 500 mg/kg. Respiratory burst activity and total antiprotease activity increased in fish fed with 500 mg/kg. Up-regulated expression of SAA, IL-8, IL-1β, TGF-β, TNF-α, IFN-γ, and IgM in fish fed 250, 500, and 750 mg/kg disease resistance against Y. ruckeri. | Rainbow trout (Oncorhynchus mykiss) | [69] |
olive leaf (Olea europea L.) extract | Oleaceae | 0.0%, 0.1%, 0.25%, 0.50% and 1.0% | Diet | 60 days | TNFα, IL1-β, and IL-8 gene expressions were significantly up-regulated. Reduced mortality. No significant changes in albumin, cholesterol, triglyceride, total protein, globulin, alkaline phosphatase, glucose, serum glutamic oxaloacetic transaminase, serum glutamate, pyruvate transaminase, and lactate dehydrogenase levels. | Rainbow trout (Oncorhynchus mykiss) | [70] |
Drumstick (Moringa oleífera) | Moringaceae | 0, 5, 10 and 15% | Diet | 4 weeks | An improvement in head kidney leucocyte phagocytosis, respiratory burst, and peroxidase activities. Serum humoral components, including protease, ACH50 and lysozyme activities and IgM level, increased with MOL inclusion, especially at the 5% level. Improved skin-mucosal immunity such as protease, antiprotease, peroxidase, and lysozyme activities Up-regulation of the intestinal mucosal immunity genes (lyso and c3), tight junction proteins (occludin and zo-1), and anti-inflammatory cytokines (tgf-β) with down-regulation of pro-inflammatory cytokine (tnf-α). | Gilthead seabream (Sparus aurata) | [71] |
Rhodomyrtus tomentosa leaf extract | Myrtaceae | 1 and 10 μg/mL | Added to cell media | 4 h and 24 h | Induced reduction in the expression of pro-inflammatory cytokines (il1β, il8, and tnfα), and increase in anti-inflammatory cytokines (il10 and tgfβ), inducible enzymes (inos, cox2, and arginase), and an antioxidant enzyme (gpx1). A reduction in cellular ROS levels. Exerted immunostimulatory and anti-inflammatory effects on fish macrophages. | Rainbow trout (Oncorhynchus mykiss) | [72] |
Species/Source | Compound(s) | Species/Organ | Affected Gene(s) | References |
---|---|---|---|---|
Genistein | Isoflavone Angiogenesis inhibitor Phytoestrogen | Common carp (Cyprinus carpio) Ovary European bass (Dicentrarchus labrax) Scales and liver Zebrafish and Medaka (embryos) | cyp19a1a, liver vtgb2, erβ vtg2, chgl Zebrafish: cyp19a1b, vtg1 Medeka: cyp19a1a, vtg, cyp19a1b | [109] [110] [111] |
Genistein and daidzein | Genistein: Isoflavone Angiogenesis inhibitor Phytoestrogen Daidzein: naturally occurring compound in soybeans and other legumes Isoflavone | Zebrafish Ovary Testis Zebrafish Embryos-larvae Rainbow trout (Oncorhynchus mykiss) Juvenile | Genistein exposure: Ovary: erβ Ovary and testis: HE1 Daidzein exposure: Testis: BRDT esrrb, cyp1a Liver vitellogenin, era1, erb1 | [112] [113] [114] |
Eurycomanone and chitosan conjugated eurycomanone | Eurycomanone: the major quassinoid in Eurycoma longifolia root extract Chitosan: a linear polysaccharide composed obtained from the outer skeleton of shellfish including lobster, crab, and shrimp | Walking catfish (Clarias magur) Male Walking catfish (Clarias magur) Female | Brain: fshβ and lhβ Testes: cyp11a1, star, cyp17a1, 3β-hsd, 17β-hsd, cyp19a1, ftz, ar, sox9a, dmrt1 Brain: fshβ, lhβ, cyp19a2 Ovary: ftz, star, cyp19a1, 3β-hsd, 17β-hsd, cyp17a1 | [115] [116] |
Equol | isoflavandiol estrogen metabolized from daidzein | Japanese medaka Larvae, Liver, Gonads | vtg1 17β-hsd3, cyp11b, 11β-hsd2 | [117] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadifar, E.; Pourmohammadi Fallah, H.; Yousefi, M.; Dawood, M.A.O.; Hoseinifar, S.H.; Adineh, H.; Yilmaz, S.; Paolucci, M.; Doan, H.V. The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish. Animals 2021, 11, 2167. https://doi.org/10.3390/ani11082167
Ahmadifar E, Pourmohammadi Fallah H, Yousefi M, Dawood MAO, Hoseinifar SH, Adineh H, Yilmaz S, Paolucci M, Doan HV. The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish. Animals. 2021; 11(8):2167. https://doi.org/10.3390/ani11082167
Chicago/Turabian StyleAhmadifar, Ehsan, Hamideh Pourmohammadi Fallah, Morteza Yousefi, Mahmoud A. O. Dawood, Seyed Hossein Hoseinifar, Hossein Adineh, Sevdan Yilmaz, Marina Paolucci, and Hien Van Doan. 2021. "The Gene Regulatory Roles of Herbal Extracts on the Growth, Immune System, and Reproduction of Fish" Animals 11, no. 8: 2167. https://doi.org/10.3390/ani11082167